SparkSQL

news2025/1/12 2:54:59

第1章 SparkSQL 概述

1.1 SparkSQL 是什么

Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块。

1.2 Hive and SparkSQL

SparkSQL 的前身是 Shark,给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供快速上手的工具。

Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop的效率,大量的 SQL-on-Hadoop 工具开始产生,其中表现较为突出的是:

⚫ Drill

⚫ Impala

⚫ Shark

其中 Shark 是伯克利实验室 Spark 生态环境的组件之一,是基于 Hive 所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在 Spark 引擎上。

Shark 的出现,使得 SQL-on-Hadoop 的性能比 Hive 有了 10-100 倍的提高。

但是,随着 Spark 的发展,对于野心勃勃的 Spark 团队来说,Shark 对于 Hive 的太多依赖(如采用 Hive 的语法解析器、查询优化器等等),制约了 Spark 的 One Stack Rule Them All的既定方针,制约了 Spark 各个组件的相互集成,所以提出了 SparkSQL 项目。SparkSQL抛弃原有 Shark 的代码,汲取了 Shark 的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便,真可谓“退一步,海阔天空”。

➢ 数据兼容方面 SparkSQL 不但兼容 Hive,还可以从 RDD、parquet 文件、JSON 文件中获取数据,未来版本甚至支持获取 RDBMS 数据以及 cassandra 等 NOSQL 数据;

➢ 性能优化方面 除了采取 In-Memory Columnar Storage、byte-code generation 等优化技术外、将会引进 Cost Model 对查询进行动态评估、获取最佳物理计划等等;

➢ 组件扩展方面 无论是 SQL 的语法解析器、分析器还是优化器都可以重新定义,进行扩展。

2014 年 6 月 1 日 Shark 项目和 SparkSQL 项目的主持人 Reynold Xin 宣布:停止对 Shark 的开发,团队将所有资源放 SparkSQL 项目上,至此,Shark 的发展画上了句话,但也因此发展出两个支线:SparkSQL 和 Hive on Spark。

其中 SparkSQL 作为 Spark 生态的一员继续发展,而不再受限于 Hive,只是兼容 Hive;而Hive on Spark 是一个 Hive 的发展计划,该计划将 Spark 作为 Hive 的底层引擎之一,也就是说,Hive 将不再受限于一个引擎,可以采用 Map-Reduce、Tez、Spark 等引擎。

对于开发人员来讲,SparkSQL 可以简化 RDD 的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是 SparkSQL。Spark SQL 为了简化 RDD 的开发,提高开发效率,提供了 2 个编程抽象,类似 Spark Core 中的 RDD

➢ DataFrame

➢ DataSet

1.3 SparkSQL 特点

1.3.1 易整合

无缝的整合了 SQL 查询和 Spark 编程

1.3.2 统一的数据访问

使用相同的方式连接不同的数据源

1.3.3 兼容 Hive

1.3.4 标准数据连接

通过 JDBC 或者 ODBC 来连接

1.4 DataFrame 是什么

在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二维表格。

DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。

同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从 API 易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD API 要更加友好,门槛更低。

上图直观地体现了 DataFrame 和 RDD 的区别。

左侧的 RDD[Person]虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。

DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计划通过 Spark catalyst optimiser 进行优化。比如下面一个例子:

为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们 join 之后又做了一次 filter 操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为 join 是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将 filter 下推到 join 下方,先对 DataFrame 进行过滤,再 join 过滤后的较小的结果集,便可以有效缩短执行时间。而 Spark SQL 的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

1.5 DataSet 是什么

**DataSet 是分布式数据集合。**DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter等等)。

➢ DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象

➢ 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性;

➢ 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet 中的字段名称;

➢ DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。

➢ DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序

第2章 SparkSQL 核心编程

本课件重点学习如何使用 Spark SQL 所提供的 DataFrame 和 DataSet 模型进行编程.,以及了解它们之间的关系和转换,关于具体的 SQL 书写不是我们的重点

2.1 新的起点

Spark Core 中,如果想要执行应用程序,需要首先构建上下文环境对象 SparkContext,Spark SQL 其实可以理解为对 Spark Core 的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。

在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark自己提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。

SparkSession 是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext的组合,所以在 SQLContex 和 HiveContext 上可用的 API 在 SparkSession 上同样是可以使用的。SparkSession 内部封装了 SparkContext,所以计算实际上是由 sparkContext 完成的。当我们使用 spark-shell 的时候, spark 框架会自动的创建一个名称叫做 spark 的 SparkSession 对象, 就像我们以前可以自动获取到一个 sc 来表示 SparkContext 对象一样

2.2 DataFrame

Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation 操作也有 action 操作。

2.2.1 创建 DataFrame

在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame有三种方式:通过 Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查询返回。

1) 从 Spark 数据源进行创建

➢ 查看 Spark 支持创建文件的数据源格式

scala> spark.read.
csv  format  jdbc  json  load  option  options  orc  parquet  schema 
table  text  textFile

➢ 在 spark 的 bin/data 目录中创建 user.json 文件

{"username":"zhangsan","age":20}

➢ 读取 json 文件创建 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

注意:如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和Long 类型转换,但是和 Int 不能进行转换

➢ 展示结果

+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
+---+--------+

2) 从 RDD 进行转换

在后续章节中讨论

3) 从 Hive Table 进行查询返回

在后续章节中讨论

2.2.2 SQL 语法

SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助

1) 读取 JSON 文件创建 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

2) 对 DataFrame 创建一个临时表

scala> df.createOrReplaceTempView("people")

3) 通过 SQL 语句实现查询全表

scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

4) 结果展示

scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+

注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问如:global_temp.people

5) 对于 DataFrame 创建一个全局表

scala> df.createGlobalTempView("people")

6) 通过 SQL 语句实现查询全表

2.2.3 DSL 语法

DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了

1) 创建一个 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2) 查看 DataFrame 的 Schema 信息

scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)

