数据分析-Pandas序列时间移动窗口化操作
数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?
数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
数据分析
数据分析-Pandas如何转换产生新列
数据分析-Pandas如何统计数据概况
数据分析-Pandas如何轻松处理时间序列数据
数据分析-Pandas如何选择数据子集
数据分析-Pandas如何重塑数据表-CSDN博客
本文用到的样例数据:
Titanic数据
样例代码:
源代码参考 Pandas如何重塑数据表
源代码参考 python数据分析-数据表读写到pandas
导入关键模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.close("all")
时间序列,有时候需要观察一个窗口下的数据统计,比如,股市中的移动平均曲线,气象监测数据的移动平均。滑动窗口可以过滤掉不必要的高频信号。
移动滑窗函数
通用滑动窗口,支持将窗口指定为固定数值的观测值或变量,基于偏移量的观测值。也可以基于时间的偏移量 ‘2D’,则相应的基于时间的索引必须是单调的。
times = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08', '2020-01-09', '2020-01-10']
s = pd.Series(range(10), index=pd.DatetimeIndex(times))
print(s)
# Window with 2 observations
sum = s.rolling(window=2).sum()
ma = s.rolling(window=2).mean()
print (sum)
# Window with 2 days worth of observations
sum2d = s.rolling(window='2D').sum()
ma2d = s.rolling(window='2D').mean()
print (sum2d)
为了方便理解,采用连续整数数值作为序列。
2020-01-01 0
2020-01-02 1
2020-01-03 2
2020-01-04 3
2020-01-05 4
2020-01-06 5
2020-01-07 6
2020-01-08 7
2020-01-09 8
2020-01-10 9
dtype: int64
其中第一种移动操作的结果如下:
2020-01-01 NaN
2020-01-02 1.0
2020-01-03 3.0
2020-01-04 5.0
2020-01-05 7.0
2020-01-06 9.0
2020-01-07 11.0
2020-01-08 13.0
2020-01-09 15.0
2020-01-10 17.0
dtype: float64
以时间为移动窗口的操作结果如下,可以看出在边缘值的时候做适当调整:
2020-01-01 0.0
2020-01-02 1.0
2020-01-03 3.0
2020-01-04 5.0
2020-01-05 7.0
2020-01-06 9.0
2020-01-07 11.0
2020-01-08 13.0
2020-01-09 15.0
2020-01-10 17.0
dtype: float64
以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。
后面介绍下其他的展示形式。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
大模型查询工具助手之股票免费查询接口
GPT实战系列-简单聊聊LangChain
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2模型的微调训练参数解读
GPT实战系列-如何用自己数据微调ChatGLM2模型训练
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案
GPT实战系列-Baichuan2本地化部署实战方案
GPT实战系列-Baichuan2等大模型的计算精度与量化
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-探究GPT等大模型的文本生成-CSDN博客