【不知道是啥】浅保存哈

news2025/1/11 7:01:39

这里写自定义目录标题

  • 欢迎使用Markdown编辑器
    • 新的改变
    • 功能快捷键
    • 合理的创建标题,有助于目录的生成
    • 如何改变文本的样式
    • 插入链接与图片
    • 如何插入一段漂亮的代码片
    • 生成一个适合你的列表
    • 创建一个表格
      • 设定内容居中、居左、居右
      • SmartyPants
    • 创建一个自定义列表
    • 如何创建一个注脚
    • 注释也是必不可少的
    • KaTeX数学公式
    • 新的甘特图功能,丰富你的文章
    • UML 图表
    • FLowchart流程图
    • 导出与导入
      • 导出
      • 导入

# -*- coding: utf-8 -*-
"""
Created on Fri Dec  2 13:46:48 2022

@author: Lenovo
"""


from sklearn.metrics import make_scorer
import os
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score,mean_squared_error
# from sklearn.preprocessing import StandardScaler
import seaborn as sns  
from scipy.stats import gaussian_kde
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.feature_selection import RFECV
from scipy.interpolate import griddata
from itertools import combinations
from operator import itemgetter
dic = {}
path=r'D:\Fluxnet\try'
outpath=r'D:\Fluxnet\OUTCOME\每种变量组合放在一起之前的仓库'

site_list=[]
year_list=[]

total_number=[]
post_dropna_number=[]
post_drop_le_abnormal_number=[]
test_number=[]
train_number=[]
N_estimators=[]
Max_depth=[]

Rmse_list=[]
R2_list=[]
Bias_list=[]

Drivers_column=[]
Filling_rate_list=[]
Feature_list=[]

# path1=r'D:\Fluxnet\try'
# path2=r'D:\Fluxnet\try_ndvi'  
# path1=r'D:\Fluxnet\加了土壤水和土壤温度的\MDS_用'
# path2=r'D:\Fluxnet\ndvi777 - SHAOSHAOSHAO'  
  
# for s,j in zip(os.listdir(path1),os.listdir(path2)):
#     print(s)
#     print(os.listdir(path2))
#     sole_s=pd.read_csv(os.path.join(path1,s))
#     sole_j=pd.read_csv(os.path.join(path2,j)) 
       
#     sole_s['TIMESTAMP_START']=sole_s['TIMESTAMP_START'].astype('str') 
#     sole_s['TIMESTAMP_START']=pd.to_datetime(sole_s['TIMESTAMP_START'])   
      
#     sole_j=sole_j[['TIMESTAMP_START','NDVI']]
#     sole_j['TIMESTAMP_START'] = pd.to_datetime(sole_j['TIMESTAMP_START'])
            
#     sole_j = sole_j.set_index('TIMESTAMP_START')
#     sole_j = sole_j.resample('1D').interpolate() # 30T 按分钟(T)插值  1D按天插值
#     sole_j = sole_j.reset_index() 
    
#     sole=pd.merge(sole_s, sole_j,how='left',on='TIMESTAMP_START') 
    
#     sole['NDVI']=sole['NDVI'].interpolate(method='pad') # 1天一个值
#     print(sole)
    
path1 =  r'C:\Users\Lenovo\Desktop\四大类\REALTRY'
for file in os.listdir(path1):
      
    sole = pd.read_csv(os.path.join(path1,file))
    site_list1=[]
    year_list1=[]
    test_number1=[]
    train_number1=[]
    rmse_list1=[]
    r2_list1=[]
    bias_list1=[]
  
    sole_raw = sole
    sole_copy = sole
    print('原始数据:',sole.shape)
    sole.dropna(subset=['LE_F_MDS_QC'],axis=0,inplace=True) #删除LE_F_MDS_QC中含有空值的行
    print('去掉没QC后的原始数据:',sole.shape)
    
    trainset=sole[sole['LE_F_MDS_QC']==0]
    print('观测数据:',trainset.shape)
    
# =============================================================================
#   以LE_F_MDS=20W/m²为界 白天和晚上分别训练
# =============================================================================
    
    trainset=trainset[trainset['LE_F_MDS']>=20]
    print('白天的总量: ',trainset.shape)
    
    gap=sole[sole['LE_F_MDS_QC']!=0]
    print('插补数据:',gap.shape)
    
    gap_drople=gap.drop(['LE_F_MDS','LE_F_MDS_QC'
                         ,'TIMESTAMP_START','TIMESTAMP_END']#
                         # , 'SW_IN_F_MDS_QC', 'NETRAD'
                         ,axis=1)
    # gap_drople=gap_drop.drop(['SW_IN_F_MDS_QC', 'NETRAD'],axis=1)
    
    #===============================每行至少有一个/三个不是空值时保留
    
    gap_dropna=gap_drople
    # gap_dropna=gap_drople.dropna(axis=0,thresh=3) 
    
    print('去空值后的插补数据:',gap_dropna.shape)
    
    dff=pd.DataFrame(gap_dropna.isna().sum().sort_values(ascending=False))

    print('预测集的空值:',dff)
    
    #看下训练集的空值,可以看出跟插补集不太一样
    print('训练集的空值:\n',trainset.drop(['LE_F_MDS','LE_F_MDS_QC'
                         ,'TIMESTAMP_START','TIMESTAMP_END']#
                         ,axis=1).isna().sum().sort_values(ascending=False))
  
    #==========================获得所有变量组合
    
    def combine(list0,o):
        list1=[]
        for i in combinations(list0,o):
            list1.append(i)
        return list1
    
    tianchongliang=[]
    chabuliang=[]
    rmseliang=[]
    site_list=[]
    ALL_rmse_list=[]
    rmse_number=[]
    pinjie_number=[]
    train_number=[]
    rmse_list=[]
    rmse1_list=[]
    all_rmse1_list=[]
    r2_list=[]
    r21_list=[]
    ALL_r2_list=[]
    all_r21_list=[]
    bias_list=[]
    bias1_list=[]
    ALL_bias_list=[]
    all_bias1_list=[]
    filling_rate_list=[]
    dic_list = []
    fig  = plt.figure(figsize=(4,40),dpi=600)
    fig1 = plt.figure(figsize=(16,36),dpi=600)
    ALL_x_test = pd.Series()
    ALL_y_test = pd.Series()
    qian=0
    hou=-1
    
    for u in reversed(range(3,len(gap_drople.columns)+1)) : 

        fillrate_mid_list=[]
        col_list=[]
        list666=[]
        list666.extend(combine(dff.index,u))
        #===========================获取不同插补率的组合特征
        
        list_score=[]
        score=[]
        big_list=[]
        
        for i in range(0,len(list666)):
            
            sco=f'{gap_drople[list(list666[i])].dropna().shape[0] / gap_drople.shape[0]:.2f}'
            
            score+=[f'{gap_drople[list(list666[i])].dropna().shape[0] / gap_drople.shape[0]:.2f}']
            
            list_score+=[{'score':sco,'list':list666[i]}]
            
        # print(list_score)  print(list_score)
        #=============================plot
        
        key_list=[a['list'] for a in list_score]
    
        len_list = [ len(i) for i in key_list ]
        
        score=[np.float64(i) for i in score]
        
        plt.rc('font', family='Times New Roman',size=20)
        plt.figure(figsize=(10,8),dpi=400)
        plt.scatter(len_list,score)
        plt.xlabel('Number of drivers', {'family':'Times New Roman','weight':'normal','size':20})
        plt.ylabel('Filling rate',{'family':'Times New Roman','weight':'normal','size':20})
        
        #============================填充率最大对应去的变量列表shunxu
        
        sorted_list=sorted(list_score, key=lambda list_score: list_score['score'], reverse=True)
        # print(sorted_list)   # 按降序排列
        biggest_score=[a['score'] for a in sorted_list][0]      
        biggest_score_feature_list=[a['list'] for a in sorted_list][0]
        # print(biggest_score_feature_list)   
        Feature_list.append(biggest_score_feature_list)
        filling_rate_list.append(biggest_score)
        Filling_rate_list.append(biggest_score)
        
        #==============================建模准备================================
        
        train_copy=trainset.copy()
        train_copy.drop(['LE_F_MDS_QC','TIMESTAMP_START','TIMESTAMP_END']#
                   ,axis=1,inplace=True)#.isna().sum().sort_values(ascending=False)
        
        feature=[x for x in biggest_score_feature_list]  
        train_option=train_copy[feature]
        train_option['LE_F_MDS']=train_copy['LE_F_MDS']
            
        print("Train_option原始数值\n",train_option.shape)#
        print(train_option.isna().sum().sort_values(ascending=True))
        