3) 只查看"username"列数据,

scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
| lisi|
| wangwu|
+--------+

4) 查看"username"列数据以及"age+1"数据

注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名

scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1).show()
scala> df.select('username, 'age + 1 as "newage").show()
+--------+---------+
|username|(age + 1)|
+--------+---------+
|zhangsan| 21|
| lisi| 31|
| wangwu| 41|
+--------+---------+
  1. 查看"age"大于"30"的数据

scala> df.filter($"age">30).show
+---+---------+
|age| username|
+---+---------+
| 40| wangwu|
+---+---------+
  1. 按照"age"分组,查看数据条数

scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 20| 1|
| 30| 1|
| 40| 1|
+---+-----+

2.2.4 RDD 转换为 DataFrame

在 IDEA 中开发程序时,如果需要 RDD 与 DF 或者 DS 之间互相操作,那么需要引入

import spark.implicits._

这里的 spark 不是 Scala 中的包名,而是创建的 sparkSession 对象的变量名称,所以必须先创建 SparkSession 对象再导入。这里的 spark 对象不能使用 var 声明,因为 Scala 只支持val 修饰的对象的引入。

spark-shell 中无需导入,自动完成此操作。

scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
| id|
+---+
| 1|
| 2|
| 3|
| 4|
+---+

实际开发中,一般通过样例类将 RDD 转换为 DataFrame

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, 
t._2)).toDF.show
+--------+---+
| name|age|
+--------+---+
|zhangsan| 30|
| lisi| 40|
+--------+---+

2.2.5 DataFrame 转换为 RDD

DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> val rdd = df.rdd
rdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[46] 
at rdd at <console>:25

scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])

注意:此时得到的 RDD 存储类型为 Row

scala> array(0)
res28: org.apache.spark.sql.Row = [zhangsan,30]
scala> array(0)(0)
res29: Any = zhangsan
scala> array(0).getAs[String]("name")
res30: String = zhangsan

2.3 DataSet

DataSet 是具有强类型的数据集合,需要提供对应的类型信息。

2.3.1 创建 DataSet

1) 使用样例类序列创建 DataSet

scala> case class Person(name: String, age: Long)
defined class Person

scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]

scala> caseClassDS.show
+---------+---+
| name|age|
+---------+---+
| zhangsan| 2|
+---------+---+

2) 使用基本类型的序列创建 DataSet

scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+

注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet

2.3.2 RDD 转换为 DataSet

SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构。

scala> case class User(name:String, age:Int)
defined class User

scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

2.3.3 DataSet 转换为 RDD

DataSet 其实也是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> case class User(name:String, age:Int)
defined class User

scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at <console>:25

scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))

2.4 DataFrame 和 DataSet 转换

DataFrame 其实是 DataSet 的特例,所以它们之间是可以互相转换的。

➢ DataFrame 转换为 DataSet

scala> case class User(name:String, age:Int)
defined class User

scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

➢ DataSet 转换为 DataFrame

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

2.5 RDD、DataFrame、DataSet 三者的关系

在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和 RDD 有什么区别呢?首先从版本的产生上来看:

➢ Spark1.0 => RDD

➢ Spark1.3 => DataFrame

➢ Spark1.6 => Dataset

如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的 Spark 版本中,DataSet 有可能会逐步取代 RDD和 DataFrame 成为唯一的 API 接口。

2.5.1 三者的共性

➢ RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据提供便利;

➢ 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到Action 如 foreach 时,三者才会开始遍历运算;

➢ 三者有许多共同的函数,如 filter,排序等;

➢ 在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包:import spark.implicits._(在创建好 SparkSession 对象后尽量直接导入)

➢ 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出

➢ 三者都有 partition 的概念

➢ DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型

2.5.2 三者的区别

1) RDD

➢ RDD 一般和 spark mllib 同时使用

➢ RDD 不支持 sparksql 操作

2) DataFrame

➢ 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值

➢ DataFrame 与 DataSet 一般不与 spark mllib 同时使用

➢ DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select,groupby 之类,还能注册临时表/视窗,进行 sql 语句操作

➢ DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这样每一列的字段名一目了然(后面专门讲解)

3) DataSet

➢ Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]

➢ DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息

2.5.3 三者的互相转换

2.6 IDEA 开发 SparkSQL

实际开发中,都是使用 IDEA 进行开发的。

2.6.1 添加依赖

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.12</artifactId>
 <version>3.0.0</version>
</dependency>

2.6.2 代码实现

object SparkSQL01_Demo {
  def main(args: Array[String]): Unit = {
    //创建上下文环境配置对象
    val conf: SparkConf = new
        SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
    //创建 SparkSession 对象
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
    //RDD=>DataFrame=>DataSet 转换需要引入隐式转换规则,否则无法转换
    //spark 不是包名,是上下文环境对象名
    import spark.implicits._
    //读取 json 文件 创建 DataFrame {"username": "lisi","age": 18}
    val df: DataFrame = spark.read.json("input/test.json")
    //df.show()
    //SQL 风格语法
    df.createOrReplaceTempView("user")
    //spark.sql("select avg(age) from user").show
    //DSL 风格语法
    //df.select("username","age").show()
    //*****RDD=>DataFrame=>DataSet*****
    //RDD
    val rdd1: RDD[(Int, String, Int)] =
    spark.sparkContext.makeRDD(List((1,"zhangsan",30),(2,"lisi",28),(3,"wangwu",
      20)))
    //DataFrame
    val df1: DataFrame = rdd1.toDF("id","name","age")
    //df1.show()
    //DateSet
    val ds1: Dataset[User] = df1.as[User]
    //ds1.show()
    //*****DataSet=>DataFrame=>RDD*****
    //DataFrame
    val df2: DataFrame = ds1.toDF()
    //RDD 返回的 RDD 类型为 Row,里面提供的 getXXX 方法可以获取字段值,类似 jdbc 处理结果集,
    但是索引从 0 开始
    val rdd2: RDD[Row] = df2.rdd
    //rdd2.foreach(a=>println(a.getString(1)))
    //*****RDD=>DataSet*****
    rdd1.map{
      case (id,name,age)=>User(id,name,age)
    }.toDS()
    //*****DataSet=>=>RDD*****
    ds1.rdd
    //释放资源
    spark.stop()
  }
}
case class User(id:Int,name:String,age:Int)
package com.atguigu.bigdata.spark.sql

