面试篇 - GPT-1(Generative Pre-Training 1)

news2025/4/17 16:34:25

GPT-1(Generative Pre-Training 1)

⭐模型结构

  • Transformer only-decoder:GPT-1模型使用了一个12层的Transformer解码器。具体细节与标准的Transformer相同,但位置编码是可训练的。

  • 注意力机制

    • 原始Transformer的解码器包含两种注意力机制:交叉注意力(cross-attention,其中键和值来自编码器,查询来自解码器)和掩码多头自注意力(mask multi-head attention)。

    • GPT-1模型只使用了掩码多头自注意力。

图示说明

  • 左侧图示:展示了Transformer的架构,包括12层的解码器、层归一化(Layer Norm)、前馈网络(Feed Forward)、掩码多头自注意力(Masked Multi Self Attention)以及文本和位置嵌入(Text & Position Embed)。

  • 右侧图示展示了不同任务的输入转换和训练目标。所有结构化的输入都被转换为标记序列,然后通过预训练模型处理,最后通过一个线性-softmax层进行分类。

不同任务的训练目标

1. 分类(Classification)

输入格式Start Text Extract

  • 解释:输入文本以“Start”标记开始,后面跟着要分类的文本,最后以“Extract”标记结束。

  • 处理流程

    1. 输入文本经过文本和位置嵌入(Text & Position Embed)。

    2. 嵌入后的文本输入到Transformer模型中进行处理。

    3. Transformer的输出经过一个线性层(Linear),输出分类结果。

2. 蕴含(Entailment)

输入格式Start Premise Delim Hypothesis Extract

  • 解释:输入包含两个部分,前提(Premise)和假设(Hypothesis),中间用分隔符(Delim)分开,以“Start”标记开始,最后以“Extract”标记结束。

  • 处理流程

    1. 输入文本经过文本和位置嵌入(Text & Position Embed)。

    2. 嵌入后的文本输入到Transformer模型中进行处理。

    3. Transformer的输出经过一个线性层(Linear),输出蕴含关系的分类结果(例如,前提是否蕴含假设)。

3. 相似性(Similarity)

输入格式Start Text 1 Delim Text 2 Extract

  • 解释:输入包含两个文本,中间用分隔符(Delim)分开,以“Start”标记开始,最后以“Extract”标记结束。

  • 处理流程

    1. 输入文本经过文本和位置嵌入(Text & Position Embed)。

    2. 嵌入后的文本输入到两个Transformer模型中进行处理(每个文本一个Transformer)。

    3. 两个Transformer的输出经过一个线性层(Linear),输出两个文本的相似性得分。

4. 多项选择(Multiple Choice)

输入格式Start Context Delim Answer 1 Extract

  • 解释:输入包含一个上下文(Context)和多个可能的答案(Answer),每个答案之间用分隔符(Delim)分开,以“Start”标记开始,最后以“Extract”标记结束。

  • 处理流程

    1. 输入文本经过文本和位置嵌入(Text & Position Embed)。

    2. 嵌入后的文本输入到Transformer模型中进行处理。

    3. Transformer的输出经过一个线性层(Linear),输出每个答案的选择概率。

训练范式

训练范式(Training Paradigm)是指在机器学习和深度学习中,用于训练模型的一系列方法和策略。它定义了模型如何从数据中学习以及如何优化其参数。不同的训练范式适用于不同的任务和数据类型,常见的训练范式包括:
详见上一篇文章

  1. 监督学习(Supervised Learning)

  2. 无监督学习(Unsupervised Learning)

  3. 半监督学习(Semi-supervised Learning)

  4. 自监督学习(Self-supervised Learning)

  5. 强化学习(Reinforcement Learning)

  6. 迁移学习(Transfer Learning)

  7. 多任务学习(Multi-task Learning)
     