        #============================去除空值=======================================
        
        train_option_dropna=train_option.dropna() #训练数据去空值
        print('训练集去掉空值后: ',train_option_dropna.shape)
        c=train_option_dropna    
        print(c.shape)
            
        Drivers=c.drop(['LE_F_MDS'],axis=1)
            
        Drivers_column+=[' '.join(Drivers.columns.tolist())]
            
        LE=c['LE_F_MDS']
        x_train,x_test,y_train,y_test=train_test_split(Drivers,LE
                                                        ,test_size=0.20
                                                        ,random_state=(0))                            
        print(x_train.shape)
        print(x_test.shape)
        print(y_train.shape)
        print(y_test.shape)
# =============================================================================
#      建模
# =============================================================================
            
        rf=RandomForestRegressor(n_estimators=1100
                                      ,max_depth=80
                                       ,oob_score=True
                                      ,random_state=(0))   
        rf.fit(x_train,y_train)    
        # rf.fit(Drivers,LE)     
        # pred_oob = rf.oob_prediction_ #袋外预测值
        # print(len(pred_oob))
        # print(pred_oob)
        # rmse=np.sqrt(mean_squared_error(LE, pred_oob)) #袋外均方根误差
        site_list+=[file.split('_',6)[1]]
        tianchongliang+=[biggest_score]
        chabuliang+=[gap.shape[0]]
        rmseliang+=[len(y_test)]
        rmse=np.sqrt(mean_squared_error(y_test,rf.predict(x_test)))
        rmse_list.append(rmse)
        r2=r2_score(y_test,rf.predict(x_test))  
        r2_list.append(r2)
       
        bias=(rf.predict(x_test)-y_test).mean() # bias=(pred_oob-LE).mean()
        bias_list.append(bias)
        # rmse_df=pd.DataFrame({'site':site_list,'rmse':rmse_list
        #                       ,'rmse量':rmseliang,'插补量':chabuliang
        #                       ,'插补率':tianchongliang})
        # rmse_df.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\RMSE', str(file.split('_',6)[1])  +'.csv'),index = False)
                
# =============================================================================
#       单一变量组合线性内插
# =============================================================================
        
        s_ori = pd.read_csv(os.path.join(path1,file))  
        s_ori.loc[:,'LE'] = y_test
        
        s_ori.loc[y_test.index,'LE_F_MDS'] = np.nan
        s_ori['LE_F_MDS']= s_ori['LE_F_MDS'].interpolate()
       
        rmse1=np.sqrt(mean_squared_error(y_test,s_ori.loc[y_test.index,'LE_F_MDS'] ))
        rmse1_list.append(rmse1)
        r21=r2_score(y_test,s_ori.loc[y_test.index,'LE_F_MDS'])  
        r21_list.append(r21)
        bias1=(s_ori.loc[y_test.index,'LE_F_MDS']-y_test).mean()
        bias1_list.append(bias1)

        rmse_df=pd.DataFrame({'site':site_list,'RF_RMSE':rmse_list
                              ,'IP_RMSE':rmse1_list
                              ,'rmse量':rmseliang,'插补量':chabuliang
                              ,'插补率':tianchongliang
                              ,'RF_R2':r2_list,'IP_R2':r21_list
                              ,'RF_BIAS':bias_list,'IP_BIAS':bias1_list})
        print(rmse_df)
        print(tianchongliang[qian])
        rmse_df.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\RMSE', str(file.split('_',6)[1])  +'.csv'),index = False)
        
# =============================================================================
#       DYNAMIC RMSE
# =============================================================================
        
        print(rmse_list[qian] , rmse_list[hou])
        print(tianchongliang[qian] , tianchongliang[hou])
        if qian==0 or rmse_list[qian] < rmse_list[hou] or tianchongliang[qian] > tianchongliang[hou]   :

            y_test6 = y_test[~y_test.index.isin(ALL_y_test.index)] #在y_test里不在大的合集里
            
            x_test6 = pd.Series(rf.predict(x_test),index=y_test.index)
            x_test6 = x_test6[y_test6.index]
            
            ALL_y_test = pd.concat([ALL_y_test, y_test6], axis=0, ignore_index=False)
            ALL_x_test = pd.concat([ALL_x_test, x_test6], axis=0,ignore_index=False)
            # print('拼接后\n',ALL_x_test)
            # print('拼接后\n',ALL_y_test)
            ALL_rmse=np.sqrt(mean_squared_error(ALL_y_test,ALL_x_test))
            ALL_rmse_list.append(ALL_rmse)
            
            r2=r2_score(y_test,rf.predict(x_test))  
            ALL_r2_list.append(r2)
           
            bias=(rf.predict(x_test)-y_test).mean() # bias=(pred_oob-LE).mean()
            ALL_bias_list.append(bias)
     
            #线性内插综合RMSE
            s_ori = pd.read_csv(os.path.join(path1,file))  
            s_ori.loc[:,'LE'] = ALL_y_test
            
            s_ori.loc[ALL_y_test.index,'LE_F_MDS'] = np.nan
            s_ori['LE_F_MDS']= s_ori['LE_F_MDS'].interpolate()
           
            rmse1=np.sqrt(mean_squared_error(ALL_y_test,s_ori.loc[ALL_y_test.index,'LE_F_MDS'] ))
            all_rmse1_list.append(rmse1)
            r21=r2_score(ALL_y_test,s_ori.loc[ALL_y_test.index,'LE_F_MDS'])  
            all_r21_list.append(r21)
            bias1=(s_ori.loc[ALL_y_test.index,'LE_F_MDS'] - ALL_y_test).mean()
            all_bias1_list.append(bias1)
                
            pinjie_number.append(len(y_test6))
            rmse_number.append(len(ALL_y_test))
            train_number.append(int(trainset.shape[0]*0.2))
            ALL_rmse_df=pd.DataFrame({'RF_RMSE':ALL_rmse_list,'IP_RMSE':all_rmse1_list
                                      ,'rmse_number':rmse_number
                                      ,'pinjie_number':pinjie_number
                                      ,'train_number':train_number
                                      ,'RF_R2':ALL_r2_list,'IP_R2':all_r21_list
                                      ,'RF_BIAS':ALL_bias_list,'IP_BIAS':all_bias1_list
                                      }) 
            print(ALL_rmse_df)
            ALL_rmse_df.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\RMSE_ALL',str(file.split('_',6)[1])  +'.csv'),index = False)
            
        qian+=1
        hou+=1
  
        # ===========================高斯核密度散点图===========================
        
        # post_gs=pd.DataFrame({'predict':pred_oob,'in_situ':LE,})
        post_gs=pd.DataFrame({'predict':rf.predict(x_test),'in_situ':y_test,}) 
        post_gs['index']=[i for i in range(post_gs.shape[0])]
        post_gs=post_gs.set_index('index')
        x=post_gs['in_situ']
        y=post_gs['predict']
        xy = np.vstack([x,y])#计算点密度
        z = gaussian_kde(xy)(xy)#高斯核密度
        idx = z.argsort()#根据密度对点进行排序,最密集的点在最后绘制
        x, y, z = x[idx], y[idx], z[idx]
        fw = 800
        ax = fig.add_subplot(len(gap_drople.columns)-1,1,u-2)
        scatter = ax.scatter(x,y,marker='o',c=z,s=15,label='LST',cmap='jet') # o是实心圆,c=是设置点的颜色,cmap设置色彩范围,'Spectral_r'和'Spectral'色彩映射相反
        divider = make_axes_locatable(ax) #画色域图
        # plt.scatter(x, y, c=z, s=7, cmap='jet')
        # plt.axis([0, fw, 0, fw])  # 设置线的范围
        # plt.title( file.split('_',6)[1], family = 'Times New Roman',size=21)
        # plt.text( 10, 700,len(feature), family = 'Times New Roman',size=21)
        # plt.text(10, 700, 'Driver numbers = %s' % len(feature), family = 'Times New Roman',size=21)
         # plt.text(10, 600, 'Size = %.f' % len(y), family = 'Times New Roman',size=18) # text的位置需要根据x,y的大小范围进行调整。
         # plt.text(10, 650, 'RMSE = %.3f W/m²' % rmse, family = 'Times New Roman',size=18)
         # plt.text(10, 700, 'R² = %.3f' % r2, family = 'Times New Roman',size=18)
         # plt.text(10, 750, 'BIAS = %.3f W/m²' % bias, family = 'Times New Roman',size=18)
        ax.set_xlabel('Station LE (W/m²)',family = 'Times New Roman',size=19)
        ax.set_ylabel('Estimated LE (W/m²)',family = 'Times New Roman',size=19)
        ax.plot([0,fw], [0,fw], 'gray', lw=2)  # 画的1:1线,线的颜色为black,线宽为0.8
        ax.set_xlim(0,fw)
        ax.set_ylim(0,fw)
        # ax.xaxis.set_tick_params(labelsize=19) 
        # ax.xaxis.set_tick_params(labelsize=19) 
        # plt.xticks(fontproperties='Times New Roman',size=19)
        # plt.yticks(fontproperties='Times New Roman',size=19)
        fig.set_tight_layout(True) 