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object Basic {

  def main(args: Array[String]): Unit = {

    // TODO 创建SparkSQL的运行环境
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    import spark.implicits._


    // TODO 执行逻辑操作

    // TODO DataFrame
    //val df: DataFrame = spark.read.json("datas/user.json")
    //df.show()

    // DataFrame => SQL
    //        df.createOrReplaceTempView("user")
    //
    //        spark.sql("select * from user").show
    //        spark.sql("select age, username from user").show
    //        spark.sql("select avg(age) from user").show

    // DataFrame => DSL
    // 在使用DataFrame时,如果涉及到转换操作,需要引入转换规则

    //df.select("age", "username").show
    //df.select($"age" + 1).show
    //df.select('age + 1).show

    // TODO DataSet
    // DataFrame其实是特定泛型的DataSet
    //val seq = Seq(1,2,3,4)
    //val ds: Dataset[Int] = seq.toDS()
    //ds.show()

    // RDD <=> DataFrame
    val rdd = spark.sparkContext.makeRDD(List((1, "zhangsan", 30), (2, "lisi", 40)))
    val df: DataFrame = rdd.toDF("id", "name", "age")
    val rowRDD: RDD[Row] = df.rdd

    // DataFrame <=> DataSet
    val ds: Dataset[User] = df.as[User]
    val df1: DataFrame = ds.toDF()

    // RDD <=> DataSet
    val ds1: Dataset[User] = rdd.map {
      case (id, name, age) => {
        User(id, name, age)
      }
    }.toDS()
    val userRDD: RDD[User] = ds1.rdd


    // TODO 关闭环境
    spark.close()
  }

  // 样例类
  case class User( id:Int, name:String, age:Int )
}

2.7 用户自定义函数

用户可以通过 spark.udf 功能添加自定义函数,实现自定义功能。

2.7.1 UDF

1) 创建 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

2) 注册 UDF

scala> spark.udf.register("addName",(x:String)=> "Name:"+x)
res9: org.apache.spark.sql.expressions.UserDefinedFunction = 
UserDefinedFunction(<function1>,StringType,Some(List(StringType)))

3) 创建临时表

scala> df.createOrReplaceTempView("people")

4) 应用 UDF

scala> spark.sql("Select addName(name),age from people").show()

2.7.2 代码实现

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object UDF {

  def main(args: Array[String]): Unit = {

    // TODO 创建SparkSQL的运行环境
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    import spark.implicits._

    val df = spark.read.json("input/user.json")
    df.createOrReplaceTempView("user")

    // udf 用户自定义函数
    spark.udf.register("prefixName", (name:String) => {
      "Name: " + name
    })

    spark.sql("select age, prefixName(username) from user").show
    
    // TODO 关闭环境
    spark.close()
  }
}

2.7.2 UDAF

强类型的 Dataset 和弱类型的 DataFrame 都提供了相关的聚合函数, 如 count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承 UserDefinedAggregateFunction 来实现用户自定义弱类型聚合函数。从 Spark3.0 版本后,UserDefinedAggregateFunction 已经不推荐使用了。可以统一采用强类型聚合函数Aggregator

需求:计算平均工资

一个需求可以采用很多种不同的方法实现需求

1) 实现方式 - RDD

val conf: SparkConf = new SparkConf().setAppName("app").setMaster("local[*]")
val sc: SparkContext = new SparkContext(conf)
val res: (Int, Int) = sc.makeRDD(List(("zhangsan", 20), ("lisi", 30), ("wangw", 
40))).map {
 case (name, age) => {
 (age, 1)
 }
}.reduce {
 (t1, t2) => {
 (t1._1 + t2._1, t1._2 + t2._2)
 }
}
println(res._1/res._2)
// 关闭连接
sc.stop()

2) 实现方式 - 累加器

class MyAC extends AccumulatorV2[Int,Int]{
 var sum:Int = 0
 var count:Int = 0
 override def isZero: Boolean = {
 return sum ==0 && count == 0
 }
 override def copy(): AccumulatorV2[Int, Int] = {
 val newMyAc = new MyAC
 newMyAc.sum = this.sum
 newMyAc.count = this.count
 newMyAc
 }
 override def reset(): Unit = {
 sum =0
 count = 0
 }
 override def add(v: Int): Unit = {
 sum += v
 count += 1
 }
 override def merge(other: AccumulatorV2[Int, Int]): Unit = {
 other match {
 case o:MyAC=>{
 sum += o.sum
 count += o.count
 }
 case _=>
 }
 }
 override def value: Int = sum/count
}

3) 实现方式 - UDAF - 弱类型

已将不推荐使用

// 弱类型
import org.apache.spark.SparkConf
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, LongType, StructField, StructType}

object SparkSQL_UDAF {

  def main(args: Array[String]): Unit = {

    // TODO 创建SparkSQL的运行环境
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()

    val df = spark.read.json("input/user.json")
    df.createOrReplaceTempView("user")

    spark.udf.register("ageAvg", new MyAvgUDAF())

    spark.sql("select ageAvg(age) from user").show


    // TODO 关闭环境
    spark.close()
  }



  /*
   自定义聚合函数类:计算年龄的平均值
   1. 继承UserDefinedAggregateFunction
   2. 重写方法(8)
   */
  class MyAvgUDAF extends UserDefinedAggregateFunction{
    // 输入数据的结构 : Int
    override def inputSchema: StructType = {
      StructType(
        Array(
          StructField("age", LongType)
        )
      )
    }
    // 缓冲区数据的结构 : Buffer
    override def bufferSchema: StructType = {
      StructType(
        Array(
          StructField("total", LongType),
          StructField("count", LongType)
        )
      )
    }

