kubernetes教程 --service详解

news2025/1/13 13:31:26

Service

介绍

在kubernetes中,pod是应用程序的载体,我们可以通过pod的ip来访问应用程序,但是pod的ip地址不是固定的,这也就意味着不方便直接采用pod的ip对服务进行访问。

为了解决这个问题,kubernetes提供了Service资源,Service会对提供同一个服务的多个pod进行聚合,并且提供一个统一的入口地址。通过访问Service的入口地址就能访问到后面的pod服务。

请添加图片描述

Service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个Node节点上都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,而kube-proxy会基于监听的机制发现这种Service的变动,然后它会将最新的Service信息转换成对应的访问规则

请添加图片描述

# 10.97.97.97:80 是service提供的访问入口
# 当访问这个入口的时候,可以发现后面有三个pod的服务在等待调用,
# kube-proxy会基于rr(轮询)的策略,将请求分发到其中一个pod上去
# 这个规则会同时在集群内的所有节点上都生成,所以在任何一个节点,访问都可以。
[root@node1 ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

kube-proxy目前支持三种工作模式:

userspace模式

userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被Iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。 该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。

请添加图片描述

iptables 模式

iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod IP。 该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端Pod不可用时也无法进行重试。
请添加图片描述

ipvs 模式

ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。

请添加图片描述

# 此模式必须安装ipvs内核模块,否则会降级为iptables
# 开启ipvs
[root@k8s-master01 ~]# kubectl edit cm kube-proxy -n kube-system
# 修改mode: "ipvs"
[root@k8s-master01 ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system
[root@node1 ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

Service 类型

Service的资源清单文件:

kind: Service  # 资源类型
apiVersion: v1  # 资源版本
metadata: # 元数据
  name: service # 资源名称
  namespace: dev # 命名空间
spec: # 描述
  selector: # 标签选择器,用于确定当前service代理哪些pod
    app: nginx
  type: # Service类型,指定service的访问方式
  clusterIP:  # 虚拟服务的ip地址
  sessionAffinity: # session亲和性,支持ClientIP、None两个选项
  ports: # 端口信息
    - protocol: TCP 
      port: 3017  # service端口
      targetPort: 5003 # pod端口
      nodePort: 31122 # 主机端口
  • ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问
  • NodePort:将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务
  • LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
  • ExternalName: 把集群外部的服务引入集群内部,直接使用

Service 使用

实验环境准备

在使用service之前,首先利用Deployment创建出3个pod,注意要为pod设置app=nginx-pod的标签

创建deployment.yaml,内容如下:

apiVersion: apps/v1
kind: Deployment      
metadata:
  name: pc-deployment
  namespace: dev
spec: 
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80
[root@k8s-master01 ~]# kubectl create -f deployment.yaml
deployment.apps/pc-deployment created

# 查看pod详情
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide --show-labels
NAME                             READY   STATUS     IP            NODE     LABELS
pc-deployment-66cb59b984-8p84h   1/1     Running    10.244.1.39   node1    app=nginx-pod
pc-deployment-66cb59b984-vx8vx   1/1     Running    10.244.2.33   node2    app=nginx-pod
pc-deployment-66cb59b984-wnncx   1/1     Running    10.244.1.40   node1    app=nginx-pod

# 为了方便后面的测试,修改下三台nginx的index.html页面(三台修改的IP地址不一致)
# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
# echo "10.244.1.39" > /usr/share/nginx/html/index.html

#修改完毕之后,访问测试
[root@k8s-master01 ~]# curl 10.244.1.39
10.244.1.39
[root@k8s-master01 ~]# curl 10.244.2.33
10.244.2.33
[root@k8s-master01 ~]# curl 10.244.1.40
10.244.1.40

ClusterIP类型的Service

创建service-clusterip.yaml文件

apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: 10.97.97.97 # service的ip地址,如果不写,默认会生成一个
  type: ClusterIP
  ports:
  - port: 80  # Service端口       
    targetPort: 80 # pod端口
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-clusterip.yaml
service/service-clusterip created