        #================================================================MDS
        
        MDS_GAP=s_ori
        if 'SW_IN' in MDS_GAP.columns.to_list() and 'TA' in  MDS_GAP.columns.to_list() and 'VPD' in  MDS_GAP.columns.to_list():
            
            MDS_GAP['Year']=MDS_GAP['TIMESTAMP_END']
            MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
            MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
            MDS_GAP['Year'] = MDS_GAP['TIMESTAMP_END'].dt.year  #Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
            
            MDS_GAP['DoY']=MDS_GAP['TIMESTAMP_END']
            MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
            MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
            doy=[]
            for k in MDS_GAP['TIMESTAMP_END']:
                doy += [k.strftime("%j")]
            MDS_GAP['DoY'] = doy  #Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
            MDS_GAP['Hour'] = MDS_GAP['TIMESTAMP_END']
            MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
            MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
            hour=[]
            for l in MDS_GAP['TIMESTAMP_END']:
                hour += [int(l.strftime('%H'))+float(l.strftime('%M'))/60]
            MDS_GAP['Hour'] = hour          
            MDS_GAP.loc[:,'LE'] = y_test
            print(MDS_GAP['LE'].dropna().sum())
            MDS_GAP['LE'].to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来rmse的原始值666', str(file.split('_',6)[1]) +  str(u)+ '.txt'),sep='	',index = False)
            MDS_GAP['LE_F_MDS']=s_ori['LE_F_MDS']
            MDS_GAP.loc[MDS_GAP['LE']>=-9999,['LE']] = -9999
            MDS_GAP['LE'].fillna(MDS_GAP['LE_F_MDS'],inplace=True)
            
            MDS_GAP['Rg']=MDS_GAP['SW_IN']        
            MDS_GAP['Tair']=MDS_GAP['TA']
            MDS_GAP['VPD']=MDS_GAP['VPD']
            # MDS_GAP['NEE']=MDS_GAP['NEE_VUT_REF']
                
            MDS_GAP=MDS_GAP[['Year','DoY','Hour','LE','Rg','Tair','VPD']]#,'Tsoil','rH',
            MDS_GAP.loc[MDS_GAP['Rg'] > 1200 , ['Rg']] = -9999 # Drivers control Rg <= 1200W/m² Ta <= 2.5℃W/m² VPD <= 50hPa
            # MDS_GAP.loc[MDS_GAP['Tair'] > 2.5 , ['Tair']] ==-9999
            MDS_GAP.loc[MDS_GAP['VPD'] > 50 , ['VPD']] = -9999
            #将单位插到第零行的位置上r
            row = 0  # 插入的位置
            value = pd.DataFrame([['-', '-', '-','Wm-2', 'Wm-2', 'degC','hPa']],columns=MDS_GAP.columns)  # 插入的数据  'degC','%',
            df_tmp1 = MDS_GAP[:row]
            df_tmp2 = MDS_GAP[row:]
            # 插入合并数据表
            MDS_GAP = df_tmp1.append(value).append(df_tmp2)
            MDS_GAP = MDS_GAP.fillna(-9999) 
            MDS_GAP.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\MDS_TRY666', str(file.split('_',6)[1]) + str(u) + '.txt'),sep='	',index = False)#+ str(gaplong)
   
        
        #==============================================================MDS_ALL
        s_ori = pd.read_csv(os.path.join(path1,file))
        MDS_GAP=s_ori
        if 'SW_IN' in MDS_GAP.columns.to_list() and 'TA' in  MDS_GAP.columns.to_list() and 'VPD' in  MDS_GAP.columns.to_list():
            
            MDS_GAP['Year']=MDS_GAP['TIMESTAMP_END']
            MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
            MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
            MDS_GAP['Year'] = MDS_GAP['TIMESTAMP_END'].dt.year  #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
            
            MDS_GAP['DoY']=MDS_GAP['TIMESTAMP_END']
            MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
            MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
            doy=[]
            for k in MDS_GAP['TIMESTAMP_END']:
                doy += [k.strftime("%j")]
            MDS_GAP['DoY'] = doy  #老报错 Time stamp is not equidistant (half-)hours in rows: 35040, 35088, 52560, 52608, 70080, 70128, 87600, 87648
            MDS_GAP['Hour'] = MDS_GAP['TIMESTAMP_END']
            MDS_GAP['TIMESTAMP_END']=MDS_GAP['TIMESTAMP_END'].astype('str')
            MDS_GAP['TIMESTAMP_END']=pd.to_datetime(MDS_GAP['TIMESTAMP_END'])
            hour=[]
            for l in MDS_GAP['TIMESTAMP_END']:
                hour += [int(l.strftime('%H'))+float(l.strftime('%M'))/60]
            MDS_GAP['Hour'] = hour          
            MDS_GAP.loc[:,'LE'] = ALL_y_test
            print(MDS_GAP['LE'].dropna().sum())
            MDS_GAP['LE'].to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来ALL_rmse的原始值666', str(file.split('_',6)[1]) + '.txt'),sep='	',index = False)
            MDS_GAP['LE_F_MDS']=s_ori['LE_F_MDS']
            MDS_GAP.loc[MDS_GAP['LE']>=-9999,['LE']] = -9999
            MDS_GAP['LE'].fillna(MDS_GAP['LE_F_MDS'],inplace=True)
            
            MDS_GAP['Rg']=MDS_GAP['SW_IN']        
            MDS_GAP['Tair']=MDS_GAP['TA']
            MDS_GAP['VPD']=MDS_GAP['VPD']
            # MDS_GAP['NEE']=MDS_GAP['NEE_VUT_REF']
                
            MDS_GAP=MDS_GAP[['Year','DoY','Hour','LE','Rg','Tair','VPD']]#,'Tsoil','rH',
            MDS_GAP.loc[MDS_GAP['Rg'] > 1200 , ['Rg']] = -9999 # Drivers control Rg <= 1200W/m² Ta <= 2.5℃W/m² VPD <= 50hPa
            # MDS_GAP.loc[MDS_GAP['Tair'] > 2.5 , ['Tair']] ==-9999
            MDS_GAP.loc[MDS_GAP['VPD'] > 50 , ['VPD']] = -9999
            #将单位插到第零行的位置上r
            row = 0  # 插入的位置
            value = pd.DataFrame([['-', '-', '-','Wm-2', 'Wm-2', 'degC','hPa']],columns=MDS_GAP.columns)  # 插入的数据  'degC','%',
            df_tmp1 = MDS_GAP[:row]
            df_tmp2 = MDS_GAP[row:]
            # 插入合并数据表
            MDS_GAP = df_tmp1.append(value).append(df_tmp2)
            MDS_GAP = MDS_GAP.fillna(-9999) 
            MDS_GAP.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\ALL_MDS_TRY666', str(file.split('_',6)[1])  + '.txt'),sep='	',index = False)#+ str(gaplong)
   
