L ( x ) = ( 1 2 x H A x − b H x ) 2 , x ∈ C n × 1 L(x) = (\frac{1}{2}x^HAx-b^Hx)^2, x\in C^{n \times 1} L(x)=(21xHAx−bHx)2,x∈Cn×1是凸的
已知:
-
L ( x ) = ( 1 2 x H A x − b H x ) 2 , x ∈ C n × 1 L(x) = (\frac{1}{2}x^HAx-b^Hx)^2, x\in C^{n \times 1} L(x)=(21xHAx−bHx)2,x∈Cn×1
-
A 是对称正定矩阵
-
1 2 x H A x − b H x > 0 \frac{1}{2}x^HAx-b^Hx>0 21xHAx−bHx>0
求证:
L(x) 是凸的。
证明:
- ∇ x L = 2 ( 1 2 x H A x − b H x ) ( A x − b ) \nabla_x L = 2(\frac{1}{2}x^HAx-b^Hx)(Ax-b) ∇xL=2(21xHAx−bHx)(Ax−b)
- ∇ x x L = 2 ( 1 2 x H A x − b H x ) A + 2 ( A x − b ) ( A x − b ) H \nabla_{xx}L = 2(\frac{1}{2}x^HAx-b^Hx)A+2(Ax-b)(Ax-b)^H ∇xxL=2(21xHAx−bHx)A+2(Ax−b)(Ax−b)H
- 由已知3和2, 2 ( 1 2 x H A x − b H x ) A 2(\frac{1}{2}x^HAx-b^Hx)A 2(21xHAx−bHx)A是正定的
- 设 ∀ y ∈ C n × 1 \forall y\in C^{n\times 1} ∀y∈Cn×1, y H ( A x − b ) ( A x − b ) H y = ∣ ∣ ( A x − b ) H y ∣ ∣ 2 2 ≥ 0 y^H(Ax-b)(Ax-b)^Hy = || (Ax-b)^Hy ||_2^2 \ge 0 yH(Ax−b)(Ax−b)Hy=∣∣(Ax−b)Hy∣∣22≥0,当y与Ax-b正交是取0,则 ( A x − b ) ( A x − b ) H (Ax-b)(Ax-b)^H (Ax−b)(Ax−b)H半正定
- 由证明3,4知 ∇ x x L ≻ 0 \nabla_{xx}L \succ 0 ∇xxL≻0,则L(x)是凸的。