# 查看service
[root@k8s-master01 ~]# kubectl get svc -n dev -o wide
NAME                TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)   AGE   SELECTOR
service-clusterip   ClusterIP   10.97.97.97   <none>        80/TCP    13s   app=nginx-pod

# 查看service的详细信息
# 在这里有一个Endpoints列表,里面就是当前service可以负载到的服务入口
[root@k8s-master01 ~]# kubectl describe svc service-clusterip -n dev
Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP:                10.97.97.97
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity:  None
Events:            <none>

# 查看ipvs的映射规则
[root@k8s-master01 ~]# ipvsadm -Ln
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

# 访问10.97.97.97:80观察效果
[root@k8s-master01 ~]# curl 10.97.97.97:80
10.244.2.33

Endpoint

Endpoint是kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址,它是根据service配置文件中selector描述产生的。

一个Service由一组Pod组成,这些Pod通过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换句话说,service和pod之间的联系是通过endpoints实现的。

请添加图片描述

负载分发策略

对Service的访问被分发到了后端的Pod上去,目前kubernetes提供了两种负载分发策略:

  • 如果不定义,默认使用kube-proxy的策略,比如随机、轮询

  • 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到固定的一个Pod上

    此模式可以使在spec中添加sessionAffinity:ClientIP选项

# 查看ipvs的映射规则【rr 轮询】
[root@k8s-master01 ~]# ipvsadm -Ln
TCP  10.97.97.97:80 rr
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

# 循环访问测试
[root@k8s-master01 ~]# while true;do curl 10.97.97.97:80; sleep 5; done;
10.244.1.40
10.244.1.39
10.244.2.33
10.244.1.40
10.244.1.39
10.244.2.33

# 修改分发策略----sessionAffinity:ClientIP

# 查看ipvs规则【persistent 代表持久】
[root@k8s-master01 ~]# ipvsadm -Ln
TCP  10.97.97.97:80 rr persistent 10800
  -> 10.244.1.39:80               Masq    1      0          0
  -> 10.244.1.40:80               Masq    1      0          0
  -> 10.244.2.33:80               Masq    1      0          0

# 循环访问测试
[root@k8s-master01 ~]# while true;do curl 10.97.97.97; sleep 5; done;
10.244.2.33
10.244.2.33
10.244.2.33
  
# 删除service
[root@k8s-master01 ~]# kubectl delete -f service-clusterip.yaml
service "service-clusterip" deleted

HeadLiness类型的Service

在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,kubernetes提供了HeadLiness Service,这类Service不会分配Cluster IP,如果想要访问service,只能通过service的域名进行查询。

创建service-headliness.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-headliness
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None # 将clusterIP设置为None,即可创建headliness Service
  type: ClusterIP
  ports:
  - port: 80    
    targetPort: 80
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-headliness.yaml
service/service-headliness created

# 获取service, 发现CLUSTER-IP未分配
[root@k8s-master01 ~]# kubectl get svc service-headliness -n dev -o wide
NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE   SELECTOR
service-headliness   ClusterIP   None         <none>        80/TCP    11s   app=nginx-pod

# 查看service详情
[root@k8s-master01 ~]# kubectl describe svc service-headliness  -n dev
Name:              service-headliness
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP:                None
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity:  None
Events:            <none>

# 查看域名的解析情况
[root@k8s-master01 ~]# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
/ # cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local

[root@k8s-master01 ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.40
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.39
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.33

NodePort类型的Service

在之前的样例中,创建的Service的ip地址只有集群内部才可以访问,如果希望将Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。

请添加图片描述

创建service-nodeport.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-nodeport
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: NodePort # service类型
  ports:
  - port: 80
    nodePort: 30002 # 指定绑定的node的端口(默认的取值范围是:30000-32767), 如果不指定,会默认分配
    targetPort: 80
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-nodeport.yaml
service/service-nodeport created

# 查看service
[root@k8s-master01 ~]# kubectl get svc -n dev -o wide
NAME               TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)       SELECTOR
service-nodeport   NodePort   10.105.64.191   <none>        80:30002/TCP  app=nginx-pod