    // 函数计算结果的数据类型:Out
    override def dataType: DataType = LongType

    // 函数的稳定性
    override def deterministic: Boolean = true

    // 缓冲区初始化
    override def initialize(buffer: MutableAggregationBuffer): Unit = {
      //buffer(0) = 0L
      //buffer(1) = 0L

      buffer.update(0, 0L)
      buffer.update(1, 0L)
    }

    // 根据输入的值更新缓冲区数据
    override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
      buffer.update(0, buffer.getLong(0)+input.getLong(0))
      buffer.update(1, buffer.getLong(1)+1)
    }

    // 缓冲区数据合并
    override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
      buffer1.update(0, buffer1.getLong(0) + buffer2.getLong(0))
      buffer1.update(1, buffer1.getLong(1) + buffer2.getLong(1))
    }

    // 计算平均值
    override def evaluate(buffer: Row): Any = {
      buffer.getLong(0)/buffer.getLong(1)
    }
  }
}

4) 实现方式 - UDAF - 强类型

一般会使用这个

// 强类型
import org.apache.spark.SparkConf
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions}

object Spark03_SparkSQL_UDAF1 {

  def main(args: Array[String]): Unit = {

    // TODO 创建SparkSQL的运行环境
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()

    val df = spark.read.json("input/user.json")
    df.createOrReplaceTempView("user")

    spark.udf.register("ageAvg", functions.udaf(new MyAvgUDAF()))

    spark.sql("select ageAvg(age) from user").show


    // TODO 关闭环境
    spark.close()
  }
  /*
   自定义聚合函数类:计算年龄的平均值
   1. 继承org.apache.spark.sql.expressions.Aggregator, 定义泛型
       IN : 输入的数据类型 Long
       BUF : 缓冲区的数据类型 Buff
       OUT : 输出的数据类型 Long
   2. 重写方法(6)
   */
  case class Buff( var total:Long, var count:Long )

  class MyAvgUDAF extends Aggregator[Long, Buff, Long]{
    // z & zero : 初始值或零值
    // 缓冲区的初始化
    override def zero: Buff = {
      Buff(0L,0L)
    }

    // 根据输入的数据更新缓冲区的数据
    override def reduce(buff: Buff, in: Long): Buff = {
      buff.total = buff.total + in
      buff.count = buff.count + 1
      buff
    }

    // 合并缓冲区
    override def merge(buff1: Buff, buff2: Buff): Buff = {
      buff1.total = buff1.total + buff2.total
      buff1.count = buff1.count + buff2.count
      buff1
    }

    //计算结果
    override def finish(buff: Buff): Long = {
      buff.total / buff.count
    }

    // 缓冲区的编码操作
    override def bufferEncoder: Encoder[Buff] = Encoders.product

    // 输出的编码操作
    override def outputEncoder: Encoder[Long] = Encoders.scalaLong
  }
}

改进

import org.apache.spark.SparkConf
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Dataset, Encoder, Encoders, SparkSession, TypedColumn, functions}

object Spark03_SparkSQL_UDAF2 {

    def main(args: Array[String]): Unit = {

        // TODO 创建SparkSQL的运行环境
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()
        import spark.implicits._
        val df = spark.read.json("datas/user.json")

        // 早期版本中,spark不能在sql中使用强类型UDAF操作
        // SQL & DSL
        // 早期的UDAF强类型聚合函数使用DSL语法操作
        val ds: Dataset[User] = df.as[User]

        // 将UDAF函数转换为查询的列对象
        val udafCol: TypedColumn[User, Long] = new MyAvgUDAF().toColumn

        ds.select(udafCol).show


        // TODO 关闭环境
        spark.close()
    }
    /*
     自定义聚合函数类:计算年龄的平均值
     1. 继承org.apache.spark.sql.expressions.Aggregator, 定义泛型
         IN : 输入的数据类型 User
         BUF : 缓冲区的数据类型 Buff
         OUT : 输出的数据类型 Long
     2. 重写方法(6)
     */
    case class User(username:String, age:Long)
    case class Buff( var total:Long, var count:Long )
    class MyAvgUDAF extends Aggregator[User, Buff, Long]{
        // z & zero : 初始值或零值
        // 缓冲区的初始化
        override def zero: Buff = {
            Buff(0L,0L)
        }

        // 根据输入的数据更新缓冲区的数据
        override def reduce(buff: Buff, in: User): Buff = {
            buff.total = buff.total + in.age
            buff.count = buff.count + 1
            buff
        }

        // 合并缓冲区
        override def merge(buff1: Buff, buff2: Buff): Buff = {
            buff1.total = buff1.total + buff2.total
            buff1.count = buff1.count + buff2.count
            buff1
        }

        //计算结果
        override def finish(buff: Buff): Long = {
            buff.total / buff.count
        }

        // 缓冲区的编码操作
        override def bufferEncoder: Encoder[Buff] = Encoders.product

        // 输出的编码操作
        override def outputEncoder: Encoder[Long] = Encoders.scalaLong
    }
}

2.8 数据的加载和保存

2.8.1 通用的加载和保存方式

SparkSQL 提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL 默认读取和保存的文件格式为 parquet

1) 加载数据

spark.read.load 是加载数据的通用方法

scala> spark.read.

csv format jdbc json load option options orc parquet schema 
table text textFile

如果读取不同格式的数据,可以对不同的数据格式进行设定

scala> spark.read.format("…")[.option("…")].load("…")