       #==============================复制一下整个的 插补 保存 比较 导出ALL_y_test
        
        gap_dropna_copy=gap_dropna.copy()
        gap_dropna_copy=gap_dropna_copy[feature]
        gap_dropna_copy=gap_dropna_copy.dropna()
        gap_dropna_copy.loc[:, 'LE_gap_filled'] = rf.predict(gap_dropna_copy)

        le=sole.copy()
        le['LE_F_MDS_QC'].replace([1,2,3], np.nan, inplace=True)
        le['LE_F_MDS_QC'].replace(0, -9999, inplace=True)
        le['LE_F_MDS_QC'].fillna(gap_dropna_copy['LE_gap_filled'], inplace=True)
        le['RMSE']=[rmse]*sole.shape[0]
        
        dic0={'TIMESTAMP_START':le['TIMESTAMP_START'].tolist()
            ,'TIMESTAMP_END':le['TIMESTAMP_END'].tolist() 
            ,'LE_Gap_filled'+ str(u): le['LE_F_MDS_QC'].tolist()
            ,'RMSE'+ str(u): le['RMSE']
            ,'Drivers'+ str(u): [' '.join(Drivers.columns.tolist())]*sole.shape[0]
            }
        df0 = pd.DataFrame(dic0)
        dic={'list_name':df0, 'rmse':df0['RMSE'+ str(u)][df0.index[0]]} 
        dic_list += [dic]
        sorted_dic=sorted(dic_list, key=lambda dic_list: dic_list['rmse'], reverse=False) 
        list_name=[a['list_name'] for a in sorted_dic] # 打印出来的话就是整个dataframe count
        df = pd.concat(list_name,axis=1)
        df = df.loc[:,~df.columns.duplicated()]
        
        shunxu = [''.join(list(filter(str.isdigit,x))) for x in df.columns]
        shunxu0 = list(filter(None,shunxu))
        shunxu = list(set(shunxu0)) #set的方法会改变顺序 按照原来的index排个序
        shunxu.sort(key = shunxu0.index)
        print(shunxu)  
        
    #=============================== 变量个数 VS.插补率
    
    # fig = plt.subplot(8,5,36+dalei)    
    # plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\DoubleY',s.split('_',6)[1])
    #             , bbox_inches='tight', dpi=500)

    x = [x for x in reversed(range(3,len(gap_drople.columns)+1))] #reversed(range(len(df.index)+1),3)matplotlib does not support generators as input
    y1 = rmse_list
    y2 = filling_rate_list
    
    
    ax = fig.add_subplot(len(gap_drople.columns)-1,1,len(gap_drople.columns)-1)
    fig = plt.figure(figsize=(12,8),dpi=400)
    ax = fig.add_subplot(1,1,1)

    line1=ax.plot(x, y1,color='red',linestyle='--',marker='o',linewidth=2.5)
    ax.set_ylabel('RMSE of 25% tesing set', {'family':'Times New Roman','weight':'normal','size':21},color='red')
    ax.set_xlabel('Number of drivers',{'family':'Times New Roman','weight':'normal','size':21})
    ax.tick_params(labelsize=19)
    # ax1.set_title("")
    ax2 = ax.twinx()  # this is a important function
    #ax2.set_ylim([-0.05,1.05]) # 设置y轴取值范围   
    # ax2.set_yticks([0.0,0.3,0.5,0.7,0.9]) # 设置刻度范围 
    # ax2.set_yticklabels([0.0,0.3,0.5,0.7,0.9]) # 设置刻度
    line2=ax2.plot(x, y2,color='blue',marker='o',linewidth=2.5)
    ax2.tick_params(labelsize=19)
    ax2.set_ylabel('Filling rate', {'family':'Times New Roman','weight':'normal','size':21},color='blue')
    # a2.invert_yaxis() #invert_yaxis()翻转纵轴,invert_xaxis()翻转横轴
    # plt.tick_params(labelsize=19)
    # plt.xticks(np.arange(5, 13, 1),fontproperties='Times New Roman',size=19)
    plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\1129',str(file.split('_',6)[1]) +'.png')
                      , bbox_inches='tight', dpi=500)
    plt.show()
    
    
# =============================================================================
#      动态插补
# =============================================================================
    # for latter in shunxu[1:]:
    #     a = df
    #     b=a.loc[a['LE_Gap_filled'+ str(shunxu[0])] > -9999, ['LE_Gap_filled'+ str(shunxu[0]), 'Drivers'+ str(shunxu[0]), 'RMSE'+ str(shunxu[0])]] # 只是有LE数值的地方,用来填充上边的空集
    
    #     a['Drivers'+ str(shunxu[0])]=a.loc[a['LE_Gap_filled'+ str(shunxu[0])] == np.nan, ['Drivers'+ str(shunxu[0])]]
    #     a['Drivers'+ str(shunxu[0])].fillna( b['Drivers'+ str(shunxu[0])] ,inplace = True ) # 自立门户 新建第一个模型的Drivers
    
    #     a['RMSE' + str(shunxu[0])]=a.loc[a['LE_Gap_filled'+str(shunxu[0])] == np.nan, ['RMSE' + str(shunxu[0])]]
    #     a['RMSE' + str(shunxu[0])].fillna( b['RMSE'+ str(shunxu[0])] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
        
    #     b=a.loc[a['LE_Gap_filled'+ str(latter)] > -9999, ['LE_Gap_filled'+ str(latter), 'Drivers'+ str(latter), 'RMSE'+ str(latter)]] # 只是有LE数值的地方,用来填充上边的空集
    
    #     a['Drivers'+ str(latter)]=a.loc[a['LE_Gap_filled'+ str(latter)] == np.nan, ['Drivers'+ str(latter)]]
    #     a['Drivers'+ str(latter)].fillna( b['Drivers'+ str(latter)] ,inplace = True ) # 自立门户 新建第一个模型的Drivers
    
    #     a['RMSE' + str(latter)]=a.loc[a['LE_Gap_filled'+str(latter)] == np.nan, ['RMSE' + str(latter)]]
    #     a['RMSE' + str(latter)].fillna( b['RMSE'+ str(latter)] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    
    #     a['LE_Gap_filled'+str(shunxu[0])].fillna(a['LE_Gap_filled'+ str(latter)], inplace=True) # LE Update
    #     df2=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    #     print(a['LE_Gap_filled'+str(shunxu[0])])
    #     a['Drivers'+str(shunxu[0])].fillna(a['Drivers'+ str(latter)],inplace=True)  # Drivers Update
    
    #     a['RMSE'+str(shunxu[0])].fillna(a['RMSE'+ str(latter)],inplace=True)  # Rmse Update
 
    #     # 加一下a的时间
    #     so=pd.read_csv(os.path.join(path1,file))
    #     so=so[['TIMESTAMP_START' ,'TIMESTAMP_END','LE_F_MDS']]
    #     print(a['TIMESTAMP_START'])
    #     a.to_csv(os.path.join(r'C:\Users\Lenovo\Desktop\R\用来rmse的原始值666', str(file.split('_',6)[1]) + '.csv'),index = False)
        
    # # print(a)
    
    # a['QC'] = np.nan 
    # a.loc[a['LE_Gap_filled'+ str(shunxu[0])] != -9999, 'QC'] = 1
    # a.loc[a['LE_Gap_filled'+ str(shunxu[0])] == -9999 , 'QC'] = 0
    # a['LE_Gap_filled'+ str(shunxu[0])].replace(np.nan,-8888,inplace=True)   # 原本是空值的部分  由于变量缺失过多,压根儿补不了的部分 在原数据集中,QC为3,表示的是ERA的数据
    # a['LE_Gap_filled'+ str(shunxu[0])].replace(-9999,np.nan,inplace=True)   #        |          空值还有种原因是 因为变量组合的原因,没有补到那一块,所以仍旧空
    # a['LE_Gap_filled'+ str(shunxu[0])].fillna(so['LE_F_MDS'],inplace=True)#  最后依旧是空值     
    # a.loc[a['LE_Gap_filled'+ str(shunxu[0])] == -8888 , 'QC'] = -9999
    # a=a[[ 'TIMESTAMP_END', 'LE_Gap_filled'+ str(shunxu[0]), 'QC',  'Drivers'+ str(shunxu[0]), 'RMSE'+ str(shunxu[0])]]
    # a= pd.merge(so,a,how='outer',on='TIMESTAMP_END')
    # a['LE_Gap_filled'+ str(shunxu[0])].fillna(a['LE_F_MDS'],inplace=True)   
    # a['LE_Gap_filled'+ str(shunxu[0])].replace(-8888,np.nan,inplace=True)    
    # a=a[['TIMESTAMP_START', 'TIMESTAMP_END', 'LE_Gap_filled'+ str(shunxu[0]), 'QC',  'Drivers' + str(shunxu[0]), 'RMSE'+ str(shunxu[0])]]
    
    # bianliangmen = pd.read_csv(os.path.join(path1,file))
    # bianliangmen = bianliangmen.drop(['TIMESTAMP_START' ,'TIMESTAMP_END','LE_F_MDS'],axis=1).columns
    # for i in bianliangmen:
    #     a[str(i)]=np.nan
    # # print(a.columns)  year   
    
