K8s高可用集群搭建

news2025/1/3 11:36:50

K8s高可用集群搭建

  • 1 方案简介
    • 2 集群搭建
      • 2.1 安装要求
      • 2.2 准备环境
      • 2.3 master节点部署keepalived
      • 2.4 master节点部署haproxy
      • 2.5 所有节点安装docker/kubeadm/kubelet
      • 2.6 部署k8smaster01
      • 2.7 安装集群网络
      • 2.8 k8smaster02加入节点
      • 2.9 k8snode01加入集群
  • 3 测试集群

1 方案简介

在这里插入图片描述

用到的高可用技术主要是keepalived和haproxy。

keepalived
Keepalived主要是通过虚拟路由冗余来实现高可用功能。Keepalived一个基于VRRP(Virtual Router Redundancy Protocol - 虚拟路由冗余协议) 协议来实现的 LVS 服务高可用方案,可以利用其来解决单点故障。一个LVS服务会有2台服务器运行Keepalived,一台为主服务器(MASTER),一台为备份服务器(BACKUP),但是对外表现为一个虚拟IP,主服务器会发送特定的消息给备份服务器,当备份服务器收不到这个消息的时候,即主服务器宕机的时候, 备份服务器就会接管虚拟IP,继续提供服务,从而保证了高可用性。

haproxy
haproxy 类似于nginx, 是一个负载均衡、反向代理软件。 nginx 采用master-workers 进程模型,每个进程单线程,多核CPU能充分利用。 haproxy 是多线程,单进程就能实现高性能,虽然haproxy 也支持多进程。

2 集群搭建

2.1 安装要求

部署Kubernetes集群机器需要满足以下几个条件:
(1)一台或多台机器,操作系统 CentOS7.x-86_x64。
(2)硬件配置:2GB或更多RAM,2个CPU或更多CPU,硬盘30GB或更多。
(3)可以访问外网,需要拉取镜像,如果服务器不能上网,需要提前下载镜像并导入节点。
(4)禁止swap分区。

2.2 准备环境

角色ip
k8smaster01192.168.10.53
k8smaster02192.168.10.54
k8snode01192.168.10.55
k8s-vip192.168.10.61

接下来进行如下操作(三台节点都需要执行)

# 关闭防火墙
systemctl stop firewalld
systemctl disable firewalld

# 关闭selinux
sed -i 's/enforcing/disabled/' /etc/selinux/config
# 永久
setenforce 0  # 临时

# 根据规划设置主机名
hostnamectl set-hostname <hostname>
# 在主机添加hosts
cat >> /etc/hosts << EOF
192.168.10.53    master01.k8s.io k8smaster01
192.168.10.54    master02.k8s.io k8smaster02
192.168.10.55    node01.k8s.io   k8snode01
192.168.10.61    master.k8s.io   k8s-vip
EOF

# 将桥接的IPv4流量传递到iptables的链
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sysctl --system  # 生效

# 时间同步
yum install ntpdate -y
ntpdate time.windows.com

2.3 master节点部署keepalived

安装相关包和keepalived

yum install -y conntrack-tools libseccomp libtool-ltdl
yum install -y keepalived

配置k8smaster01节点

cat > /etc/keepalived/keepalived.conf <<EOF 
! Configuration File for keepalived

global_defs {
   router_id k8s
}

vrrp_script check_haproxy {
    script "killall -0 haproxy"
    interval 3
    weight -2
    fall 10
    rise 2
}

vrrp_instance VI_1 {
    state MASTER 
    interface ens33 
    virtual_router_id 51
    priority 250
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass ceb1b3ec013d66163d6ab
    }
    virtual_ipaddress {
        192.168.10.61  # 换为自己的虚拟ip地址
    }
    track_script {
        check_haproxy
    }
}
EOF