➢ format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"。

➢ load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载数据的路径。

➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable 我们前面都是使用 read API 先把文件加载到 DataFrame 然后再查询,其实,我们也可以直 接在文件上进行查询: 文件格式.文件路径

scala>spark.sql("select * from json.`/opt/module/data/user.json`").show

2) 保存数据

df.write.save 是保存数据的通用方法

scala>df.write.

csv jdbc json orc parquet textFile… …

如果保存不同格式的数据,可以对不同的数据格式进行设定

scala>df.write.format("…")[.option("…")].save("…")

➢ format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"。

➢ save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。

➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable保存操作可以使用 SaveMode, 用来指明如何处理数据,**使用 ****mode()**方法来设置。有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。

SaveMode 是一个枚举类,其中的常量包括:

df.write.mode("append").json("/opt/module/data/output")

2.8.2 Parquet

**Spark SQL 的默认数据源为 Parquet 格式。**Parquet 是一种能够有效存储嵌套数据的列式存储格式。

数据源为 Parquet 文件时,Spark SQL 可以方便的执行所有的操作,不需要使用 format。

修改配置项 spark.sql.sources.default,可修改默认数据源格式。

1) 加载数据

scala> val df = spark.read.load("examples/src/main/resources/users.parquet")

scala> df.show

2) 保存数据

scala> var df = spark.read.json("/opt/module/data/input/people.json")
//保存为 parquet 格式
scala> df.write.mode("append").save("/opt/module/data/output")

2.8.3 JSON

Spark SQL 能够自动推测 JSON 数据集的结构,并将它加载为一个 Dataset[Row]. 可以通过 SparkSession.read.json()去加载 JSON 文件。

注意:Spark 读取的 JSON 文件不是传统的 JSON 文件,每一行都应该是一个 JSON 串。

格式如下:

{"name":"Michael"}
{"name":"Andy", "age":30}
[{"name":"Justin", "age":19},{"name":"Justin", "age":19}]

1)导入隐式转换

import spark.implicits._

2)加载 JSON 文件

val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)

3)创建临时表

peopleDF.createOrReplaceTempView("people")

4)数据查询

val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")

teenagerNamesDF.show()
+------+
| name|
+------+
|Justin|
+------+

2.8.4 CSV

Spark SQL 可以配置 CSV 文件的列表信息,读取 CSV 文件,CSV 文件的第一行设置为数据列

spark.read.format("csv").option("sep", ";").option("inferSchema", 
"true").option("header", "true").load("data/user.csv")

2.8.5 MySQL

2.8.5 MySQL

Spark SQL 可以通过 JDBC 从关系型数据库中读取数据的方式创建 DataFrame,通过对DataFrame 一系列的计算后,还可以将数据再写回关系型数据库中。如果使用 spark-shell 操作,可在启动 shell 时指定相关的数据库驱动路径或者将相关的数据库驱动放到 spark 的类路径下。

bin/spark-shell --jars mysql-connector-java-5.1.27-bin.jar

我们这里只演示在 Idea 中通过 JDBC 对 Mysql 进行操作

1)导入依赖

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.27</version>
</dependency>

2)读取数据

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession


object Spark03_SparkSQL_UDAF2 {

  def main(args: Array[String]): Unit = {

    // TODO 创建SparkSQL的运行环境
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val session = SparkSession.builder().config(sparkConf).getOrCreate()
    import session.implicits._

    // 读取MySQL数据库
    val df = session.read.format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/test_maxwell")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "123456")
      .option("dbtable", "test1")
      .load()
    df.show

    // 保存数据到MySQL
    df.write.format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/test_maxwell")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "123456")
      .option("dbtable", "test3")
      .mode(saveMode = "Append")
      .save()

    // 关闭环境
    session.close()

  }
}

2.8.6 Hive

Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。

若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到Spark 的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行。 需要注意的是,如果你没有部署好 Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。

spark-shell 默认是 Hive 支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。

1)内嵌的 HIVE

如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可.

Hive 的元数据存储在 derby 中, 默认仓库地址:$SPARK_HOME/spark-warehouse

scala> spark.sql("show tables").show
。。。
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+

scala> spark.sql("create table aa(id int)")
。。。

scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| aa| false|
+--------+---------+-----------+

向表加载本地数据

scala> spark.sql("load data local inpath 'input/ids.txt' into table aa")
。。。
scala> spark.sql("select * from aa").show
+---+
| id|
+---+
| 1|
| 2|
| 3|
| 4|
+---+

在实际使用中, 几乎没有任何人会使用内置的 Hive

2)外部的 HIVE

如果想连接外部已经部署好的 Hive,需要通过以下几个步骤:

➢ Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下

➢ 把 Mysql 的驱动 copy 到 jars/目录下

➢ 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下

➢ 重启 spark-shell

scala> spark.sql("show tables").show
20/04/25 22:05:14 WARN ObjectStore: Failed to get database global_temp, returning 
NoSuchObjectException
+--------+--------------------+-----------+
|database| tableName|isTemporary|
+--------+--------------------+-----------+
| default| emp| false|
| default|hive_hbase_emp_table| false|
| default| relevance_hbase_emp| false|
| default| staff_hive| false|
| default| ttt| false|
| default| user_visit_action| false|
+--------+--------------------+-----------+

3)运行 Spark SQL CLI

Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似一 Hive 窗口

bin/spark-sql

4)运行 Spark beeline

Spark Thrift Server 是 Spark 社区基于 HiveServer2 实现的一个 Thrift 服务。旨在无缝兼容HiveServer2。因为 Spark Thrift Server 的接口和协议都和 HiveServer2 完全一致,因此我们部署好 Spark Thrift Server 后,可以直接使用 hive 的 beeline 访问 Spark Thrift Server 执行相关语句。Spark Thrift Server 的目的也只是取代 HiveServer2,因此它依旧可以和 Hive Metastore进行交互,获取到 hive 的元数据。

如果想连接 Thrift Server,需要通过以下几个步骤:

