算法训练营 day53 动态规划 买卖股票的最佳时机系列2
买卖股票的最佳时机III
123. 买卖股票的最佳时机 III - 力扣(LeetCode)
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
- 确定dp数组以及下标的含义
一天一共就有五个状态,
- 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]
中 i表示第i天,j为 [0 - 4]
五个状态,dp[i][j]
表示第i天状态j所剩最大现金。
需要注意:dp[i][1]
,表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
- 确定递推公式
达到dp[i][1]
状态,有两个具体操作:
- 操作一:第i天买入股票了,那么
dp[i][1] = dp[i-1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:
dp[i][1] = dp[i - 1][1]
那么dp[i][1]
究竟选 dp[i-1][0] - prices[i]
,还是dp[i - 1][1]
呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1])
;
同理dp[i][2]
也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i])
;
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i])
;
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0
;
第0天做第一次买入的操作,dp[0][1] = -prices[0]
;
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0
;
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0]
;
同理第二次卖出初始化dp[0][4] = 0
;
- 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
- 举例推导dp数组
以输入[1,2,3,4,5]为例
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][5];
if (prices.length == 0) return 0;
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for (int i = 1; i <prices.length; i++) {
dp[i][0] = dp[i-1][0];
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]-prices[i]);
dp[i][2] = Math.max(dp[i-1][2], dp[i-1][1]+prices[i]);
dp[i][3] = Math.max(dp[i-1][3], dp[i-1][2]-prices[i]);
dp[i][4] = Math.max(dp[i-1][4], dp[i-1][3]+prices[i]);
}
return dp[prices.length-1][4];
}
}
买卖股票的最佳时机IV
188. 买卖股票的最佳时机 IV - 力扣(LeetCode)
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
- 确定dp数组以及下标的含义
在123. 买卖股票的最佳时机 III - 力扣中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
使用二维数组·dp[i][j]
:第i天的状态为j,所剩下的最大现金是dp[i][j]
j的状态表示为:
- 0 表示不操作
- 1 第一次买入
- 2 第一次卖出
- 3 第二次买入
- 4 第二次卖出
- …
大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
- 确定递推公式
还要强调一下:dp[i][1]
,表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么
dp[i][1] = dp[i - 1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:
dp[i][1] = dp[i - 1][1]
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1])
;
同理dp[i][2]
也有两个操作:
- 操作一:第i天卖出股票了,那么
dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:
dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0
;
第0天做第一次买入的操作,dp[0][1] = -prices[0]
;
第0天做第一次卖出的操作,大家可以理解当天买入,当天卖出,所以dp[0][2] = 0
;
第0天第二次买入操作,第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0]
;
第二次卖出初始化dp[0][4] = 0
;
所以同理可以推出dp[0][j]
当j为奇数的时候都初始化为 -prices[0]
- 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
- 举例推导dp数组
以输入[1,2,3,4,5],k=2为例。
最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]
即红色部分就是最后求解。
class Solution {
public int maxProfit(int k, int[] prices) {
int[][] dp = new int[prices.length][2*k+1];
if (prices.length == 0) return 0;
dp[0][0] = 0;
for (int i = 1; i <=2*k; i+=2) {
dp[0][i] = -prices[0];
dp[0][i+1] = 0;
}
for (int i = 1; i <prices.length ; i++) {
dp[i][0] = dp[i-1][0];
for (int j = 1; j <=2*k; j+=2) {
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-1]-prices[i]);
dp[i][j+1] = Math.max(dp[i-1][j+1],dp[i-1][j]+prices[i]);
}
}
return dp[prices.length-1][2*k];
}
}