    # a['Drivers' + str(shunxu[0])].replace(np.nan,-9999,inplace=True)      
    # b=a.loc[a['Drivers' + str(shunxu[0])]!=-9999]

    # for i in b.columns[6:]:

    #     c=b[b['Drivers' + str(shunxu[0])].str.contains(i)]
    #     c[i].replace(np.nan,'+',inplace=True)
    #     a[i]=c[i]
        
    # b=a.count(axis=1)-6
    # b=pd.DataFrame(b)
    
    # a['n_drivers']=b
    # a['n_drivers'].replace([-1,-2,-3],np.nan,inplace=True)
    # a['Drivers' + str(shunxu[0])].replace(-9999,np.nan,inplace=True)
    # # print(a)
    # a.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\FILLED',str(file.split('_',6)[1]) +'.csv'),index = False)

    
 
    # # 
    #     # total_number.append(int(sole.shape[0]))
    #     # post_dropna_number.append(int(train_option_dropna.shape[0]))
    #     # post_drop_le_abnormal_number.append(int(c.shape[0]))
    #     # test_number.append(int(c.shape[0]*0.25))
    #     # train_number.append(int(c.shape[0]*0.75))
    #     # # N_estimators.append(n_estimators)
    #     # # Max_depth.append(max_depth)
         
    # # ===========================================================绘制散点图file
    # s_ori = pd.read_csv(os.path.join(path1,file))
    # ori = s_ori.loc[s_ori['LE_F_MDS_QC']==0,['TIMESTAMP_START','LE_F_MDS']]
    # filled = s_ori.loc[s_ori['LE_F_MDS_QC']!=0,['TIMESTAMP_START','LE_F_MDS']]
    # s_ori['TIMESTAMP_START'] = pd.to_datetime(s_ori['TIMESTAMP_START'])
    # s_ori['year'] = s_ori['TIMESTAMP_START'].dt.year
    # gap_filled = a.loc[a['QC'] == 1,['TIMESTAMP_START','LE_Gap_filled'+ str(shunxu[0])]]
    
    # fig1 ,ax = plt.subplots(5,1,sharex='col',figsize=(25,9),dpi=300)
    # ax0 = ax[0]
    # ax0.plot( 'LE_F_MDS', data=ori, linestyle='none',marker='o')
    # ax1 = ax[1]
    # ax1.plot(  'LE_F_MDS', data=filled, color='#ff7f0e',linestyle='none', marker='o')
    # ax2 = ax[2]
    # ax2.plot(  'LE_F_MDS', data=ori, alpha=0.6, linestyle='none', marker='o')
    # ax2.plot( 'LE_F_MDS', data=filled, alpha=0.6, linestyle='none', marker='o')
    # ax3 = ax[3]
    # # ax2.plot(  'LE_F_MDS', data=s_ori, alpha=0.6, linestyle='none', marker='o')
    # ax3.plot('LE_Gap_filled'+ str(shunxu[0]),data=gap_filled, color='#FAA460', linestyle='none', marker='o' )
    # ax4 = ax[4]
    # ax4.plot(  'LE_F_MDS', data=ori, alpha=0.6, linestyle='none', marker='o')
    # ax4.plot('LE_Gap_filled'+ str(shunxu[0]),data=gap_filled,color='#FAA460', alpha=0.6, linestyle='none', marker='o' )
    
    # ax0.set_ylabel('in-situ', fontsize=19)
    # ax1.set_ylabel('MDS', fontsize=19)
    # ax2.set_ylabel('FLUXNET2015', fontsize=19)
    # ax3.set_ylabel('RF', fontsize=19)
    # ax4.set_ylabel('Dynamic', fontsize=19)
    
    # nianfen = int(file.split('_',6)[5].split('-',2)[0])
    # nianfen1 = int(file.split('_',6)[5].split('-',2)[1])
    # ax2.set_xticks([365*48*x  for x in range(nianfen1+2-nianfen)]) 
    # ax2.set_xticklabels([x  for x in range(nianfen,nianfen1+2)],fontproperties='Times New Roman',size=19)
    # ax4.set_xlabel('Year', fontsize=19)
    # plt.savefig(os.path.join(r'D:\Fluxnet\PIC666\1128',str(file.split('_',6)[1]) +'.png')
    #                   , bbox_inches='tight', dpi=500)
    # plt.show()
    
        
        #===============================================导出
         
    # dic={'SITES':site_list,'YEAR':year_list,'原始数目':total_number
    #           ,'去掉空值后':post_dropna_number
    #           ,'去掉LE异常值后':post_drop_le_abnormal_number
    #           ,'TRAIN_NUMBER':train_number
    #           ,'TEST_NUMBER':test_number
    #           # ,'n_estimators':N_estimators,'max_depth':Max_depth
    #           ,'RMSE':Rmse_list,'R2':R2_list,'BIAS':Bias_list
    #           ,'Drivers_column':Drivers_column
    #           ,'Filling_rate' : Filling_rate_list
    #         }
        
    # dic=pd.DataFrame(dic)
    # # print(dic)
    # dic.to_csv(r'D:\Fluxnet\OUTCOME\RMSE_ALL\RMSE_All_Day.csv')
    
    # dic_sole={
    #           'RMSE':rmse_list,'R2':r2_list,'BIAS':bias_list
    #           } 
    # dic_sole=pd.DataFrame(dic_sole)
    # dic_sole.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\RMSE', str(file.split('_',6)[1])  +'.csv'),index = False)
     
        #===============================================Various length of gap
        
        # for j,k in zip([0.05,0.075,0.125],[6,24,48]): #一天 七天 一月 一共占总数据的0.25
        # #48,336,720
          
        #   df0=sole.copy()
        #   print(len(df0))
        #   df=df0[df0['LE_F_MDS_QC']==0]
        #   print(df['LE_F_MDS_QC'])
        #   print(len(df))
        #   print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
          
          
          
        #   #可以开始make gap的位置区间
        #   start_point=np.arange(df['LE_F_MDS_QC'].index[0],df['LE_F_MDS_QC'].index[-1]-k+1) #k是gap长度 
         
        #   #gap的个数
        #   gap_number=int(len(df)*j/k)
        #   print(gap_number)
          
        #   # 随机选择开始的位置
        #   # np.random.seed(1) # 每次的随机数都是一样的
          
        #   gap_posi=np.random.choice(start_point,gap_number*3) #多一点选择的余地
          
        #   posi=sorted(gap_posi) # 排一下顺序}
        #   print(posi)
          
        #   count=0
        #   gap_qujian=[]
          
        #   # 并不是每个随机开始的位置都可以用,不能和以前的gap开始的位置重叠,gap的位置数据量也要充足

        #   for m,n in enumerate(posi): # m是索引 n是开始的位置(其实也是索引)
             
        #       # 单个gap的区间
        #       # 意思是从第多少位到多少位是gap区间
        #       gap_danqujian_list =[h for h in np.arange(n,n+k)]
        #       print(gap_danqujian_list)
        #       print('==')
        #       # 整个DataFrame中的gap
        #       gap_df = df0.iloc[gap_danqujian_list]
        #       # print(gap_df)
        #       # gap区间要在限定的范围内
        #       if np.isin(gap_danqujian_list,start_point).all():
                 
        #           # 不同长度gap不能重叠
        #           if m>0 and n-posi[m-1] <= k: 
        #               continue
    
    
        #           # gap区间内要有足够的原始数据
        #           if len(gap_df.dropna()) / len(gap_df) < 0.5:
        #               continue
         
        #           gap_qujian.extend(gap_danqujian_list)
        #           print(gap_qujian)
        #           count += 1

 
        #       if count == gap_number: # 每种gap的数目都要达到gap_number,达到规定的比例才会停止
                  
        #           print('@@@@@@@@@@@@@@@@@@@@@')
        #           print(count)
        #           break
          
        #   # 要去掉索引对应的le为空的suoyin
    
        #   test_df=df0.iloc[gap_qujian] # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
        #   print(test_df)
        #   print(len(test_df))
         
        #   test=test_df.loc[test_df['LE_F_MDS_QC']==0,].dropna(axis=0) # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
        #   print(test)
        #   print(len(test))
  
        #   train_index=np.setdiff1d(df0.index,test_df.index) # setdiff1d 前面那个数组有 后边那个没有的值
        #   print(train_index)
        
        #   train_df=df0.iloc[train_index] # # pd.iloc[[1,2,3]] 查找方括号内数字所在的行
        #   train=train_df.loc[train_df['LE_F_MDS_QC']==0,].dropna(axis=0)
        #   print(train)
        #   print(len(train))
        
