题目
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意: 答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为: [ [-1, 0, 1], [-1, -1, 2] ]
思路
这道题与前面提到的两数之和以及四数之和Ⅱ在题意上非常类似,大家第一想法可能就是使用哈希法来处理,但是事实证明哈希解法此时并不是明智的选择。
哈希解法
两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。
把符合条件的三元组放进vector中,然后再去重,这样是非常费时的,很容易超时,也是这道题目通过率如此之低的根源所在。
去重的过程不好处理,有很多小细节,如果在面试中很难想到位。
时间复杂度可以做到O(n^2),但还是比较费时的,因为不好做剪枝操作。
哈希法C++代码:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[j], c = -(a + b)
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么不可能凑成三元组
if (nums[i] > 0) {
break;
}
if (i > 0 && nums[i] == nums[i - 1]) { //三元组元素a去重
continue;
}
unordered_set<int> set;
for (int j = i + 1; j < nums.size(); j++) {
if (j > i + 2
&& nums[j] == nums[j-1]
&& nums[j-1] == nums[j-2]) { // 三元组元素b去重
continue;
}
int c = 0 - (nums[i] + nums[j]);
if (set.find(c) != set.end()) {
result.push_back({nums[i], nums[j], c});
set.erase(c);// 三元组元素c去重
} else {
set.insert(nums[j]);
}
}
}
return result;
}
};
- 时间复杂度: O(n^2)
- 空间复杂度: O(n),额外的 set 开销
可以看到剪枝逻辑非常复杂,尤其是去重的逻辑判断上,所以这里引出更加好理解并且效率高的双指针法。
双指针法
其实这道题目使用哈希法并不十分合适,因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。而且使用哈希法 在使用两层for循环的时候,能做的剪枝操作很有限,虽然时间复杂度是O(n^2),也是可以在leetcode上通过,但是程序的执行时间依然比较长 。
这道题目使用双指针法 要比哈希法高效一些,那么来讲解一下具体实现的思路。
动画效果如下:
拿这个nums数组来举例,首先将数组排序,然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
时间复杂度:O(n^2)。
C++代码代码如下:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
- 时间复杂度: O(n^2)
- 空间复杂度: O(1)
注意点
a的去重:
说到去重,其实主要考虑三个数的去重。 a, b ,c, 对应的就是 nums[i],nums[left],nums[right]
a 如果重复了怎么办,a是nums里遍历的元素,那么应该直接跳过去。
但这里有一个问题,是判断 nums[i] 与 nums[i + 1]是否相同,还是判断 nums[i] 与 nums[i-1] 是否相同。
有人可能想,这不都一样吗。
其实不一样!
都是和 nums[i]进行比较,是比较它的前一个,还是比较它的后一个。
如果我们的写法是 这样:
if (nums[i] == nums[i + 1]) { // 去重操作
continue;
}
那我们就把 三元组中出现重复元素的情况直接pass掉了。 例如{-1, -1 ,2} 这组数据,当遍历到第一个-1 的时候,判断 下一个也是-1,那这组数据就pass了。
我们要做的是 不能有重复的三元组,但三元组内的元素是可以重复的!
所以这里是有两个重复的维度。
那么应该这么写:
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
这么写就是当前使用 nums[i],我们判断前一位是不是一样的元素,在看 {-1, -1 ,2} 这组数据,当遍历到 第一个 -1 的时候,只要前一位没有-1,那么 {-1, -1 ,2} 这组数据一样可以收录到 结果集里。
这是一个非常细节的思考过程。
b与c的去重:
很多人写本题的时候,去重的逻辑多加了 对right 和left 的去重:(代码中注释部分)
while (right > left) {
if (nums[i] + nums[left] + nums[right] > 0) {
right--;
// 去重 right
while (left < right && nums[right] == nums[right + 1]) right--;
} else if (nums[i] + nums[left] + nums[right] < 0) {
left++;
// 去重 left
while (left < right && nums[left] == nums[left - 1]) left++;
} else {
}
}
但细想一下,这种去重其实对提升程序运行效率是没有帮助的。
拿right去重为例,即使不加这个去重逻辑,依然根据 while (right > left)
和 if (nums[i] + nums[left] + nums[right] > 0)
去完成right-- 的操作。
多加了 while (left < right && nums[right] == nums[right + 1]) right--;
这一行代码,其实就是把 需要执行的逻辑提前执行了,但并没有减少 判断的逻辑。
最直白的思考过程,就是right还是一个数一个数的减下去的,所以在哪里减的都是一样的。
所以这种去重 是可以不加的。 仅仅是 把去重的逻辑提前了而已。