# 接下来可以通过电脑主机的浏览器去访问集群中任意一个nodeip的30002端口,即可访问到pod

LoadBalancer类型的Service

LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。

请添加图片描述

ExternalName类型的Service

ExternalName类型的Service用于引入集群外部的服务,它通过externalName属性指定外部一个服务的地址,然后在集群内部访问此service就可以访问到外部的服务了。

请添加图片描述

apiVersion: v1
kind: Service
metadata:
  name: service-externalname
  namespace: dev
spec:
  type: ExternalName # service类型
  externalName: www.baidu.com  #改成ip地址也可以
# 创建service
[root@k8s-master01 ~]# kubectl  create -f service-externalname.yaml
service/service-externalname created

# 域名解析
[root@k8s-master01 ~]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local
service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com.
www.baidu.com.          30      IN      CNAME   www.a.shifen.com.
www.a.shifen.com.       30      IN      A       39.156.66.18
www.a.shifen.com.       30      IN      A       39.156.66.14

Ingress 介绍

在前面课程中已经提到,Service对集群之外暴露服务的主要方式有两种:NotePort和LoadBalancer,但是这两种方式,都有一定的缺点:

  • NodePort方式的缺点是会占用很多集群机器的端口,那么当集群服务变多的时候,这个缺点就愈发明显
  • LB方式的缺点是每个service需要一个LB,浪费、麻烦,并且需要kubernetes之外设备的支持

基于这种现状,kubernetes提供了Ingress资源对象,Ingress只需要一个NodePort或者一个LB就可以满足暴露多个Service的需求。工作机制大致如下图表示:

请添加图片描述

实际上,Ingress相当于一个7层的负载均衡器,是kubernetes对反向代理的一个抽象,它的工作原理类似于Nginx,可以理解成在Ingress里建立诸多映射规则,Ingress Controller通过监听这些配置规则并转化成Nginx的反向代理配置 , 然后对外部提供服务。在这里有两个核心概念:

  • ingress:kubernetes中的一个对象,作用是定义请求如何转发到service的规则
  • ingress controller:具体实现反向代理及负载均衡的程序,对ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现方式有很多,比如Nginx, Contour, Haproxy等等

Ingress(以Nginx为例)的工作原理如下:

  1. 用户编写Ingress规则,说明哪个域名对应kubernetes集群中的哪个Service
  2. Ingress控制器动态感知Ingress服务规则的变化,然后生成一段对应的Nginx反向代理配置
  3. Ingress控制器会将生成的Nginx配置写入到一个运行着的Nginx服务中,并动态更新
  4. 到此为止,其实真正在工作的就是一个Nginx了,内部配置了用户定义的请求转发规则

请添加图片描述

Ingress使用

Ingress 使用

环境准备 搭建ingress环境

# 创建文件夹
[root@k8s-master01 ~]# mkdir ingress-controller
[root@k8s-master01 ~]# cd ingress-controller/

# 获取ingress-nginx,本次案例使用的是0.30版本
[root@k8s-master01 ingress-controller]# wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
[root@k8s-master01 ingress-controller]# wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/provider/baremetal/service-nodeport.yaml

# 修改mandatory.yaml文件中的仓库
# 修改quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.30.0
# 为quay-mirror.qiniu.com/kubernetes-ingress-controller/nginx-ingress-controller:0.30.0
# 创建ingress-nginx
[root@k8s-master01 ingress-controller]# kubectl apply -f ./

# 查看ingress-nginx
[root@k8s-master01 ingress-controller]# kubectl get pod -n ingress-nginx
NAME                                           READY   STATUS    RESTARTS   AGE
pod/nginx-ingress-controller-fbf967dd5-4qpbp   1/1     Running   0          12h

# 查看service
[root@k8s-master01 ingress-controller]# kubectl get svc -n ingress-nginx
NAME            TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx   NodePort   10.98.75.163   <none>        80:32240/TCP,443:31335/TCP   11h