        
        #   pd.set_option('display.max_columns', None)
        # # print(test.head(5))
        #   print(train.shape)
        #   print(test.shape)
        
        #   a=pd.DataFrame(test.isna().sum().sort_values(ascending=False))
            
        # # des=test.describe()
        # # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
        # # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
        # # test=test[(test['LE_F_MDS'] <=shangxu[3])
        # #           &(test['LE_F_MDS'] >=xiaxu[3])]
     
        
        #  # print(des)
        #  # des=train.describe()
        #  # shangxu=des.loc['75%']+1.5*(des.loc['75%']-des.loc['25%'])
        #  # xiaxu=des.loc['25%']-1.5*(des.loc['75%']-des.loc['25%'])
        #  # train=train[(train['LE_F_MDS'] <=shangxu[3])
        #  #             &(train['LE_F_MDS'] >=xiaxu[3])]
        #  # print(xiaxu)
             
        #   train=train.drop(['TIMESTAMP_START','TIMESTAMP_END','LE_F_MDS_QC'],axis=1)
        #   test=test.drop(['TIMESTAMP_START','TIMESTAMP_END','LE_F_MDS_QC'],axis=1)
        
        #   # train_Drivers=train.drop(['LE_F_MDS'],axis=1)
        #   train_Drivers=train[feature]
        #   print(train_Drivers.index)
         
        #   # test_Drivers=test.drop(['LE_F_MDS'],axis=1) 
        #   test_Drivers=test[feature]
        #   print(test_Drivers.index)
         
        #   train_LE=train['LE_F_MDS']
        #   print(train_LE.index)
         
        #   test_LE=test['LE_F_MDS']
        #   print(test_LE.index)
         
        #   # x_train,x_test,y_train,y_test=train_test_split(Drivers,LE
        #   #                                                ,test_size=0.25
        #   #                                                ,random_state=(0))                            
        #   print(train_Drivers.shape)
        #   print(test_Drivers.shape)
        #   print(train_LE.shape)
        #   print(test_LE.shape)
     
        #   # ==============================建模====================================
         
        #   rf1=RandomForestRegressor(n_estimators=1100
        #                             ,max_depth=80
        #                             ,random_state=(0))   
        #   rf1.fit(train_Drivers,train_LE)    
         
        #   rmse1=np.sqrt(mean_squared_error(test_LE,rf1.predict(test_Drivers)))
         
  
        #   rmse_list1.append(rmse1)
        #   rmse_df=pd.DataFrame({'rmse':rmse_list1})
        #   print(rmse_df)
         
        #   r2=r2_score(test_LE,rf1.predict(test_Drivers))  
        #   r2_list1.append(r2)
        #   r2_df=pd.DataFrame({'r2':r2_list1})
         
        #   bias=(rf1.predict(test_Drivers)-test_LE).mean()
        #   bias_list1.append(bias)
        #   bias_df=pd.DataFrame({'bias':bias_list1})
         
        #   site_list1+=[s.split('_',6)[1]]
        #   year_list1+=[int(s.split('_',6)[5].split('-',1)[1])
        #               -int(s.split('_',6)[5].split('-',1)[0])+1]  
         
        #   # total_number.append(int(b.shape[0]))
        #   # post_dropna_number.append(int(a.shape[0]))
        #   # post_drop_le_abnormal_number.append(int(c.shape[0]))
        #   test_number1.append(int(test.shape[0]))
        #   train_number1.append(int(train.shape[0]))
         
   
        #   dic2={'SITES':site_list1,'YEAR':year_list1
        #         # ,'原始数目':total_number
        #         # ,'去掉空值后':post_dropna_number
        #         # ,'去掉LE异常值后':post_drop_le_abnormal_number
        #         ,'TRAIN_NUMBER':train_number1
        #         ,'TEST_NUMBER':test_number1
        #         # ,'n_estimators':N_estimators,'max_depth':Max_depth
        #         ,'RMSE':rmse_list1,'R2':r2_list1,'BIAS':bias_list1
               
        #       }
         
        #   dic2=pd.DataFrame(dic2)
        #   print(dic2)
        #   dic2.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\GAP_diff', str(s.split('_',6)[1]) + '.csv'),index = False)


    
    #========================================读一下八个csv
    
#     dic_list=[]
    
#     for i in range(3,5):
        
#         df=pd.read_csv(os.path.join(outpath,str(s.split('_',6)[1]) + str(i) + '.csv'))
        
#         dic={'list_name':df, 'rmse':df['RMSE'][0]}
        
#         dic_list+=[dic]
        
#         print(dic_list)
#     print('=============================================')
        
#     # df3=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '3' +'.csv'))
#     # df4=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '4' +'.csv'))
#     # df5=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '5' +'.csv'))
#     # df6=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '6' +'.csv'))
#     # df7=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '7' +'.csv'))
#     # df8=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '8' +'.csv'))
#     # df9=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '9' +'.csv'))
#     # df10=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '10' +'.csv'))
#     # df11=pd.read_csv(os.path.join(r'D:\Fluxnet\OUTCOME',str(s.split('_',6)[1]) + '11' +'.csv'))   
    
#     # dic=[{'list_name':df3, 'rmse':df3['RMSE'][0]}
#     #      ,{'list_name':df4, 'rmse':df4['RMSE'][0]}
#     #      ,{'list_name':df5, 'rmse':df5['RMSE'][0]}
#     #      ,{'list_name':df6, 'rmse':df6['RMSE'][0]}
#     #      ,{'list_name':df7, 'rmse':df7['RMSE'][0]}
#     #      ,{'list_name':df8, 'rmse':df8['RMSE'][0]}
#     #      ,{'list_name':df9, 'rmse':df9['RMSE'][0]}
#     #      ,{'list_name':df10, 'rmse':df10['RMSE'][0]}
#     #      ,{'list_name':df11, 'rmse':df11['RMSE'][0]}
#     #     ]
    
#     sorted_dic=sorted(dic_list, key=lambda dic_list: dic_list['rmse'], reverse=False)
#     print(sorted_dic)
#     list_name=[a['list_name'] for a in sorted_dic] # 打印出来的话就是整个dataframe
#     print(list_name)
#     df=pd.concat(list_name,axis=1)
        
#     print(df)
#     df.to_csv(os.path.join(outpath, str(s.split('_',6)[1]) +'6666'+'.csv'))


#     a=pd.read_csv(os.path.join(outpath, str(s.split('_',6)[1]) +'6666'+'.csv'))
#     # pd.set_option('display.max_columns', None)
#     df=pd.DataFrame(a.isna().sum().sort_values(ascending=False))
#     print(a)
#     # 直接用fillna来填,可行, 但还要填drivers!!!
#     # 找rmse最低值 对应的来开始填补
#     print(df.columns)
    # 一
    # b=a.loc[a['LE_Gap_filled'] > -9999, ['LE_Gap_filled','Drivers','RMSE']]

    # a['Drivers']=a.loc[a['LE_Gap_filled'] == np.nan, ['Drivers']]
    # a['Drivers'].fillna( b['Drivers'] ,inplace = True ) # 自立门户 新建第一个模型的Drivers
    # print(a['Drivers'].describe())

    # a['RMSE']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE']]
    # a['RMSE'].fillna( b['RMSE'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE'].describe())

    # b=a.loc[a['LE_Gap_filled.1'] > -9999, ['LE_Gap_filled.1', 'Drivers.1', 'RMSE.1']] # 只是有LE数值的地方,用来填充上边的空集

    # a['Drivers.1']=a.loc[a['LE_Gap_filled.1'] == np.nan, ['Drivers.1']]
    # a['Drivers.1'].fillna( b['Drivers.1'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
    # print(a['Drivers.1'].describe())

    # a['RMSE.1']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.1']]
    # a['RMSE.1'].fillna( b['RMSE.1'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
    # print(a['RMSE.1'].describe())

    # a['LE_Gap_filled'].fillna(a['LE_Gap_filled.1'], inplace=True) # LE Update
    # df1=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
    # print(df1)

    # a['Drivers'].fillna(a['Drivers.1'],inplace=True)  # Drivers Update
    # print(a['Drivers'].describe())

    # a['RMSE'].fillna(a['RMSE.1'],inplace=True)  # Rmse Update
    # print(a['RMSE'].describe())


#     # 二
#     b=a.loc[a['LE_Gap_filled.2'] > -9999, ['LE_Gap_filled.2', 'Drivers.2', 'RMSE.2']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.2']=a.loc[a['LE_Gap_filled.2'] == np.nan, ['Drivers.2']]
#     a['Drivers.2'].fillna( b['Drivers.2'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.2'].describe())

