MIT 6.S081 Operating System Lecture4 (随意的笔记)

news2024/11/23 21:49:15

系列文章目录


文章目录

  • 系列文章目录
  • xv6 中的内存页是如何分配的
  • RISC-V 是多级页表
  • 对page table的理解


xv6 中的内存页是如何分配的

在本课中,内存也相关源码路径为:
kernel/kallo.c

// Physical memory allocator, for user processes,
// kernel stacks, page-table pages,
// and pipe buffers. Allocates whole 4096-byte pages.

#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "spinlock.h"
#include "riscv.h"
#include "defs.h"

void freerange(void *pa_start, void *pa_end);

extern char end[]; // first address after kernel.
                   // defined by kernel.ld.

struct run {
  struct run *next;
};

struct {
  struct spinlock lock;
  struct run *freelist;
} kmem;

void
kinit()
{
  initlock(&kmem.lock, "kmem");
  freerange(end, (void*)PHYSTOP);
}

void
freerange(void *pa_start, void *pa_end)
{
  char *p;
  p = (char*)PGROUNDUP((uint64)pa_start);
  for(; p + PGSIZE <= (char*)pa_end; p += PGSIZE)
    kfree(p);
}

// Free the page of physical memory pointed at by pa,
// which normally should have been returned by a
// call to kalloc().  (The exception is when
// initializing the allocator; see kinit above.)
void
kfree(void *pa)
{
  struct run *r;

  if(((uint64)pa % PGSIZE) != 0 || (char*)pa < end || (uint64)pa >= PHYSTOP)
    panic("kfree");

  // Fill with junk to catch dangling refs.
  memset(pa, 1, PGSIZE);

  r = (struct run*)pa;

  acquire(&kmem.lock);
  r->next = kmem.freelist;
  kmem.freelist = r;
  release(&kmem.lock);
}

uint64
kfreemem(void)
{
  struct run *r;
  uint64 count = 0;
  acquire(&kmem.lock);
  r = kmem.freelist;
  while(r) {
    r = r->next;
    count++;
  }
  release(&kmem.lock);
  return count * PGSIZE;
}

// Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use.
// Returns 0 if the memory cannot be allocated.
void *
kalloc(void)
{
  struct run *r;

  acquire(&kmem.lock);
  r = kmem.freelist;
  if(r)
    kmem.freelist = r->next;
  release(&kmem.lock);

  if(r)
    memset((char*)r, 5, PGSIZE); // fill with junk
  return (void*)r;
}


如何在一个物理内存上,创建不通的地址空间?
如上所述:
最常见的就是分配页,页表(pagetables) – 需要硬件支持或者通过内存管理单元实现(MMU – Memory Management Unit)

在这里插入图片描述
上图展示了如下步骤:

  1. CPU 执行指令,指令中的地址是虚拟地址 0x1000
  2. 通过 MMU 转换为物理地址
    • MMU 中维护一张表,用来进行虚拟地址和物理地址的映射关系
    • 通常来说,内存地址对应关系 这张表单也保存在内存中,所以CPU中需要一些寄存器(SATP)来存放表单在物理内存中的地址,用来告诉 MMU 去哪里找这份表单
    • 每个应用程序都有自己的表单,这个表单定义了它的地址空间,当操作系统将CPU从一个应用程序切换到另一个应用程序时,同时也需要切换SATP寄存器中的内容,从而指向新的进程保存在物理内存中的地址对应表单。
  3. 通过真实物理地址进行数据的存取读

页表存的是物理地址
通过虚拟地址找到对应的表单和偏移。)

RISC-V 是多级页表

(多级页表,某种意义上也代表着会读多次内存)
在这里插入图片描述

对page table的理解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在操作系统,对于物理内存来说,每一个地址间隔所代表的的物理存储单位为 1B(一个字节,这里先不要考虑钻进64位本身占多少的错误思维(我自己之前就是));
所以一个64位操作系统,不考虑其他因素,CPU的可寻址大小最大为 2^64 Byte(32位是4G,下面的例子拿32位距离比较好理解)
将物理内存按照块或页分配,概念上理解成每 4KB 一页。即 2^12,即32位地址中,低的那12位可以用来表示对 page table 某页的 Offset, 即偏移。这里存在如下计算:

  1. 一个32位的地址占用 32 / 8 = 4 B 的空间,为了方便所以使用了 4B 作为页表项,这样一个页表就可以有 4KB / 4B = 1K 页表项(单位是页标项)
  2. 其他资料喜欢以1G做例,这里使用最大场景做例子: 一共可以分配出 2^64 / 2^12 = 2^52
  3. 这样对最基础的页表来说,就可以通过将 低位12位作为 offset 来根据虚拟地址求得真实物理地址。
  4. 问题:事实上,页表本身也是需要用物理内存来进行存储的,如果一个应用程序占用内存过大,其所需要生成或使用的页表本身也会占用非常大的内存空间,这样明显过于浪费资源;假如一个应用程序占用4GB内存,那其所需要的的页表就占用 4GB / 4KB * 4B == 4MB , 总内存就是 4G + 4MB;而如果是二级页表:
    4MB的页表还可以继续分配成 4MB / 4KB == 1K 页 --> 1K页 * 4B == 1KB, 占用 4G + 1KB
相关笔记:顶级页表最多只能有一个页面。(这是规定)
一个页面可以存放1K个页表项4KB/4B = 1K。
所以顶级页表虽然只有一个页面但是可以存放1K个页表项,其中每一个页表项对应的是下一级的1K个页表项。所以可以存放的最大空间是1K* 1K *4KB = 4GB内存。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/20926.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uni-app入门:wxs基本使用

1.wxs相关介绍 2.wxs标签内嵌在wxml中使用 3.在.wxs文件中外联使用 4.wxs与JavaScript区别 1.wxs相关介绍wxs(weixin script),是小程序的一套脚本语言&#xff0c;结合 WXML&#xff0c;可以构建出页面的结构。可以编写在 wxml 文件中的 标签内&#xff0c;或以…

Spring 项目的创建和 “使用“

目录 1. 创建 Spring 项目 1.1 创键一个 Maven 项目【无需模板】 1.2 添加 Spring 依赖【Spring-context/Spring-beans】 1.3 创建一个启动类 2. 将对象存储到 Spring 中 2.1 创建一个 bean 对象 2.2 将 bean 注册到 Spring 中【使用 Spring 配置文件进行注册】 3. 从 …

【树莓派不吃灰】命令篇⑧ 校准树莓派时间

目录1. systemd-timesyncd1.1 systemd-timesyncd 客户端1.2 systemd-timesyncd 服务1.3 systemd-timesyncd 配置文件1.4 timedatectl命令2. 校准时间2.1 查看时间状态2.2 校准时区2.3 没有时钟同步服务器&#xff0c;手工设置时间2.3.1 禁止ntp自动同步2.3.2 设置时间2.3.3 设置…

敏感词检测库ToolGood.Words中IllegalWordsSearch类使用简介

C#开源敏感词检测库ToolGood.Words中的类IllegalWordsSearch为过滤非法词&#xff08;敏感词&#xff09;专用类&#xff0c;可设置跳字长度&#xff0c;支持全角转忽略大小、跳词、重复词、黑名单等功能&#xff0c;本文对照参考文献1&#xff0c;对该类的用法进行简要介绍。 …

k8s资源对象service-四层负载均衡详解

理论 工作原理如图: service的定义:是一组pod的逻辑组合,通过clusterIP和服务端口接收请求,并将这些请求代理至使用标签选择器来过滤符合条件的pod对象。 作用:服务发现和服务访问,为弹性变动且存在生命周期的pod对象提供了一个固定的访问接口。 service的代理类型:…

Vue动态切换class属性:数组法、对象法

需求&#xff1a;在style里创建好不同的属性&#xff0c;后期可以给标签动态绑定这些属性&#xff0c;也可以实现属性的切换方法&#xff1a;对象法、数组法事先创建好class属性&#xff1a; <style>.aa{}.bb{}.cc{} </style> 对象法&#xff1a; <body><…

矩阵(加速)。。。

我限定你在明天中午之前搞定这东西&#xff01;毕竟之前做过了欸。矩阵&#xff0c;一个看起来很神奇的东西&#xff0c;不过我不打算花太多的时间做这个&#xff0c;还是图论和数论好点儿&#xff0c;还要复习一下之前的数据结构和dp呢。那么先谈谈定义&#xff0c;定义一个矩…

kubernetes介绍与资源管理

#kubernetes介绍与资源管理 1应用部署方式演变 在部署应用程序的方式上&#xff0c;主要经历了三个时代&#xff1a; 传统部署&#xff1a;互联网早期&#xff0c;会直接将应用程序部署在物理机上 优点&#xff1a;简单&#xff0c;不需要其它技术的参与 缺点&#xff1a;…

CMSC5713-IT项目管理之人力资源管理Human Resources Management

文章目录9.1. Introduction9.1.1. Motivation Theories9.1.2. Influence and Power9.1.3. Motivating Team9.2. Project Human Resource Management9.3. Human Resource Planning9.3.1. Project Organization Charts9.3.2. Responsibility Assignment Matrices9.3.2.1. RACI Ch…