配置k8smaster02节点

cat > /etc/keepalived/keepalived.conf <<EOF 
! Configuration File for keepalived

global_defs {
   router_id k8s
}

vrrp_script check_haproxy {
    script "killall -0 haproxy"
    interval 3
    weight -2
    fall 10
    rise 2
}

vrrp_instance VI_1 {
    state BACKUP 
    interface ens33 
    virtual_router_id 51
    priority 200
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass ceb1b3ec013d66163d6ab
    }
    virtual_ipaddress {
        192.168.10.61  # 换为自己的虚拟ip地址
    }
    track_script {
        check_haproxy
    }
}
EOF

上面配置文件中标红的Ip需要换成提前准备好的虚拟Ip。

启动和检查keepalived

# 启动keepalived
systemctl start keepalived.service

# 设置开机启动
systemctl enable keepalived.service

# 查看启动状态
systemctl status keepalived.service

2.4 master节点部署haproxy

安装

yum install -y haproxy

配置
两台master节点的配置均相同,配置中声明了后端代理的两个master节点服务器,指定了haproxy运行的端口为16443等,因此16443端口为集群的入口。

cat > /etc/haproxy/haproxy.cfg << EOF
#---------------------------------------------------------------------
# Global settings
#---------------------------------------------------------------------
global
    # to have these messages end up in /var/log/haproxy.log you will
    # need to:
    # 1) configure syslog to accept network log events.  This is done
    #    by adding the '-r' option to the SYSLOGD_OPTIONS in
    #    /etc/sysconfig/syslog
    # 2) configure local2 events to go to the /var/log/haproxy.log
    #   file. A line like the following can be added to
    #   /etc/sysconfig/syslog
    #
    #    local2.*                       /var/log/haproxy.log
    #
    log         127.0.0.1 local2
    
    chroot      /var/lib/haproxy
    pidfile     /var/run/haproxy.pid
    maxconn     4000
    user        haproxy
    group       haproxy
    daemon 
       
    # turn on stats unix socket
    stats socket /var/lib/haproxy/stats
#---------------------------------------------------------------------
# common defaults that all the 'listen' and 'backend' sections will
# use if not designated in their block
#---------------------------------------------------------------------  
defaults
    mode                    http
    log                     global
    option                  httplog
    option                  dontlognull
    option http-server-close
    option forwardfor       except 127.0.0.0/8
    option                  redispatch
    retries                 3
    timeout http-request    10s
    timeout queue           1m
    timeout connect         10s
    timeout client          1m
    timeout server          1m
    timeout http-keep-alive 10s
    timeout check           10s
    maxconn                 3000
#---------------------------------------------------------------------
# kubernetes apiserver frontend which proxys to the backends
#--------------------------------------------------------------------- 
frontend kubernetes-apiserver
    mode                 tcp
    bind                 *:16443
    option               tcplog
    default_backend      kubernetes-apiserver    
#---------------------------------------------------------------------
# round robin balancing between the various backends
#---------------------------------------------------------------------
backend kubernetes-apiserver
    mode        tcp
    balance     roundrobin
    server      master01.k8s.io   192.168.10.53:6443 check
    server      master02.k8s.io   192.168.10.54:6443 check
#---------------------------------------------------------------------
# collection haproxy statistics message
#---------------------------------------------------------------------
listen stats
    bind                 *:1080
    stats auth           admin:awesomePassword
    stats refresh        5s
    stats realm          HAProxy\ Statistics
    stats uri            /admin?stats
EOF

上面配置文件中,下面的部分需要更换为自己的ip

server      master01.k8s.io   192.168.10.53:6443 check
server      master02.k8s.io   192.168.10.54:6443 check

启动和检查haproxy
两台master 都启动

# 设置开机启动
systemctl enable haproxy

# 开启haproxy
systemctl start haproxy

# 查看启动状态
systemctl status haproxy

检查端口

netstat -lntup|grep haproxy

2.5 所有节点安装docker/kubeadm/kubelet

Kubernetes默认CRI(容器运行时)为Docker,因此先安装Docker。

安装docker
在安装Docker时需要注意Docker版本与K8s的版本匹配,具体可以查看K8s文档。
在这里插入图片描述
在安装Docker之前,先检查本机是否已经安装过了,若已经安装,需要卸载使用如下指令。