准备service和pod

为了后面的实验比较方便,创建如下图所示的模型

请添加图片描述

创建tomcat-nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports:
        - containerPort: 80

---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: tomcat-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: tomcat-pod
  template:
    metadata:
      labels:
        app: tomcat-pod
    spec:
      containers:
      - name: tomcat
        image: tomcat:8.5-jre10-slim
        ports:
        - containerPort: 8080

---

apiVersion: v1
kind: Service
metadata:
  name: nginx-service
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80

---

apiVersion: v1
kind: Service
metadata:
  name: tomcat-service
  namespace: dev
spec:
  selector:
    app: tomcat-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 8080
    targetPort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f tomcat-nginx.yaml

# 查看
[root@k8s-master01 ~]# kubectl get svc -n dev
NAME             TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
nginx-service    ClusterIP   None         <none>        80/TCP     48s
tomcat-service   ClusterIP   None         <none>        8080/TCP   48s

Http代理

创建ingress-http.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: ingress-http
  namespace: dev
spec:
  rules:
  - host: nginx.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-service
          servicePort: 80
  - host: tomcat.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: tomcat-service
          servicePort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f ingress-http.yaml
ingress.extensions/ingress-http created

# 查看
[root@k8s-master01 ~]# kubectl get ing ingress-http -n dev
NAME           HOSTS                                  ADDRESS   PORTS   AGE
ingress-http   nginx.itheima.com,tomcat.itheima.com             80      22s

# 查看详情
[root@k8s-master01 ~]# kubectl describe ing ingress-http  -n dev
...
Rules:
Host                Path  Backends
----                ----  --------
nginx.itheima.com   / nginx-service:80 (10.244.1.96:80,10.244.1.97:80,10.244.2.112:80)
tomcat.itheima.com  / tomcat-service:8080(10.244.1.94:8080,10.244.1.95:8080,10.244.2.111:8080)
...

# 接下来,在本地电脑上配置host文件,解析上面的两个域名到192.168.109.100(master)上
# 然后,就可以分别访问tomcat.itheima.com:32240  和  nginx.itheima.com:32240 查看效果了

Https代理

创建证书

# 生成证书
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=itheima.com"

# 创建密钥
kubectl create secret tls tls-secret --key tls.key --cert tls.crt

创建ingress-https.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: ingress-https
  namespace: dev
spec:
  tls:
    - hosts:
      - nginx.itheima.com
      - tomcat.itheima.com
      secretName: tls-secret # 指定秘钥
  rules:
  - host: nginx.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: nginx-service
          servicePort: 80
  - host: tomcat.itheima.com
    http:
      paths:
      - path: /
        backend:
          serviceName: tomcat-service
          servicePort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f ingress-https.yaml
ingress.extensions/ingress-https created

# 查看
[root@k8s-master01 ~]# kubectl get ing ingress-https -n dev
NAME            HOSTS                                  ADDRESS         PORTS     AGE
ingress-https   nginx.itheima.com,tomcat.itheima.com   10.104.184.38   80, 443   2m42s

# 查看详情
[root@k8s-master01 ~]# kubectl describe ing ingress-https -n dev
...
TLS:
  tls-secret terminates nginx.itheima.com,tomcat.itheima.com
Rules:
Host              Path Backends
----              ---- --------
nginx.itheima.com  /  nginx-service:80 (10.244.1.97:80,10.244.1.98:80,10.244.2.119:80)
tomcat.itheima.com /  tomcat-service:8080(10.244.1.99:8080,10.244.2.117:8080,10.244.2.120:8080)
...