锐捷BFD基础实验配置

目录 BFD与静态路由联动 BFD与静态路由联动&#xff08;单跳&#xff09; BFD与静态路由联动&#xff08;多跳&#xff09; BFD与动态路由联动 配置BFD与OSPF联动 配置BFD与BGP联动 BFD与静态路由联动 BFD联动静态路由注意事项 1、配置需要联动的静态路由时&#xff0c…

Java线程池

自定义线程池 1. 简介 1.1 引入原因 1. 一个任务过来&#xff0c;一个线程去做。如果每次过来都创建新线程&#xff0c;性能低且比较耗费内存 2. 线程数多于cpu核心&#xff0c;线程切换&#xff0c;要保存原来线程的状态&#xff0c;运行现在的线程&#xff0c;势必会更加耗…

idea创建spring boot工程及配置

目录 一、dea 创建spring boot工程 二、打包 三、启动配置文件 一、dea 创建spring boot工程 new project 选择Spring Initializr ,Type&#xff1a;选择Maven&#xff0c;Java 8, Packagin 选择Jar。然后点击next 添加依赖&#xff1a; 选择Sprint Boot版本&#xff0c;选…

差分约束算法

差分约束是为了解决这样一组不等式问题&#xff1a; 这个咋解决》我们来看 对于某个下标k而言&#xff0c;提取出关于其的所有不等式&#xff0c;&#xff08;其中xk在第一个),也就是 xk-x1<m1 xk-x2<m2 xk-x3<m3....对于这些不等式相当于是 xk取min(x1m1,x2m2,x3m3…

面试常问:HTTPS的加密过程 ----- 光明和黑暗的恩怨情仇

目录 关于运营商劫持 &#xff1a; 什么是运营商劫持?? 什么是运营商? 为什么要劫持? 如何劫持? 劫持的危害 互联网公司怎么办? HTTPS 什么是HTTPS 一些概念&#xff1a; HTTPS加密 1. 对称加密&#xff1a; 2. 非对称加密 3. 非对称加密对称加密 4. 加密…

基于java+ssm购物商城网站系统-计算机毕业设计

项目介绍 乐优购物商城是商业贸易中的一条非常重要的道路&#xff0c;可以把其从传统的实体模式中解放中来&#xff0c;网上购物可以为消费者提供巨大的便利。通过乐优购物商城这个平台&#xff0c;可以使用户足不出户就可以了解现今的流行趋势和丰富的商品信息&#xff0c;为…

请求跨域问题

在前端请求接口时&#xff0c;出现跨域是很常见的问题&#xff0c;跨域的解决方法也很多&#xff0c;但是目前通用的是以下两种方式&#xff1a; 开发环境生产环境在服务端配置 CORS在服务端配置 CORS配置开发服务器代理&#xff0c;比如 vite-server.proxy配置生产服务器代理…

Debezium的增量快照

GreatSQL社区原创内容未经授权不得随意使用&#xff0c;转载请联系小编并注明来源。GreatSQL是MySQL的国产分支版本&#xff0c;使用上与MySQL一致。作者&#xff1a; 如常 Debezium Incremental snapshotting Introduction CDC&#xff08;Change-Data-Capture&#xff09;正…

Java之反射相关知识补充

Java之反射一、概述1、静态语言和动态语言1.1 静态语言1.2 动态语言2、Reflection(反射)2.1 介绍2.2 流程2.3 Java反射机制提供的功能2.4 优缺点&#xff08;1&#xff09;优点&#xff08;2&#xff09;缺点2.5 反射相关主要API2.6 示例二、反射相关操作1、获取Class类的实例1…

第十二节:String类【java】

目录 &#x1f4d8;1.1 字符串构造方法 &#x1f4d2;1.2 String对象怎样比较 &#x1f4dc;1.2.1 引用类型 比较的是引用中的地址。 &#x1f4c4;1.2.2 boolean equals(Object anObject) 方法&#xff1a;比较怕两个引用所指的对象当中的内容是否一致 &#x1f4d1;1.2…

企业级nginx使用

企业级nginx使用 nginx实现平滑升级 [rootlnmp nginx-1.16.0]# cd /usr/local/nginx/sbin/ [rootlnmp sbin]# ls nginx nginx.old [rootlnmp sbin]# ./nginx -v nginx version: nginx/1.16.0 [rootlnmp sbin]# ./nginx.old -v nginx version: nginx/1.14.2 [rootlnmp sbin]#操…