# 查询本机是否已安装
docker yum list installed | grep docker
 
# 如果有则卸载,避免版本冲突 
yum remove docker-ce 

# 删除镜像容器等 
rm -rf /var/lib/docker

安装并启动Docker

# 查看yum源中docker-ce、docker-ce-cli、containerd.io发布的版本列表
yum list docker-ce --showduplicates | sort -r
yum list docker-ce-cli --showduplicates | sort -r
yum list containerd.io --showduplicates | sort -r

# 从yum源中安装docker-ce、docker-ce-cli、containerd.io
yum install docker-ce-20.10.5-3.el8 docker-ce-cli-20.10.5-3.el8 containerd.io-1.4.3-3.1.el8

# 开启docker服务
systemctl start docker
systemctl start docker.service 

# 查看docker服务状态
systemctl status docker

修改docker 镜像源

cat > /etc/docker/daemon.json << EOF
{
  "registry-mirrors": ["https://b9pmyelo.mirror.aliyuncs.com"]
}
EOF

添加阿里云YUM软件源

cat > /etc/yum.repos.d/kubernetes.repo << EOF
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=0
repo_gpgcheck=0
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF

安装kubeadm,kubelet和kubectl

yum install -y kubelet-1.23.6 kubeadm-1.23.6 kubectl-1.23.6
systemctl enable kubelet

2.6 部署k8smaster01

在k8smaster01节点上进行操作。

创建kubeadm配置文件

# 创建kubeadm配置文件存放目录
mkdir /usr/local/kubernetes/manifests -p

# 切换到manifests目录
cd /usr/local/kubernetes/manifests/

# 创建kubeadm配置文件
touch kubeadm-config.yaml

# 编辑kubeadm配置文件
vi kubeadm-config.yaml

apiServer:
  certSANs:
    - k8smaster01
    - k8smaster02
    - master.k8s.io
    - 192.168.10.61
    - 192.168.10.53
    - 192.168.10.54
    - 127.0.0.1
  extraArgs:
    authorization-mode: Node,RBAC
  timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta3
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes
controlPlaneEndpoint: "master.k8s.io:16443"
controllerManager: {}
dns:
  type: CoreDNS
etcd:
  local:
    dataDir: /var/lib/etcd
imageRepository: registry.aliyuncs.com/google_containers
kind: ClusterConfiguration
kubernetesVersion: v1.23.6
networking:
  dnsDomain: cluster.local
  podSubnet: 10.244.0.0/16
  serviceSubnet: 10.1.0.0/16
scheduler: {}

注意
certSANs配置项中配置两台master主机名和ip,虚拟主机名和ip。
kubernetesVersion配置K8s版本号。

certSANs:
  - k8smaster01
  - k8smaster02
  - master.k8s.io
  - 192.168.10.61
  - 192.168.10.53
  - 192.168.10.54
  - 127.0.0.1
kubernetesVersion: v1.23.6

在k8smaster01节点执行

kubeadm init --config kubeadm-config.yaml

执行后输入如下内容:

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

  export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of control-plane nodes by copying certificate authorities
and service account keys on each node and then running the following as root:

  kubeadm join master.k8s.io:16443 --token uujjn1.s5tgblpki38bn4n9 \
        --discovery-token-ca-cert-hash sha256:9a48f162e823c3d86fg6764cacda1787d382628940fd5718202ccba8cd23a0e2 \
        --control-plane 

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join master.k8s.io:16443 --token uujjn1.s5tgblpki38bn4n9 \
        --discovery-token-ca-cert-hash sha256:9a48f162e823c3d86fg6764cacda1787d382628940fd5718202ccba8cd23a0e2 
[root@k8smaster01 manifests]# 

按照输出配置环境变量,使用kubectl工具

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

查看节点状态
k8smaster01已经初始化完成,但状态为NotReady,需要配置网络插件。通过kubectl get pods -n kube-system指令查询READY状态存在0/1。