#     a['RMSE.2']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.2']]
#     a['RMSE.2'].fillna( b['RMSE.2'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.2'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.2'], inplace=True) # LE Update
#     df2=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df2)

#     a['Drivers'].fillna(a['Drivers.2'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.2'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())


#     # 三
#     b=a.loc[a['LE_Gap_filled.3'] > -9999, ['LE_Gap_filled.3', 'Drivers.3', 'RMSE.3']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.3']=a.loc[a['LE_Gap_filled.3'] == np.nan, ['Drivers.3']]
#     a['Drivers.3'].fillna( b['Drivers.3'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.3'].describe())

#     a['RMSE.3']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.3']]
#     a['RMSE.3'].fillna( b['RMSE.3'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.3'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.3'], inplace=True) # LE Update
#     df3=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df3)

#     a['Drivers'].fillna(a['Drivers.3'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.3'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())


#     # 四
#     b=a.loc[a['LE_Gap_filled.4'] > -9999, ['LE_Gap_filled.4', 'Drivers.4', 'RMSE.4']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.4']=a.loc[a['LE_Gap_filled.4'] == np.nan, ['Drivers.4']]
#     a['Drivers.4'].fillna( b['Drivers.4'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.4'].describe())

#     a['RMSE.4']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.4']]
#     a['RMSE.4'].fillna( b['RMSE.4'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.4'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.4'], inplace=True) # LE Update
#     df4=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df4)

#     a['Drivers'].fillna(a['Drivers.4'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.4'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())


#     # 五
#     b=a.loc[a['LE_Gap_filled.5'] > -9999, ['LE_Gap_filled.5', 'Drivers.5', 'RMSE.5']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.5']=a.loc[a['LE_Gap_filled.5'] == np.nan, ['Drivers.5']]
#     a['Drivers.5'].fillna( b['Drivers.5'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.5'].describe())

#     a['RMSE.5']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.5']]
#     a['RMSE.5'].fillna( b['RMSE.5'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.5'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.5'], inplace=True) # LE Update
#     df5=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df5)

#     a['Drivers'].fillna(a['Drivers.5'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.5'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())


#     # 六
#     b=a.loc[a['LE_Gap_filled.6'] > -9999, ['LE_Gap_filled.6', 'Drivers.6', 'RMSE.6']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.6']=a.loc[a['LE_Gap_filled.6'] == np.nan, ['Drivers.6']]
#     a['Drivers.6'].fillna( b['Drivers.6'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.6'].describe())

#     a['RMSE.6']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.6']]
#     a['RMSE.6'].fillna( b['RMSE.6'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.5'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.6'], inplace=True) # LE Update
#     df6=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df6)

#     a['Drivers'].fillna(a['Drivers.6'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.6'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())


#     # 七
#     b=a.loc[a['LE_Gap_filled.7'] > -9999, ['LE_Gap_filled.7', 'Drivers.7', 'RMSE.7']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.7']=a.loc[a['LE_Gap_filled.7'] == np.nan, ['Drivers.7']]
#     a['Drivers.7'].fillna( b['Drivers.7'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.7'].describe())

#     a['RMSE.7']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.7']]
#     a['RMSE.7'].fillna( b['RMSE.7'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.7'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.7'], inplace=True) # LE Update
#     df7=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df7)

#     a['Drivers'].fillna(a['Drivers.7'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.7'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())

#     # 八
#     b=a.loc[a['LE_Gap_filled.8'] > -9999, ['LE_Gap_filled.8', 'Drivers.8', 'RMSE.8']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.8']=a.loc[a['LE_Gap_filled.8'] == np.nan, ['Drivers.8']]
#     a['Drivers.8'].fillna( b['Drivers.8'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.8'].describe())

#     a['RMSE.8']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.8']]
#     a['RMSE.8'].fillna( b['RMSE.8'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.8'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.8'], inplace=True) # LE Update
#     df8=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df8)

#     a['Drivers'].fillna(a['Drivers.8'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.8'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())
    
    
#     # 九
#     b=a.loc[a['LE_Gap_filled.9'] > -9999, ['LE_Gap_filled.9', 'Drivers.9', 'RMSE.9']] # 只是有LE数值的地方,用来填充上边的空集

#     a['Drivers.9']=a.loc[a['LE_Gap_filled.9'] == np.nan, ['Drivers.9']]
#     a['Drivers.9'].fillna( b['Drivers.9'] ,inplace = True ) # 自立门户 新建第二个模型的Drivers
#     print(a['Drivers.9'].describe())

#     a['RMSE.9']=a.loc[a['LE_Gap_filled'] == np.nan, ['RMSE.9']]
#     a['RMSE.9'].fillna( b['RMSE.9'] ,inplace = True ) # 自立门户 新建第一个模型的RMSE
#     print(a['RMSE.9'].describe())

#     a['LE_Gap_filled'].fillna(a['LE_Gap_filled.9'], inplace=True) # LE Update
#     df8=pd.DataFrame(a.isna().sum().sort_values(ascending=False)) # 统计一下
#     print(df8)

#     a['Drivers'].fillna(a['Drivers.9'],inplace=True)  # Drivers Update
#     print(a['Drivers'].describe())

#     a['RMSE'].fillna(a['RMSE.9'],inplace=True)  # Rmse Update
#     print(a['RMSE'].describe())





#     # 加一下a的时间

#     so=pd.read_csv(os.path.join(path1,s))
#     so=so[['TIMESTAMP_START' ,'TIMESTAMP_END','LE_F_MDS']]

#     print(a['TIMESTAMP_START'])

#     print(a.shape)

#     a['QC'] = np.nan
#     a.loc[a['LE_Gap_filled'] > -9999, 'QC'] = 1
#     a.loc[a['LE_Gap_filled'] == -9999 , 'QC'] = 0
    
#     a['LE_Gap_filled'].replace(np.nan,-8888,inplace=True) # 原本是空值的部分  由于变量缺失过多,压根儿补不了的部分 在原数据集中,QC为3,表示的是ERA的数据
#     a['LE_Gap_filled'].replace(-9999,np.nan,inplace=True) #       |          空值还有种原因是 因为变量组合的原因,没有补到那一块,所以仍旧空
#     a['LE_Gap_filled'].fillna(sole['LE_F_MDS'],inplace=True)#  最后依旧是空值     
     
#     a.loc[a['LE_Gap_filled'] == -8888 , 'QC'] = -9999

    
#     print(a.dropna().shape[0]/a.shape[0])
    
#     a=a[[ 'TIMESTAMP_END', 'LE_Gap_filled', 'QC',  'Drivers', 'RMSE']]
    
#     a= pd.merge(so,a,how='outer',on='TIMESTAMP_END')

 
#     a['LE_Gap_filled'].fillna(a['LE_F_MDS'],inplace=True)   
#     a['LE_Gap_filled'].replace(-8888,np.nan,inplace=True)    
    
#     a=a[['TIMESTAMP_START', 'TIMESTAMP_END', 'LE_Gap_filled', 'QC',  'Drivers', 'RMSE']]
    
    
#     a['SW_IN_F_MDS']=np.nan
#     a['NETRAD']=np.nan
#     a['G_F_MDS']=np.nan
#     a['TA_F_MDS']=np.nan
#     a['RH']=np.nan
#     a['WD']=np.nan 
#     a['WS']=np.nan 
    
#     a['PA_F']=np.nan
#     a['VPD_F_MDS']=np.nan
#     a['NDVI']=np.nan
#     a['TS_F_MDS_1']=np.nan
#     a['SWC_F_MDS_1']=np.nan
#     a['TA_F_MDS']=np.nan
    