GPT-1模型的训练范式

  • 自监督预训练 + 有监督微调:主要思想是无监督学习。

预训练的标准语言模型目标函数

  • 目标函数:根据前面K个词预测下一个词。

  • 解释:这是一个自回归模型,给定前面的K个词,预测下一个词的概率。

微调的目标函数

  • 目标函数:用的是完整的输入序列加标签,有监督目标函数加无监督目标函数,y是标签。

  • 解释:这是一个有监督学习目标函数,给定输入序列x,预测标签y的概率。同时加入无监督目标函数L1,以增加模型的泛化性和加速收敛。

输入形式创新

  • 输入形式:通过在序列前后添加[Start]和[Extract]特殊标识符来表示开始和结束,序列之间添加必要的[Delim]标识符来表示分隔。

    • 解释:通过这种方式,可以处理不同的下游任务。例如,分类任务、蕴含任务、相似性任务和多项选择任务。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2335340.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【从零实现高并发内存池】内存池整体框架设计 及 thread cache实现

📢博客主页:https://blog.csdn.net/2301_779549673 📢博客仓库:https://gitee.com/JohnKingW/linux_test/tree/master/lesson 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! &…

3.6 函数图像描绘

1.函数描图步骤 2.渐进性 2.1 水平渐进线 2.2 垂直渐进线 2.3 斜渐近线 3.作图

电商中的订单支付(内网穿透)

支付页面 接口文档 Operation(summary"获取订单信息") GetMapping("auth/{orderId}") public Reuslt<OrderInfo> getOrderInfo(Parameter(name"orderId",description"订单id",requiredtrue) PathVaariable Long orderId){OrderI…

ESP32开发之ubuntu环境搭建

1. 在Ubuntu官网下载Ubuntu server 20.04版本https://releases.ubuntu.com/20.04.6/ 2. 在vmware下安装Ubuntu 3. 改Ubuntu静态IP $ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by ‘subiquity’ network: renderer: networkd eth…

2025年,HarmonyOS认证学习及考试

HarmonyOS应用开发者认证考试 基础认证 通过系统化的课程学习&#xff0c;熟练掌握 DevEco Studio&#xff0c;ArkTS&#xff0c;ArkUI&#xff0c;预览器&#xff0c;模拟器&#xff0c;SDK 等 HarmonyOS 应用开发的关键概念&#xff0c;具备基础的应用开发能力。 高级认证…

空间信息可视化——WebGIS前端实例(一)

技术栈&#xff1a;原生HTML 源代码&#xff1a;CUGLin/WebGIS: This is a project of Spatial information visualization 4 全国贫困县可视化系统 4.1 系统设计思想 党的十九大报告明确指出,要“确保到2020年我国现行标准下农村贫困人口实现脱贫,贫困县全部摘帽,解决区域…

10.第二阶段x64游戏实战-添加计时器

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 上一个内容&#xff1a;9.第二阶段x64游戏实战-创建项目代码获取人物属性 效果图&#xff1a; 当前游戏…

【论文阅读】MOE奠基论文《Adaptive Mixtures of Local Experts》

《Adaptive Mixtures of Local Experts》 前言一、让协同学习竞争1.1 方案1.2 方案演变的由来 二、让竞争学习协同2.1 竞争学习2.2 竞争学习协同 三、案例验证3.1 任务背景3.2 实验结果3.3 后续工作 (Future Work) 前言 论文提出了一个基于多个分离网络的有监督学习方案,该方案…

VM虚拟机安装及Ubuntu安装配置

VM虚拟机安装及Ubuntu安装配置 1、VM虚拟机安装2、创建虚拟机3、Ubuntu系统安装4、编译环境配置4.1 、Ubuntu和 Windows文件互传 文件互传4.1.1、 开启Ubunt下的FTP服务 4.2、 Ubuntu下NFS和SSH服务开启4.2.1、 NFS服务开启4.2.2、 SSH服务开启 4.3、 交叉编译器安装4.3.1 安装…

【C++ 进阶】泛型算法:概述

目录 一、泛型算法基础概念 1.1 什么是泛型算法&#xff1f; 1.2 核心设计原则 1.3 算法分类体系 1.4 与 STL 容器的关系 二、迭代器&#xff1a;泛型算法的 “钥匙” 2.1 迭代器类型 2.2 迭代器适配器 三、常用泛型算法分类与实战 3.1 非修改型算法&#xff08;只读…

系统与网络安全------Windows系统安全(10)

资料整理于网络资料、书本资料、AI&#xff0c;仅供个人学习参考。 域与活动目录 域相关概念 域和域控制器 域&#xff08;Domain&#xff09; 集中管理网络中多台计算机的一种逻辑模式 有别于工作组的对等式管理 是组织与存储资源的核心管理单元 域控制器&#xff08;D…