[root@k8smaster01 manifests]# kubectl get nodes
NAME          STATUS     ROLES                  AGE    VERSION
k8smaster01   NotReady   control-plane,master   144m   v1.23.6
[root@k8smaster01 manifests]# kubectl get pods -n kube-system
NAME                                  READY   STATUS    RESTARTS   AGE
coredns-59d64cd4d4-62bhq              0/1     Pending   0          144m
coredns-59d64cd4d4-95dl5              0/1     Pending   0          144m
etcd-k8smaster01                      1/1     Running   0          144m
kube-apiserver-k8smaster01            1/1     Running   0          144m
kube-controller-manager-k8smaster01   1/1     Running   0          144m
kube-proxy-df8c8                      1/1     Running   0          144m
kube-scheduler-k8smaster01            1/1     Running   0          145m

2.7 安装集群网络

集群网络只需在k8smaster01上安装即可。

# 创建tmpconfig目录
mkdir /usr/local/tmpconfig

# 切换到tmpconfig目录
cd /usr/local/tmpconfig

# 拉取kube-flannel.yml
wget -c https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

创建以及查看

kubectl apply -f kube-flannel.yml 
kubectl get pods -n kube-system

安装完网络插件稍等一会,再次执行kubectl get nodes查看k8smaster01的状态为Ready,再次执行kubectl get pods -n kube-system,查询READY状态都为1/1。

2.8 k8smaster02加入节点

复制密钥及相关文件
从master1复制密钥及相关文件到master2。

ssh root@192.168.10.54 mkdir -p /etc/kubernetes/pki/etcd

scp /etc/kubernetes/admin.conf root@192.168.10.54:/etc/kubernetes

scp /etc/kubernetes/pki/{ca.*,sa.*,front-proxy-ca.*} root@192.168.10.54:/etc/kubernetes/pki

scp /etc/kubernetes/pki/etcd/ca.* root@192.168.10.54:/etc/kubernetes/pki/etcd

master2加入集群
在k8smaster02 执行在k8smaster01上init后输出的join命令,需要带上参数 --control-plane 表示把master控制节点加入集群。

  kubeadm join master.k8s.io:16443 --token uujjn1.s5tgblpki38bn4n9 \
        --discovery-token-ca-cert-hash sha256:9a48f162e823c3d86ca6764cacda9087d382628940fd5718202ccba8cd23a0e2 \
        --control-plane 

执行完后输出内容

This node has joined the cluster and a new control plane instance was created:

* Certificate signing request was sent to apiserver and approval was received.
* The Kubelet was informed of the new secure connection details.
* Control plane (master) label and taint were applied to the new node.
* The Kubernetes control plane instances scaled up.
* A new etcd member was added to the local/stacked etcd cluster.

To start administering your cluster from this node, you need to run the following as a regular user:

        mkdir -p $HOME/.kube
        sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
        sudo chown $(id -u):$(id -g) $HOME/.kube/config

执行上面输出的配置指令

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

检查状态

[root@k8smaster02 ~]# kubectl get node
NAME          STATUS     ROLES                  AGE     VERSION
k8smaster01   Ready      control-plane,master   17h     v1.23.6
k8smaster02   NotReady   control-plane,master   6m21s   v1.23.6
[root@k8smaster02 ~]# kubectl get pods --all-namespaces
NAMESPACE     NAME                                  READY   STATUS                  RESTARTS   AGE
kube-system   coredns-59d64cd4d4-62bhq              1/1     Running                 0          17h
kube-system   coredns-59d64cd4d4-95dl5              1/1     Running                 0          17h
kube-system   etcd-k8smaster01                      1/1     Running                 0          17h
kube-system   etcd-k8smaster02                      1/1     Running                 0          6m22s
kube-system   kube-apiserver-k8smaster01            1/1     Running                 0          17h
kube-system   kube-apiserver-k8smaster02            1/1     Running                 0          6m25s
kube-system   kube-controller-manager-k8smaster01   1/1     Running                 1          17h
kube-system   kube-controller-manager-k8smaster02   1/1     Running                 0          6m26s
kube-system   kube-flannel-ds-p2std                 1/1     Running                 0          15h
kube-system   kube-flannel-ds-vc2w2                 0/1     Init:ImagePullBackOff   0          6m27s
kube-system   kube-proxy-df8c8                      1/1     Running                 0          17h
kube-system   kube-proxy-nx8dg                      1/1     Running                 0          6m27s
kube-system   kube-scheduler-k8smaster01            1/1     Running                 1          17h
kube-system   kube-scheduler-k8smaster02            1/1     Running                 0          6m26s

