文章目录
- Dijkstra —— 单源最短路
- 讲解
- 图解
- Java
- 朴素
- 使用堆优化
- C++
- 朴素
- 使用堆优化
- Floyd —— 多源最短路
- 讲解
- Java
- C++
Dijkstra —— 单源最短路
讲解
时间复杂度
- 朴素 Dijkstra: O ( n 2 ) O(n^2) O(n2) , n n n 是顶点数。
- 堆优化 Dijkstra: O ( m l o g n ) O(m\ logn) O(m logn) , m m m 是边数, n n n 是顶点数。
核心思想:具体看图解,文字和图我感觉都挺详细的。
适用场景:
- 朴素 Dijkstra:稠密图
- 堆优化 Dijkstra:稀疏图
图解
Java
朴素
static final int MAX = 1000;
static final int INF = 0xffffff; // 无穷大
static int[][] edge = new int[MAX][MAX]; // 邻接矩阵
static int[] dis = new int[MAX]; // 记录从起点到各个点的最短路径
static boolean[] vis = new boolean[MAX]; // 标记
static int n, m, s; // 顶点数、边数
public static void dijkstra(int s) {
Arrays.fill(dis, INF);
dis[s] = 0;
for(int i = 1; i <= n; i++) { // 保证每个顶点都会被访问
int u = 0;
// 从未使用过的顶点中选一个距离起点的最短路径
for(int v = 1; v <= n; v++) {
if(!vis[v] && dis[u] > dis[v]) u = v;
}
vis[u] = true;
// 更新 u 所有邻接点的路径
for(int v = 1; v <= n; v++) {
// 当前结点 u 的距离(起点到 u 的距离) + 结点 u 的邻接点 v < 结点 v 的距离,则更新
dis[v] = Math.min(dis[v], edge[u][v] + dis[u]);
}
}
}
使用堆优化
import java.util.*;
public class Main {
static final int MAX = 150005;
static final int INF = 0x7ffffff;
static ArrayList<Edge>[] G = new ArrayList[MAX];
static int[] dis = new int[MAX];
static boolean[] vis = new boolean[MAX];
static int n, m;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt(); m = sc.nextInt();
for(int i = 1; i <= n; i++) G[i] = new ArrayList<>();
while(m-- != 0) {
int u = sc.nextInt(), v = sc.nextInt(), w = sc.nextInt();
G[u].add(new Edge(v, w));
}
dijkstra(1);
System.out.println(dis[n] == INF ? -1 : dis[n]);
}
public static void dijkstra(int s) {
PriorityQueue<Edge> queue = new PriorityQueue<>();
Arrays.fill(dis, INF);
queue.add(new Edge(s, 0));
dis[s] = 0;
while(!queue.isEmpty()) {
int u = queue.poll().to; // 距离最短的点
if(vis[u]) continue;
vis[u] = true;
for(int i = 0; i < G[u].size(); i++) { // 更新邻接点
Edge v = G[u].get(i);
if(dis[v.to] > dis[u] + v.w) {
dis[v.to] = dis[u] + v.w;
queue.add(new Edge(v.to, dis[v.to]));
}
}
}
}
}
class Edge implements Comparable<Edge> {
int to, w;
public Edge(int to, int w) {
this.to = to;
this.w = w;
}
@Override
public int compareTo(Edge o) {
return this.w - o.w;
}
}
C++
朴素
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 510;
const int INF = 0x3f3f3f3f;
int G[N][N];
int dist[N];
bool vis[N];
int n, m;
void dijkstra(int s) {
memset(dist, INF, sizeof(dist));
dist[s] = 0;
for(int i = 1; i <= n; i++) {
int u = 0;
for(int v = 1; v <= n; v++) {
if(!vis[v] && dist[u] > dist[v]) u = v;
}
vis[u] = true;
for(int v = 1; v <= n; v++) {
dist[v] = min(dist[v], G[u][v] + dist[u]);
}
}
}
int main() {
cin >> n >> m;
memset(G, INF, sizeof(G));
while(m--) {
int u, v, w;
cin >> u >> v >> w;
G[u][v] = min(G[u][v], w);
}
dijkstra(1);
if(dist[n] == INF) cout << -1 << endl;
else cout << dist[n] << endl;
return 0;
}
使用堆优化
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int N = 150005;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> PII;
struct edge {
int w;
int to;
int next; // 下一条边的编号
} edge[N];
int head[N];
int idx;
int dist[N];
bool vis[N];
int n, m;
void add(int u, int v, int w) {
idx++;
edge[idx].w = w;
edge[idx].to = v;
edge[idx].next = head[u];
head[u] = idx;
}
void dijkstra(int s) {
memset(dist, INF, sizeof(dist));
dist[s] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, s});
while(heap.size()) {
PII t = heap.top();
heap.pop();
int u = t.second;
if(vis[u]) continue;
vis[u] = true;
for(int v = head[u]; v != -1; v = edge[v].next) {
struct edge e = edge[v];
if(dist[e.to] > dist[u] + e.w) {
dist[e.to] = dist[u] + e.w;
heap.push({dist[e.to], e.to});
}
}
}
}
int main() {
memset(head, -1, sizeof(head));
cin >> n >> m;
while(m--) {
int u, v, w;
cin >> u >> v >> w;
add(u, v, w);
}
dijkstra(1);
if(dist[n] == INF) cout << -1 << endl;
else cout << dist[n] << endl;
return 0;
}
Floyd —— 多源最短路
讲解
时间复杂度: O ( n 3 ) O(n^3) O(n3) , n n n 是顶点数。
核心思想:以 i 为起点,j 为终点,i 到 j 的距离是否可以通过一个中转点 k 从而缩短距离。
Tips:j 不一定是 i 的邻接点。
上图解释,从 A 点到 B 点,可以通过一个中转点 C 从而缩短距离。
适用场景:稠密图。
Java
public class Floyd {
static final int INF = 0x7ffffff;
static final int MAX = 1010;
static int[][] G = new int[MAX][MAX];
static int n;
public static void init() {
for(int i = 1; i <= n; i++) {
Arrays.fill(G[i], INF);
G[i][i] = 0;
}
}
public static void floyd() {
for(int k = 1; k <= n; k++) { // 中转点
for (int i = 1; i <= n; i++) { // 起点
// 对于每个顶点 k 和任意顶点对 (i,j) i != j, k != i, k !=j
// 若 G[i][j] > G[i][k] + G[k][j] 则将 G[i][j] 修改为 G[i][k] + G[k][j] 的值
// 【记录路径可忽略】并且将 Path[i][j] 修改为 k(此步用于记录从某个顶点到某个顶点需要结果 k 顶点)
if(i == k || G[i][k] == INF) continue;
for (int j = 1; j <= n; j++) { // 终点
G[i][j] = Math.min(G[i][j], G[i][k] + G[k][j]);
}
}
}
}
}
C++
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 500;
const int INF = 0x3f3f3f3f;
int G[N][N];
int n, m, k;
void floyd() {
for(int k = 1; k <= n; k++) {
for(int i = 1; i <= n; i++) {
if(i == k || G[i][k] == INF) continue;
for(int j = 1; j <= n; j++) {
G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
}
}
}
}