# 下面可以通过浏览器访问https://nginx.itheima.com:31335 和 https://tomcat.itheima.com:31335来查看了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/352941.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

行业分析| 智能无人自助设备

智能无人自助设备运用二维码技术、音视频通信技术和AI智能技术等相结合&#xff0c;提供了无人超市、自动售货机、智能快递柜等。当下很多商业地区或社区&#xff0c;都放置了智能无人自助设备&#xff0c;不仅可以为商家节省时间和精力、提升运营环境&#xff0c;也可以为众多…

宽刈幅干涉雷达高度计SWOT(Surface Water and Ocean Topography)卫星进展(待完善)

> 以下信息搬运自SWOT官方网站等部分文献资料&#xff0c;如有侵权请联系&#xff1a;sunmingzhismz163.com > 排版、参考文献、部分章节待完善 > 2023.02.17.22:00 初稿概况 2022年12月16日地表水与海洋地形卫星SWOT (Surface Water and Ocean Topography)在加利福尼…

SpringCloud(一)注册中心

注册中心eureka服务端客户端负载均衡nacos服务端客户端nacos分级存储模型配置集群属性nacos环境隔离-namespace临时实例和非临时实例Eureka和Nacos的异同负载均衡策略饥饿加载eureka 服务端 依赖 <!-- eureka注册中心服务端依赖--><dependencies><depe…

【数据结构与算法】1.树、二叉树、字典树、红黑树

文章目录简介1.树 (Tree)2.二叉树&#xff08;Binary Tree&#xff09;2.1.二叉树数据结构2.2.二叉树的三种遍历方式3.二叉查找树(Binary Search Tree)3.1.二叉查找树的概念和定义3.2.二分查找算法4.字典树(Trie)5.红黑树(Red-Black Tree)简介 本章主要讲解一些树的基本概念,二…

windows10/11,傻瓜式安装pytorch(gpu),在虚拟环境anaconda

安装anaconda地址 &#xff1a;Anaconda | The Worlds Most Popular Data Science Platform安装选项全默认点击next就行。查看支持cuda版本cmd命令行输入nvidia-smi。下图右上角显示11.6为支持的cuda版本。要是显示没有nvidia-smi命令。得安装nvidia驱动&#xff0c;一般情况都…

字符串匹配 - Overview

字符串匹配(String Matchiing)也称字符串搜索(String Searching)是字符串算法中重要的一种&#xff0c;是指从一个大字符串或文本中找到模式串出现的位置。字符串匹配概念字符串匹配问题的形式定义&#xff1a;文本&#xff08;Text&#xff09;是一个长度为 n 的数组 T[1..n]&…

Nodejs的安装

1. Nodejs的真正用途 a. 一个javascirpt的运行环境 b. 运行在服务器&#xff0c;作为web server c. 运行在本地&#xff0c;作为打包&#xff0c;构建工具 2. Nodejs的下载和安装 a. 普通方式&#xff08;访问官网&#xff09; 下载对应系统版本即可&#xff08;个人学习可无需…

【数据结构与算法分析】介绍蛮力法以及相关程序案例

文章目录蛮力法之排序选择排序冒泡排序实际应用蛮力法之最近对和凸包问题最近对问题凸包问题蛮力法(brute force)&#xff0c;其本质跟咱常说的暴力法是一样的&#xff0c;都是一种简单直接地解决问题的方法&#xff0c;通常直接基于问题的描述和所涉及的概念定义进行求解。 蛮…

【嵌入式】HC32F460串口接收超时中断+DMA

一 项目背景 项目需要使用一款UART串口编码器&#xff0c;编码器的数据以波特率57600持续向外发送。但这组数据包没有固定的包头和校验尾&#xff0c;仅仅是由多圈圈数和单圈角度组成的六字节数据码&#xff0c;这样接收到的数组无法确定实际的下标&#xff0c;所以这边考虑用串…

8月起,《PMBOK®指南(第七版)》将被采用,考PMP的注意了!