2.9 k8snode01加入集群

在k8snode01节点上执行之前K8smaster01输出的信息

kubeadm join master.k8s.io:16443 --token uujjn1.s5tgblpki38bn4n9 \
        --discovery-token-ca-cert-hash sha256:9a48f162e856c3d86ca6764cacda1787d382628940fd5718202ccba8cd23a0e2 

执行完后输出如下

This node has joined the cluster:* Certificate signing request was sent to apiserver and a response was received.* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

在k8smaste01节点查看

[root@k8smaster01 manifests]# kubectl get nodes
NAME          STATUS     ROLES                  AGE     VERSION
k8smaster01   Ready      control-plane,master   17h     v1.23.6
k8smaster02   NotReady   control-plane,master   11m     v1.23.6
k8snode01     NotReady   <none>                 2m26s   v1.23.6

重新安装网络

[root@k8smaster01 flannel]# pwd
/usr/local/tmpconfig
[root@k8smaster01 tmpconfig]# kubectl apply -f kube-flannel.yml

再次查看集群状态

[root@k8smaster01 flannel]# kubectl cluster-info
Kubernetes control plane is running at https://master.k8s.io:16443
CoreDNS is running at https://master.k8s.io:16443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
[root@k8smaster01 flannel]# kubectl get nodes -o wide
NAME          STATUS   ROLES                  AGE   VERSION   INTERNAL-IP      EXTERNAL-IP   OS-IMAGE                KERNEL-VERSION                CONTAINER-RUNTIME
k8smaster01   Ready    control-plane,master   18h   v1.23.6  192.168.10.53   <none>        CentOS Linux 7 (Core)   3.10.0-1160.49.1.el7.x86_64   docker://18.6.1
k8smaster02   Ready    control-plane,master   38m   v1.23.6  192.168.10.54   <none>        CentOS Linux 7 (Core)   3.10.0-1160.49.1.el7.x86_64   docker://18.6.1
k8snode01     Ready    <none>                 28m   v1.23.6  192.168.10.55  <none>        CentOS Linux 7 (Core)   3.10.0-1160.49.1.el7.x86_64   docker://18.6.1

在这里插入图片描述
至此k8s高可用集群搭建完成。

3 测试集群

[root@k8smaster01 ~]# kubectl create deployment nginx --image=nginx
deployment.apps/nginx created
[root@k8smaster01 ~]# kubectl get pods -o wide
NAME                     READY   STATUS              RESTARTS   AGE   IP       NODE        NOMINATED NODE   READINESS GATES
nginx-85b98978db-wwn2m   0/1     ContainerCreating   0          11s   <none>   k8snode01   <none>           <none>
[root@k8smaster01 ~]# kubectl expose deployment nginx --port=80 --type=NodePort
service/nginx exposed
[root@k8smaster01 ~]# 
[root@k8smaster01 ~]# 
[root@k8smaster01 ~]# kubectl get pod,svc
NAME                         READY   STATUS    RESTARTS   AGE
pod/nginx-85b98978db-wwn2m   1/1     Running   0          39s

NAME                 TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)        AGE
service/kubernetes   ClusterIP   10.1.0.1      <none>        443/TCP        7d23h
service/nginx        NodePort    10.1.33.179   <none>        80:32205/TCP   14s
[root@k8smaster01 ~]# 