#     a['Drivers'].replace(np.nan,-9999,inplace=True)

    
#     b=a.loc[a['Drivers']!=-9999]
#     # print(b)
    
#     for i in b.columns[6:]:
        
#         # print(i)
        
#         c=b[b['Drivers'].str.contains(i)]

#         c[i].replace(np.nan,'+',inplace=True)
        
#         a[i]=c[i]
        
#     b=a.count(axis=1)-6
#     b=pd.DataFrame(b)
    
#     a['n_drivers']=b
    
#     a['n_drivers'].replace([-1,-2,-3],np.nan,inplace=True)
    
#     a['Drivers'].replace(-9999,np.nan,inplace=True)



#     # a.to_csv(os.path.join(path,sole+'.csv'),index = False)

    
#     a.to_csv(os.path.join(r'D:\Fluxnet\OUTCOME\FILLED',str(s.split('_',6)[1]) +'.csv'),index = False)
             



# #  创造空列
# # df["Empty_1"] = ""
# # df["Empty_2"] = np.nan
# # df['Empty_3'] = pd.Series() 
    














        
在这里插入代码片

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.3.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/341166.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux系统安全之iptables防火墙

目录 一.iptables防火墙基本介绍 二.iptables的四表五链 三.iptables的配置 1.iptables的安装 2.iptables防火墙的配置方法 四.添加、查看、删除规则 1.查看(fliter)表中的所有链 iptables -L 2.使用数字形式(fliter)表所有链 查看输出结果 iptables -nL 3.清空表中所…

算法刷题打卡第88天:字母板上的路径

字母板上的路径 难度&#xff1a;中等 我们从一块字母板上的位置 (0, 0) 出发&#xff0c;该坐标对应的字符为 board[0][0]。 在本题里&#xff0c;字母板为board ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "…

【Java|golang】1138. 字母板上的路径

我们从一块字母板上的位置 (0, 0) 出发&#xff0c;该坐标对应的字符为 board[0][0]。 在本题里&#xff0c;字母板为board [“abcde”, “fghij”, “klmno”, “pqrst”, “uvwxy”, “z”]&#xff0c;如下所示。 我们可以按下面的指令规则行动&#xff1a; 如果方格存…

【计组】理解Disruptor--《计算机组成原理》(十五)

Disruptor 的开发语言&#xff0c;并不是很多人心目中最容易做到性能极限的 C/C&#xff0c;而是性能受限于 JVM 的 Java。其实只要通晓硬件层面的原理&#xff0c;即使是像 Java 这样的高级语言&#xff0c;也能够把 CPU 的性能发挥到极限。 一、Padding Cache Line&#xff…

mysql中mvcc实现机制和原理

目录 1.什么是mvcc? 2.mvcc中的快照读和当前读有什么区别和联系&#xff1f; 3.mvcc的作用是什么&#xff1f; 4.mvcc的实现机制和原理是什么&#xff1f; 1.什么是mvcc? mvcc全称是(Multi-Version Concurrency Control) 多版本并发控制,是数据库管理过程中的一种并发控制…

keras+IMDB情感分析

目录简介IDMB数据集数据预处理数据加载数据清洗保存经过清洗后的数据训练测试数据集分割文字编码词嵌入模型构建模型训练训练效果模型评分模型预测及混淆矩阵查看F1 Score、召回率等信息预测新的影评总结本博客参考&#xff1a; 【python自然语言处理 周元哲著】 【keras中文文…

数据库索引篇(二叉树/B-Tree)对比结构讲解

我们可以先看一下 二叉树的一个结构 简单将数据分成左右两侧 左侧小于36 右侧大于36 在下面再以这种方式继续划分 但二叉树的结构就有一个非常大的弊端 如果我们后续插入的数据全部小于 或 大于36 他就会 变成这样 一个链表 查询效率大大降低 因为 比如 你想找什么数据 都会…

岁月闲思——时间给我地思考

岁月闲思——时间给我地思考 2022年6月10日&#xff0c;明天又一个周末&#xff0c;成人地时间总是让人感觉一天很慢&#xff0c;一周以及一年反而很快。 下班到家&#xff0c;吃过长辈做的手工凉皮&#xff0c;得空坐在电脑面前敲击点文字&#xff0c;记录下时间留给自己地印…

Docker--consul

目录 前言 一、Consul 简介 1.1、 consul 概述 1.2 、consul 的两种模式 1.3、consul 提供的一些关键特性 二、Consul 容器服务更新与发现 三、consul 部署 3.2、查看集群信息 四、registrator服务器 consul-template 五、consul 多节点 前言 服务注册与发现是微服…

软件测试面试十大必考题目(通用)

目录 &#xff08;1&#xff09; 为什么想进本公司&#xff1f; &#xff08;2&#xff09; 喜欢这份工作的哪一点&#xff1f; &#xff08;3&#xff09; 自己的优缺点为何&#xff1f; &#xff08;4&#xff09; 对公司的了解有多少&#xff1f; &#xff08;5&#xf…

C++创建多线程的方法总结

下个迭代有个任务很有趣&#xff0c;用大量的线程去访问一个接口&#xff0c;直至其崩溃为止&#xff0c;这就需要多线程的知识&#xff0c;这也不是什么难事&#xff0c;总结一下C中的多线程方法&#xff1a;std、boost、pthread、windows api。 目录 一、多线程预备知识 二…

图解浏览器渲染页面详细过程

渲染详细过程 产生渲染任务&#xff0c;开启渲染流程 当浏览器的网络线程收到 HTML 文档后&#xff0c;会产生一个渲染任务&#xff0c;并将其传递给渲染主线程的消息队列。 在事件循环机制的作用下&#xff0c;渲染主线程取出消息队列中的渲染任务&#xff0c;开启渲染流程。…

IDEA 常用快捷键回顾

一 Alt 数字键 1. Alt 1: 打开项目 2. Alt 2: 打开Favorites 3. Alt 3: 打开Find 4. Alt 4: 打开Run 5. Alt 5: 打开Debug 6. Alt 6: 打开当前所在文件 7. Alt 7: 打开Structure 8. Alt 8: 打开Services 9. Alt 9: 打开Git日志 二 Ctrl 其他键 1. Ctrl…

【Flink】详解JobGraph

概述 JobGraph 是 StreamGraph 优化后的产物&#xff0c;客户端会将优化后的 JobGraph 发送给 JM。接下来的文章涉及到一些前置知识点&#xff0c;没有看前几期的小伙伴最好看一下前几期&#xff1a; 【Flink】详解StreamGraph【Flink】浅谈Flink架构和调度【Flink】详解Flin…

【Flutter入门到进阶】Dart进阶篇---进阶用法

1 Dart对象扩展 1.1 extension 1.1.1 介绍 可以在不更改类或创建子类的情况下&#xff0c;向类添加扩展功能的一种方式。灵活使用 extension 对基础类进行扩展&#xff0c;对开发效率有显著提升。 1.1.2 需求 在开发项目中碰到需求&#xff1a;将单位为分的数值转换成单位为…

RabbitMQ(黑马spring cloud笔记)

MQ 目录MQ一、同步通讯和异步通讯1. 同步通讯2. 异步通讯二、RabbitMQ1. 部署2. 架构3. 常见消息模型3.1 基本消息队列&#xff08;Basic Queue&#xff09;3.2 工作消息队列&#xff08;Work Queue&#xff09;3.3 发布订阅&#xff08;Publish、Subscribe&#xff09;4. 消息…

TPAMI 2022 | RC-Explainer:图神经网络的强化因果解释器

文章目录 一、论文关键信息二、基础概念三、主要内容1. Motivations2. Insights3. 解决方案的关键四、总结与讨论CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、论文关键信息 论文标题:Reinforced Causal Explainer for Graph Neural Networks 期刊信息:IEEE Transact…

【C++】内存管理

&#x1f345;不同的数据放在不同的地方&#xff0c;需要内存管理 目录 ☃️1.C/C中的内存分布 ☃️2.C语言中动态内存管理方式 ☃️3.C内存管理方式 &#x1f41d;3.1 new/delete操作内置类型 &#x1f41d;3.2 new和delete操作自定义类型 &#x1f41d;3.3 operator n…

FISCO BCOS节点扩容和使用console进行群组扩容

一、安装并启动FISCO BCOS 搭建单机单群组4节点的教程查看&#xff1a;https://blog.csdn.net/yueyue763184/article/details/128924144?spm1001.2014.3001.5501 二、下载扩容脚本 在fisco目录下输入以下命令&#xff1a; curl -#LO https://raw.githubusercontent.com/FI…

155、【动态规划】leetcode ——474. 一和零:三维数组+二维滚动数组(C++版本)

题目描述 原题链接&#xff1a;474. 一和零 解题思路 &#xff08;1&#xff09;三维数组 本题是要在已有的字符串中&#xff0c;找到给定的m个0和n个1&#xff0c;组出最大的子集。将字符串集合中的各个字符串看作物品&#xff0c;m个0和n个1看作背包的重量&#xff0c;则该…