➢ Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下

➢ 把 Mysql 的驱动 copy 到 jars/目录下

➢ 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下

➢ 启动 Thrift Server

sbin/start-thriftserver.sh

➢ 使用 beeline 连接 Thrift Server

bin/beeline -u jdbc:hive2://linux1:10000 -n root

5)代码操作 Hive

1)导入依赖

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.27</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-hive_2.12</artifactId>
    <version>3.0.0</version>
</dependency>
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>1.2.1</version>
</dependency>

2)将 hive-site.xml 文件拷贝到项目的 resources 目录中,代码实现

//创建 SparkSession
val spark: SparkSession = SparkSession
 .builder()
** .enableHiveSupport()**
 .master("local[*]")
 .appName("sql")
 .getOrCreate()

**注意:在开发工具中创建数据库默认是在本地仓库,通过参数修改数据库仓库的地址: **

config("spark.sql.warehouse.dir", "hdfs://hadoop102:8020/user/hive/warehouse")

如果在执行操作时,出现如下错误:

可以代码最前面增加如下代码解决:

System.setProperty("HADOOP_USER_NAME", "root")

此处的 root 改为你们自己的 hadoop 用户名称

import org.apache.spark.SparkConf
import org.apache.spark.sql._

object Spark05_SparkSQL_Hive {

    def main(args: Array[String]): Unit = {
        System.setProperty("HADOOP_USER_NAME", "root")
        // TODO 创建SparkSQL的运行环境
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
        val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()

**        // 使用SparkSQL连接外置的Hive
        // 1. 拷贝Hive-size.xml文件到classpath下
        // 2. 启用Hive的支持
        // 3. 增加对应的依赖关系(包含MySQL驱动)**
        spark.sql("show tables").show

        // TODO 关闭环境
        spark.close()
    }
}

第3章 SparkSQL 项目实战

3.1 数据准备

我们这次 Spark-sql 操作中所有的数据均来自 Hive,首先在 Hive 中创建表,,并导入数据。

一共有 3 张表: 1 张用户行为表,1 张城市表,1 张产品表

import org.apache.spark.SparkConf
import org.apache.spark.sql._

object SparkSQL_hive {

  def main(args: Array[String]): Unit = {
    System.setProperty("HADOOP_USER_NAME", "lucas")

    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()

    spark.sql("use db_hive1")

    // 准备数据
    spark.sql(
      """
        |CREATE TABLE `user_visit_action`(
        |  `date` string,
        |  `user_id` bigint,
        |  `session_id` string,
        |  `page_id` bigint,
        |  `action_time` string,
        |  `search_keyword` string,
        |  `click_category_id` bigint,
        |  `click_product_id` bigint,
        |  `order_category_ids` string,
        |  `order_product_ids` string,
        |  `pay_category_ids` string,
        |  `pay_product_ids` string,
        |  `city_id` bigint)
        |row format delimited fields terminated by '\t'
            """.stripMargin)

    spark.sql(
      """
        |load data local inpath 'datas/user_visit_action.txt' into table db_hive1.user_visit_action
            """.stripMargin)

    spark.sql(
      """
        |CREATE TABLE `product_info`(
        |  `product_id` bigint,
        |  `product_name` string,
        |  `extend_info` string)
        |row format delimited fields terminated by '\t'
            """.stripMargin)

    spark.sql(
      """
        |load data local inpath 'datas/product_info.txt' into table db_hive1.product_info
            """.stripMargin)

    spark.sql(
      """
        |CREATE TABLE `city_info`(
        |  `city_id` bigint,
        |  `city_name` string,
        |  `area` string)
        |row format delimited fields terminated by '\t'
            """.stripMargin)

    spark.sql(
      """
        |load data local inpath 'datas/city_info.txt' into table db_hive1.city_info
            """.stripMargin)

    spark.sql("""select * from city_info""").show


    spark.close()
  }
}

3.2 需求:各区域热门商品 Top3

3.2.1 需求简介

这里的热门商品是从点击量的维度来看的,计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。

例如:

3.2.2 需求分析

➢ 查询出来所有的点击记录,并与 city_info 表连接,得到每个城市所在的地区,与Product_info 表连接得到产品名称

➢ 按照地区和商品 id 分组,统计出每个商品在每个地区的总点击次数

➢ 每个地区内按照点击次数降序排列

➢ 只取前三名

➢ 城市备注需要自定义 UDAF 函数

3.2.3 功能实现

➢ 连接三张表的数据,获取完整的数据(只有点击)

➢ 将数据根据地区,商品名称分组

➢ 统计商品点击次数总和,取 Top3

➢ 实现自定义聚合函数显示备注

第一阶段写好sql语句完成部分功能

import org.apache.spark.SparkConf
import org.apache.spark.sql._

object SparkSQL_hive_1 {

  def main(args: Array[String]): Unit = {

    System.setProperty("HADOOP_USER_NAME", "lucas")

    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()

    spark.sql("use db_hive1")

    spark.sql(
      """
        |select
        |    *
        |from (
        |    select
        |        *,
        |        rank() over( partition by area order by clickCnt desc ) as rank
        |    from (
        |        select
        |           area,
        |           product_name,
        |           count(*) as clickCnt
        |        from (
        |            select
        |               a.*,
        |               p.product_name,
        |               c.area,
        |               c.city_name
        |            from user_visit_action a
        |            join product_info p on a.click_product_id = p.product_id
        |            join city_info c on a.city_id = c.city_id
        |            where a.click_product_id > -1
        |        ) t1 group by area, product_name
        |    ) t2
        |) t3 where rank <= 3
            """.stripMargin).show


    spark.close()
  }
}

自定义UDAF函数,完善功能

import org.apache.spark.SparkConf
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.Aggregator

import scala.collection.mutable
import scala.collection.mutable.ListBuffer

object SparkSQL_hive_2 {

  def main(args: Array[String]): Unit = {
    System.setProperty("HADOOP_USER_NAME", "lucas")

    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()

    spark.sql("use db_hive1")