从外部查看任意一个节点的32205端口即可查看到nginx。 192.168.10.53、192.168.10.54、192.168.10.55、192.168.10.61
四个ip都可以访问到。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/28641.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Session-based Recommendation with Graph Neural Networks论文阅读笔记

1. Abstract &#xff08;1&#xff09;基于会话的推荐问题旨在基于匿名会话来预测用户的行为。 The problem of session-based recommendation aims to predict user actions based on anonymous sessions. &#xff08;2&#xff09; 以前的方法存在的不足&#xff1a;不足以…

day3-day4【代码随想录】长度最小的子数组

文章目录前言一、长度最小的子数组1、暴力求解&#xff1a;2、滑动窗口求解&#xff1a;二、最小覆盖子串&#xff08;乐扣76&#xff09;难难难难难三、水果成篮&#xff08;乐扣904&#xff09;四、最长重复子数组&#xff08;乐扣718&#xff09;前言 实现滑动窗口&#xf…

Android抓包工具——Fiddler

前言 &#x1f525;在平时和其他大佬交流时&#xff0c;总会出现这么些话&#xff0c;“抓个包看看就知道哪出问题了”&#xff0c;“抓流量啊&#xff0c;payload都在里面”&#xff0c;“这数据流怎么这么奇怪”。 &#x1f449;这里出现的名词&#xff0c;其实都是差不多的…

矩阵分析:特征值分解

矩阵分析&#xff1a;特征值分解前置知识空间变换伸缩旋转对称矩阵对称矩阵对角化正交矩阵向量的基基变换不同基下的向量变换逆矩阵不同基下的空间变换内积的几何意义特征值、特征向量特征值分解代码前置知识 空间变换 伸缩 一个矩阵其实就是一个线性变换&#xff0c;因为一个…

SpringCloud微服务(六)——Gateway路由网关

Gateway路由网关 Spring Cloud Spring Cloud Gateway统一访问接口的路由管理方式 作用 整合各个微服务功能&#xff0c;形成一套系统微服务网关实现日志统一纪录实现用户的操作跟踪统一用户权限认证路由转发、跨域设置、负载均衡、服务限流反向代理 微服务网关的概述 不同…

H2DCFDA | ROS 荧光探针检测法

H2DCFDA 工作液的配制1、储存液的配制&#xff1a;用 DMSO 配制 10 mM 的 H2DCFDA (2,000)&#xff0c;如用 1.03 mL DMSO 溶解 5 mg H2DCFDA。注&#xff1a;H2DCFDA 储存液建议分装后-20℃ 避光冻存&#xff0c;一个月。-80 半年。2、工作液的配制&#xff1a;用预热好的无血…

绘制文字(QFont字体)

QPainter绘制文字的话使用的函数为 QPainter::drawText() QPainter::drawText()有多种重载方式。 根据坐标直接绘画文字&#xff1a; void Widget::paintEvent(QPaintEvent *event)//绘图事件 {QPainter painter(this);painter.translate(100,100);//移动坐标painter.drawText(…

E. Sending a Sequence Over the Network(DP)

Problem - 1741E - Codeforces 序列a在网络上的发送情况如下。 序列a被分割成若干段&#xff08;序列的每个元素正好属于一个段&#xff0c;每个段是序列的一组连续元素&#xff09;。 对于每个段&#xff0c;它的长度被写在它的旁边&#xff0c;要么在它的左边&#xff0c;要…

递归展示树状图/树状表格

递归展示树状图一、数据库表设计二、后端java递归代码三、前端展示树状表格四、效果展示一、数据库表设计 这里我们采用自关联的设计&#xff0c;通过id和pid的对应来确认数据的上下级关系 建表语句&#xff0c;我这里把一级菜单的pid设置成了0 /*Navicat Premium Data Transfe…

Spring中Bean的作用域和生命周期

目录 Bean的作用域 singleton prototype request session application websocket 单例作用域和全局作用域的区别 Bean的生命周期 Bean的作用域 Bean的作用域是指Bean在Spring整个框架中的某种行为模式&#xff0c;比如singleton单例作用域&#xff0c;就表示Bean在整…