Linux vagrant 导入ubuntu到virtualbox

前言 vagrant 导入ubuntu虚拟机前提要求 安装 virtualbox 和vagrant<vagrant-disksize> (Linux 方式 Windows 方式)创建一键部署ubuntu虚拟机 /opt/vagrant 安装目录/opt/VirtualBox 安装目录/opt/ubuntu22/Vagrantfile (可配置网络IP,内存,cpu,磁盘及分区,启动项,…

C++ 用红黑树封装map/set

前言 一、源码结构分析 二、模拟实现map/set 2.1 套上KeyOfT 2.2 普通迭代器实现 2.3 const迭代器实现 2.4 解决key不能修改的问题 2.5 map的[]实现 2.6 map/set以及红黑树源码 2.6.1 RBTree.h 2.6.2 set.h 2.6.3 map.h 总结 前言 之前的文章讲解了红黑树的具体实…

量子计算未来的潜力和挑战

据麦肯锡预测&#xff0c;到 2035 年或 2040 年&#xff0c;量子计算市场规模可能增长至约 800 亿美元。目前&#xff0c;许多量子比特技术正竞相成为首台通用、无差错量子计算机的基础&#xff0c;但仍面临诸多挑战。 我们将探讨量子计算的未来前景、潜力&#xff0c;以及它对…

五笔输入法学习的抉择:86版 or 98版?(一场关于效率与传承的思辨)

新开直接98&#xff0c;纯粹高开&#xff1b;老版过渡艰辛自知&#x1f60b;。 笔记模板由python脚本于2025-04-14 19:22:22创建&#xff0c;本篇笔记适合喜好汉字衷情母语的coder翻阅。 【学习的细节是欢悦的历程】 博客的核心价值&#xff1a;在于输出思考与经验&#xff0c;…

为您的 Web 应用选择最佳文档阅读器

为显示选择合适的文档查看器是开发 Web 应用过程中至关重要的一步。文档查看器应能在提供功能性的同时&#xff0c;确保用户体验的流畅性。 开发人员必须评估多种因素&#xff0c;以确保效率、性能和兼容性。本文将帮助您了解影响用户文档浏览体验成功与否的关键指标。 渲染质…

微服务之protobuf:下载、语法和使用一站式教程

基本介绍 Protobuf全称 Protocol Buffer&#xff0c;是 Google 公司于2008年开源的一种语言无关、平台无关、可扩展的用于序列化结构化数据——类似于XML&#xff0c;但比XML更小、更快、更简单&#xff0c;它可用于&#xff08;数据&#xff09;通信协议、数据存储等。你只需…

Ollama调用多GPU实现负载均衡

文章目录 &#x1f4ca; 背景说明&#x1f6e0;️ 修改 systemd 服务配置1. 配置文件路径2. 编辑服务文件2. 重新加载配置并重启服务3. 验证配置是否成功 &#x1f4c8; 应用效果示例1. 调用单个70b模型2. 调用多个模型&#xff08;70b和32b模型&#xff09; 总结&#x1f4cc;…

WebRTC实时通话EasyRTC嵌入式音视频通信SDK,构建智慧医疗远程会诊高效方案

一、方案背景 当前医疗领域&#xff0c;医疗资源分布不均问题尤为突出&#xff0c;大城市和发达地区优质医疗资源集中&#xff0c;偏远地区医疗设施陈旧、人才稀缺&#xff0c;患者难以获得高质量的医疗服务&#xff0c;制约医疗事业均衡发展。 EasyRTC技术基于WebRTC等先进技…

AIoT 智变浪潮演讲实录 | 刘浩然:让硬件会思考:边缘大模型网关助力硬件智能革新

4 月 2 日&#xff0c;由火山引擎与英特尔联合主办的 AIoT “智变浪潮”技术沙龙在深圳成功举行&#xff0c;活动聚焦 AI 硬件产业的技术落地与生态协同&#xff0c;吸引了芯片厂商、技术方案商、品牌方及投资机构代表等 700 多位嘉宾参会。 会上&#xff0c;火山引擎边缘智能高…