    // 查询基本数据
    spark.sql(
      """
        |  select
        |     a.*,
        |     p.product_name,
        |     c.area,
        |     c.city_name
        |  from user_visit_action a
        |  join product_info p on a.click_product_id = p.product_id
        |  join city_info c on a.city_id = c.city_id
        |  where a.click_product_id > -1
            """.stripMargin).createOrReplaceTempView("t1")

    // 根据区域,商品进行数据聚合
    spark.udf.register("cityRemark", functions.udaf(new CityRemarkUDAF()))
    spark.sql(
      """
        |  select
        |     area,
        |     product_name,
        |     count(*) as clickCnt,
        |     cityRemark(city_name) as city_remark
        |  from t1 group by area, product_name
            """.stripMargin).createOrReplaceTempView("t2")

    // 区域内对点击数量进行排行
    spark.sql(
      """
        |  select
        |      *,
        |      rank() over( partition by area order by clickCnt desc ) as rank
        |  from t2
            """.stripMargin).createOrReplaceTempView("t3")

    // 取前3名
    spark.sql(
      """
        | select
        |     *
        | from t3 where rank <= 3
            """.stripMargin).show(false)

    spark.close()
  }
  case class Buffer( var total : Long, var cityMap:mutable.Map[String, Long] )
  // 自定义聚合函数:实现城市备注功能
  // 1. 继承Aggregator, 定义泛型
  //    IN : 城市名称
  //    BUF : Buffer =>【总点击数量,Map[(city, cnt), (city, cnt)]】
  //    OUT : 备注信息
  // 2. 重写方法(6)
  class CityRemarkUDAF extends Aggregator[String, Buffer, String]{
    // 缓冲区初始化
    override def zero: Buffer = {
      Buffer(0, mutable.Map[String, Long]())
    }

    // 更新缓冲区数据
    override def reduce(buff: Buffer, city: String): Buffer = {
      buff.total += 1
      val newCount = buff.cityMap.getOrElse(city, 0L) + 1
      buff.cityMap.update(city, newCount)
      buff
    }

    // 合并缓冲区数据
    override def merge(buff1: Buffer, buff2: Buffer): Buffer = {
      buff1.total += buff2.total

      val map1 = buff1.cityMap
      val map2 = buff2.cityMap

      // 两个Map的合并操作
      //            buff1.cityMap = map1.foldLeft(map2) {
      //                case ( map, (city, cnt) ) => {
      //                    val newCount = map.getOrElse(city, 0L) + cnt
      //                    map.update(city, newCount)
      //                    map
      //                }
      //            }
      map2.foreach{
        case (city , cnt) => {
          val newCount = map1.getOrElse(city, 0L) + cnt
          map1.update(city, newCount)
        }
      }
      buff1.cityMap = map1
      buff1
    }
    // 将统计的结果生成字符串信息
    override def finish(buff: Buffer): String = {
      val remarkList = ListBuffer[String]()

      val totalcnt = buff.total
      val cityMap = buff.cityMap

      // 降序排列
      val cityCntList = cityMap.toList.sortWith(
        (left, right) => {
          left._2 > right._2
        }
      ).take(2)

      val hasMore = cityMap.size > 2
      var rsum = 0L
      cityCntList.foreach{
        case ( city, cnt ) => {
          val r = cnt * 100 / totalcnt
          remarkList.append(s"${city} ${r}%")
          rsum += r
        }
      }
      if ( hasMore ) {
        remarkList.append(s"其他 ${100 - rsum}%")
      }

      remarkList.mkString(", ")
    }

    override def bufferEncoder: Encoder[Buffer] = Encoders.product

    override def outputEncoder: Encoder[String] = Encoders.STRING
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/365943.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue项目中引入字体包

问题&#xff1a; 项目开发过程中&#xff0c;因UI的显示要求&#xff0c;需要引入一些字体&#xff0c;那如何引入外部字体呢&#xff1f;很简单&#xff0c;只需要以下3步 一 下载对应的字体包文件&#xff0c;放置到我们的项目中 ​ 比如我需要PingFangSC的系列字体&#…

交叉编译 cJSON

交叉编译 cJSON 概述 JSON 是一种轻量级数据交换格式。它可以表示数据、字符串、有序的值序列以及名称/值对的集合。 cJSON 是 ANSI C 中超轻量级的 JSON 解析器。cJSON 旨在成为您可以完成任务的最简单的解析器。它是一个 C 文件和一个头文件。作为一个库&#xff0c;cJSON…

VR全景+汽车,打造汽车销售新模式

在国内汽车市场竞争越来越激烈的背景下&#xff0c;传统汽车、混动汽车、新能源汽车等各类汽车市场正在不断壮大&#xff0c;汽车行业企业必须抓住机遇、迎接挑战&#xff0c;而营销引流则是关键步骤之一。未来&#xff0c;汽车行业的营销方式将更加高效数字化&#xff0c;采用…

Python学习-----lambda式匿名函数

目录 前言&#xff1a; 1.什么是lambda函数 2.使用示例 &#xff08;1&#xff09;示例1&#xff1a;与def对比 &#xff08;2&#xff09;示例2&#xff1a;与三目运算符 &#xff08;3&#xff09;示例3&#xff1a;lambda作为参数传入其他函数 &#xff08;4&#xff…

linux环境中编译exosip2和osip2库

1 前言 在开发GB/T 28181信令服务或网关时&#xff0c;要使用SIP协议栈。其中一种熟悉的开源库就是exosiposip了。在windows环境中编译eXosip2和osip2比较简便&#xff1b;在linux中&#xff0c;默认方式下编译这2个库&#xff0c;也比较方便。如果要指定库的安装目录&#xf…