大数据Spark面试题2023

文章目录Spark核心——RDD概念特点创建方式RDD的分区依赖关系Spark的shuffle介绍Spark的 Partitioner 分区器都有哪些?Spark中的算子都有哪些RDD工作流&#x1f4cc;Spark运行模式(资源调度框架的使用&#xff0c;了解)&#x1f4cc;讲一下Spark 的运行架构一个spark程序的执行…

常用的框架技术-08 ElasticSearch分布式、高扩展、高实时的搜索与数据分析引擎

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录1.ElasticSearch 概述1.1 ElasticSearch介绍1.2 全文搜索引擎1.3 lucene介绍1.4 倒排索引1.5 elasticsearch、solr对比2.ElasticSearch安装2.1 下载软件2.2 windows环…

【web渗透思路】框架敏感信息泄露(特点、目录、配置)

目录 一、挖掘思路 1、方法&#xff1a; 二、框架之信息泄露 1、Webpack 1.1、简述 1.2、.js.map文件泄露 1.3、源码审计 2、Spring boot 1.1、简述 1.2、利用 1.3、框架识别 &#xff08;基本分析方法都是一样&#xff0c;这里就举2个框架关于信息泄露方面的&#x…

Mybatis分页功能

1. 功能分析 如图所示分页功能&#xff0c;包括上一页、下一页、中间显示的当前页前后页码、全部页码以及跳转到XX页。手写的话实现起来很难&#xff0c;Mybatis给我们提供了插件&#xff0c;所提供的方法&#xff0c;直接包含了上述分页的相关数据。 2. 分页插件的使用及其相关…

虚拟环境下把python代码打包成exe(小白教程)

本教程适用于小白&#xff0c;本人也是小白&#xff0c;不妥之处还请包涵。 1、系统环境下安装 virtualenv 可以理解为 直接打开 系统的cmd安装 pip32 install virtualenv我之所以用pip32因为我电脑上装了两个版本的python 一个是32位一个是64位&#xff0c;如果你电脑上只有一…

为什么选择快速应用开发

如今&#xff0c;企业想要持续蓬勃发展&#xff0c;就需要具备快速满足客户期望的能力。无论是十几年历史的重要市场占有者推出新的APP&#xff0c;还是在疫情期间从线下转向线上电商营销&#xff0c;企业都需要主动适应市场。随着为客户提供新的服务方式&#xff0c;员工也需要…

如何轻松部署快解析 + WAMP

快解析是由北京金万维公司自主研发的域名解析工具&#xff0c;服务器端简单&#xff0c;通过快速部署就能实现在任何地域、任何时间、任何网络环境下快速访问到局域网内搭建的各类办公系统和各种应用。以发布网站服务为例&#xff0c;给大家演示下如何通过快解析实现外网访问WA…

一文带你看透短信验证码

短信验证码应用于我们生活、工作的方方面面&#xff0c;比如注册登录账号、支付订单、修改密码等等。验证码短信主要出于安全的考虑&#xff0c;防止应用/网站被恶意注册&#xff0c;恶意攻击&#xff0c;对于网站、APP而言&#xff0c;大量的无效注册&#xff0c;重复注册&…

Java8中的Stream流

定义 什么是Stream流&#xff0c;Java doc中是这样写的 A sequence of elements supporting sequential and parallel aggregate operations 翻译一下就是一个支持顺序和并行聚合操作的元素序列。 可以把它理解成一个迭代器&#xff0c;但是只能遍历一次&#xff0c;就像是流水…

Nodejs核心模块之Events

核心模块之Events 通过EventEmitter类实现事件统一管理 events与EventEmitter node.js是基于事件驱动的异步操作架构&#xff0c;内置events模块events模块提供了EventEmitter类node.js中很多内置核心模块集成EventEmitter EventEmitter常见Api on 添加实现被触发时调用的…