PMP第七版教材采用时间定了&#xff01;&#xff01;&#xff01;2023年【8月开始】第一次使用第七版教材&#xff0c;通知明显指出&#xff0c;第六版的关键知识任然还是有效的。第七版做的调整还是蛮大的&#xff0c;首次提出了项目管理的 12 项原则和8个项目绩效域&#xff…

Java基础语法小结来啦

简单的来说&#xff0c;一个java的程序他是有一系列对象的集合组成&#xff0c;通过对这些对象相互间调用的方式协同工作&#xff0c;下面就是我有关于Java基础语法的一些小结。 一、return简单使用 下面来一个Java程序&#xff0c;表示的是在self1这个包中我们创建了一个名叫…

Skywalking ui页面功能介绍

菜单栏 仪表盘&#xff1a;查看被监控服务的运行状态&#xff1b; 拓扑图&#xff1a;以拓扑图的方式展现服务之间的关系&#xff0c;并以此为入口查看相关信息&#xff1b; 追踪&#xff1a;以接口列表的方式展现&#xff0c;追踪接口内部调用过程&#xff1b; 性能剖析&am…

GEE学习笔记 八十:批量下载影像

最近问如何批量导出集合的小伙伴非常多&#xff0c;一个一个回复太麻烦&#xff0c;我这里直接给一段例子代码吧&#xff1a; var l8 ee.ImageCollection("LANDSAT/LC08/C01/T1_SR"); var roi /* color: #d63000 */ee.Geometry.Polygon( [[[115.64960937…

从0到1一步一步玩转openEuler--17 openEuler DNF(YUM)检查更新

文章目录17.1 检查更新17.2 升级17.3 更新所有的包和它们的依赖DNF是一款Linux软件包管理工具&#xff0c;用于管理RPM软件包。DNF可以查询软件包信息&#xff0c;从指定软件库获取软件包&#xff0c;自动处理依赖关系以安装或卸载软件包&#xff0c;以及更新系统到最新可用版本…

Nacos框架服务注册发现和配置中心原理

文章目录1.简介2.整体架构和原理2.1 服务发现注册原理2.1.1 注册和拉取数据2.1.2 Server集群一致性2.1.3 健康检查2.2 配置中心原理2.2.1 支持功能和资源模型2.2.2 server集群数据一致性问题2.2.3 client和server的通信监听改动方式2.2.4 client拉取数据2.2.5 client请求server…

kubernetes教程 --Pod生命周期

Pod生命周期 pod创建过程运行初始化容器&#xff08;init container&#xff09;过程运行主容器&#xff08;main container&#xff09;过程 容器启动后钩子&#xff08;post start&#xff09;、容器终止前钩子&#xff08;pre stop&#xff09;容器的存活性探测&#xff08;…

利用设计模式、反射写代码

软件工程师和码农最大的区别就是平时写代码时习惯问题&#xff0c;码农很喜欢写重复代码而软件工程师会利用各种技巧去干掉重复的冗余代码。 业务同学抱怨业务开发没有技术含量&#xff0c;用不到设计模式、Java 高级特性、OOP&#xff0c;平时写代码都在堆 CRUD&#xff0c;个…

网站项目部署在k8s案例与Jenkins自动化发布项目(CI/CD)

在K8s平台部署项目流程 在K8s平台部署Java网站项目 制作镜像流程 第一步&#xff1a;制作镜像 使用镜像仓库&#xff08;私有仓库、公共仓库&#xff09;&#xff1a; 1、配置可信任&#xff08;如果仓库是HTTPS访问不用配置&#xff09; # vi /etc/docker/daemon.json { "…

matlab 简单的水轮机系统的模糊pid控制仿真

1、内容简介略641-可以交流、咨询、答疑2、内容说明模糊介绍&#xff1a;Matlab4.2以后的版本中推出的模糊工具箱(Fuzzy Toolbox)&#xff0c;为仿真模糊控制系统提供了很大的方便。 在Simulink环境下对PID控制系统进行建模是非常方便的&#xff0c;而模糊控制系统与PID控制系统…

DataFrame 循环处理效率的记录

几种工具的处理效率比较&#xff1a; 每次循环都使用复杂的操作尽可能拆分成向量化操作&#xff0c;也可转为numpy&#xff0c;再用numba加速。 对 DataFrame 中的数据做循环处理的效率&#xff1a; 方法一&#xff1a;下标循环 for i in range(len(df)): if df.iloc[i][…