网安入门必备的12个kali Linux工具

kali Linux工具帮你评估 Web 服务器的安全性&#xff0c;并帮助你执行黑客渗透测试。 注意&#xff1a;这里不是所提及的所有工具都是开源的。 1. Nmap Nmap &#xff08; 网络映射器 &#xff09;是一款用于 网络发现 和 安全审计 的 网络安全 工具. 主机发现,端口扫描,版本…

mars3d基于vue3.0的widget使用

mars3d在vue3.0生态上开发了两个gis相关开源项目 mars3d-vue-example 和 mars3d-vue-project&#xff0c;在这两个项目中widget都是非常重要的一个模块。通过widget可以在复杂的场景下非常清晰的管理功能模块之间的互斥关系&#xff0c;管理内存&#xff0c;完成不同的功能模块…

ZBC通证月内已翻倍,Nautilus Chain 上线前夕的“开门红”

近日&#xff0c;Zebec Protocol生态通证ZBC迎来了大涨&#xff0c;据悉该通证月内最高涨幅接近了100%&#xff0c;为一众投资者、社区用户、Zepoch节点等带来了可观的回报&#xff0c;并为生态发展注入了十足的信心。我们看到&#xff0c;Zebec Protocol生态在近期宣布了“销毁…

D1s RDC2022纪念版开发板开箱评测及点屏教程

作者new_bee 本文转自&#xff1a;https://bbs.aw-ol.com/topic/3005/ 目录 芯片介绍开发板介绍RT-Smart用户态系统编译使用感想引用 1. 芯片介绍 RISC-V架构由于其精简和开源的特性&#xff0c;得到业界的认可&#xff0c;近几年可谓相当热门。操作系统方面有RT-Thread&am…

Kubernetes 如何通过ingress-nginx实现应用灰度发布?

在日常的工作中&#xff0c;我们会经常对应用进行发版升级&#xff0c;在互联网公司尤为频繁&#xff0c;主要是为了满足快速的业务发展。我们经常用到的发布方式有滚动更新、蓝绿发布、灰度发布。滚动更新&#xff1a;依次进行新旧替换&#xff0c;直到旧的全部被替换为止。蓝…

FATFS函数浅谈 看完学会FATSFS,建议收藏

目录 一、注册工作区域 二、打开文件夹 三、读取文件夹 四、打开\新建一个文件 五、读取文件 六、写文件 七、移动文件指针 八、截断文件 九、刷新缓存消息 十、新建文件夹 十一、删除文件或文件夹 十二、重命名\移动文件或文件夹 十三、获取文件信息 十四、改变…

KNN算法及Python实现

0 建议学时 2学时 1 KNN算法 1.1 KNN原理 KNN&#xff1a;K Nearest Neighbors&#xff0c;即K个最近的邻居&#xff1b; 预测一个新值xxx&#xff0c;根据距离最近的K个点的类别来判断xxx属于哪一类。 算法核心要点&#xff1a; K值的选取非常重要&#xff1b; 距离公式…

山东大学电磁场与电磁波期末试题

文章目录一、电磁场的基本规律二、静态电磁场及其边值问题的解三、分离变量法四、均匀平面波的反射与透射五、时变电磁场与均匀平面波在无界空间中的传播六、导行电磁波七、电磁辐射往年真题回忆复习建议一、电磁场的基本规律 设在 x<0x<0x<0 处为真空&#xff0c;x&…

LeetCode分类刷题----回溯算法

回溯1.回溯问题77.组合216.组合总和|||17.电话号码的字母组合39.组合总和40.组合总和||131.分割回文串93.复原IP地址78.子集90.子集||491.递增子序列46.全排列47.全排列||51.N皇后37.解数独1.回溯问题 77.组合 思路&#xff1a; 回溯的本质是用一棵树来描述&#xff0c;用pat…

Gitee码云 操作

1&#xff1a;Git团队协作机制1.1&#xff1a;团队内协作1.2&#xff1a;跨团队协作2&#xff1a;Gitee码云 操作码云网址&#xff1a; https://githee.com/2.1&#xff1a;创建远程仓库2.2&#xff1a;远程仓库操作命令名称作用git remote -v查看当前所有远程地址别名git remo…

Java缓存面试题——Redis应用

文章目录1、为什么要使用Redis做缓存&#xff1f;2、为什么Redis单线程模型效率也能那么高&#xff1f;3、Redis6.0为什么要引入多线程呢&#xff1f;4、Redis常见数据结构以及使用场景字符串&#xff08;String&#xff09;哈希(Hash)列表&#xff08;list&#xff09;集合&am…

【机器学习】马尔可夫链与隐马尔可夫模型(HMM)

1.马尔可夫链(Markov Chain) 马尔可夫链&#xff08;Markov chain&#xff09;&#xff0c;又称离散时间马尔可夫链&#xff08;discrete-time Markov chain&#xff09;&#xff0c;因俄国数学家安德烈马尔可夫&#xff08;A.A.Markov&#xff09;得名。描述的是状态空间中经过…

Win11系统user profile service服务登录失败解决方法

Win11系统user profile service服务登录失败解决方法分享。有用户在使用电脑的时候遇到了一些问题&#xff0c;系统的user profile service服务无法登录了。出现这个问题可能是系统文件损坏&#xff0c;或者中了病毒。接下来我们一起来看看如何解决这个问题的操作方法分享吧。 …

【unity细节】基于unity子对象(如相机)为什么无法进行z轴的拖拽移动和z轴自动归位的问题

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 收录于专栏&#xff1a;unity细节和bug ⭐基于unity子对象为什么无法进行z轴的拖拽移动和z轴自动归位⭐ 文章目录⭐基于u…

学习系统编程No.5【虚拟地址空间】

引言: 北京时间&#xff1a;2023/2/22&#xff0c;离补考期末考试还有5天&#xff0c;不慌&#xff0c;刚午觉睡醒&#xff0c;闹钟2点20&#xff0c;拖到2点50&#xff0c;是近以来&#xff0c;唯一一次有一种睡不醒的感觉&#xff0c;但是现在却没有精神&#xff0c;因为听了…