信道模型:Rayleigh、Rician、卫星→地面

news2025/1/20 5:57:02

这里写目录标题

  • 比较
  • C. Loo模型:直射阴影,多径不阴影
  • Corazza模型:直射和多径都阴影
  • Lutz模型:好坏2个状态
  • Rayleigh and Rician 信道生成
  • Shadowed-Rician 直射径 散射径
    • [Secure Transmission in Cognitive Satellite Terrestrial Networks](https://ieeexplore.ieee.org/document/7583691)
    • [Resource Allocations for Secure Cognitive Satellite-Terrestrial Networks](https://ieeexplore.ieee.org/document/8048011)
  • the generalized-K model
  • Ka频段 自由空间损耗 雨衰 波束增益
  • L个散射体的阵列响应

比较

C.LooCorazzaLutz
非静止轨道卫星非静止轨道卫星静止轨道卫星
乡村所有所有
模拟卫星的直升机实际卫星实际卫星
  1. C.Loo模型和Corazza模型适用于描述非静止轨道卫星信道的传播特性
    Lutz模型适用于描述静止轨道卫星信道的传播特性;
  2. C.Loo模型只适用于乡村信道环境,
    而Corazza模型和Lutz模型均适用所有的卫星移动通信信道环境(公路、乡村、郊区和城市);
  3. C.Loo模型拟合参数时依据的实测数据来自于模拟卫星的直升机所发射的信号;
    而Corazza模型和Lutz模型则采用实际卫星所发射信号的实测数据,对卫星移动通信信道传输特性的反映更为真实。

比较

C. Loo模型:直射阴影,多径不阴影

A statistical model for a land mobile satellite link
Chun Loo, “A statistical model for a land mobile satellite link,” in IEEE Transactions on Vehicular Technology, vol. 34, no. 3, pp. 122-127, Aug. 1985, doi: 10.1109/T-VT.1985.24048.

假设接收信号中只有直射信号分量受到阴影遮蔽的作用而多径信号分量不受阴影遮蔽的作用,因此该模型又称为部分阴影信道模型
C. Loo模型接收信号包络的概率密度函数
f r ( r ) = ∫ 0 ∞ f r ( r ∣ z ) f z ( z ) d z = r b 0 2 π d 0 ∫ 0 ∞ 1 z exp ⁡ [ − ( ln ⁡ z − μ ) 2 2 d 0 − ( r 2 + z 2 ) 2 b 0 ] dz  {f_r}\left( r \right) = \int_0^\infty {{f_r}\left( {r\left| z \right.} \right){f_z}\left( z \right)dz = \frac{r}{{{{\text{b}}_{\text{0}}}\sqrt {2\pi {d_0}} }}\int_0^\infty {\frac{1}{z}\exp \left[ { - \frac{{{{\left( {\ln z - \mu } \right)}^2}}}{{2{d_0}}} - \frac{{\left( {{r^2} + {z^2}} \right)}}{{2{b_0}}}} \right]} } {\text{dz }} fr(r)=0fr(rz)fz(z)dz=b02πd0 r0z1exp[2d0(lnzμ)22b0(r2+z2)]dz 
z表示直射波,
b0是平均散射多径功率,
μ和d0分别是lnz的均值和方差。
参数

Corazza模型:直射和多径都阴影

假设接收信号中的直射信号分量多径信号分量同时都受到阴影遮蔽的作用,因此该模型又称为全阴影信道模型
接收信号包络的概率密度函数为
f r ( r ) = ∫ 0 ∞ f r ( r ∣ s ) f s ( s )  =  2 ( k + 1 ) r h σ s 2 π exp ⁡ ( − k ) ∫ 0 ∞ exp ⁡ [ − ( k + 1 ) r 2 s 2 − ( ln ⁡ s − μ ) 2 2 ( h σ ) 2 ] I 0 ( 2 r k ( k + 1 ) s ) d s {f_r}\left( r \right) = \int_0^\infty {{f_r}\left( {r\left| s \right.} \right){f_s}\left( s \right)} {\text{ = }}\frac{{{\text{2}}\left( {{\text{k + 1}}} \right)r}}{{h\sigma s\sqrt {2\pi } }}\exp \left( { - k} \right)\int_0^\infty {\exp \left[ { - \frac{{\left( {k + 1} \right){r^2}}}{{{s^2}}} - \frac{{{{\left( {\ln s - \mu } \right)}^2}}}{{2{{\left( {h\sigma } \right)}^2}}}} \right]} {I_0}\left( {\frac{{2r\sqrt {k\left( {k + 1} \right)} }}{s}} \right)ds fr(r)=0fr(rs)fs(s) = s2π 2(k + 1)rexp(k)0exp[s2(k+1)r22()2(lnsμ)2]I0(s2rk(k+1) )ds
S(t)表示阴影慢衰落效应,
h=(ln10)/20,
μ和σ2为lns的均值和方差,
k为Rice因子,
r为接收信号包络。
K ( α )  =  k 0  +  k 1 α  +  k 2 α 2 μ ( α )  =  μ 0  +  μ 1 α  +  μ 2 α 2  +  μ 3 α 3 σ ( α )  =  σ 0  +  σ 1 α   {\text{K}}\left( \alpha \right){\text{ = }}{{\text{k}}_{\text{0}}}{\text{ + }}{{\text{k}}_{\text{1}}}\alpha {\text{ + }}{{\text{k}}_{\text{2}}}{\alpha ^{\text{2}}} \\ \mu \left( \alpha \right){\text{ = }}{\mu _{\text{0}}}{\text{ + }}{\mu _{\text{1}}}\alpha {\text{ + }}{\mu _{\text{2}}}{\alpha ^{\text{2}}}{\text{ + }}{\mu _{\text{3}}}{\alpha ^{\text{3}}} \\ \sigma \left( \alpha \right){\text{ = }}{\sigma _{\text{0}}}{\text{ + }}{\sigma _{\text{1}}}\alpha {\text{ }} K(α) = k0 + k1α + k2α2μ(α) = μ0 + μ1α + μ2α2 + μ3α3σ(α) = σ0 + σ1α 
参数

Lutz模型:好坏2个状态

E. Lutz, D. Cygan, M. Dippold, F. Dolainsky and W. Papke, “The land mobile satellite communication channel-recording, statistics, and channel model,” in IEEE Transactions on Vehicular Technology, vol. 40, no. 2, pp. 375-386, May 1991, doi: 10.1109/25.289418.

将卫星移动通信信道分为两个状态——“好状态”和“坏状态”。
当信道为“好状态”时接收信号中的直射信号分量多径信号分量均不受阴影遮蔽的作用;
当信道为“坏状态”时接收信号中只有受到阴影遮蔽作用的多径信号分量不存在直射信号分量
因此该模型又称为两状态信道模型

好状态下接收信号功率S的归一化概率密度函数为
f s _ r i c i a n ( s ) = c exp ⁡ [ − c ( s + 1 ) ] I 0 ( 2 c s ) {f_{s\_rician}}\left( s \right) = c\exp \left[ { - c\left( {s + 1} \right)} \right]{I_0}\left( {2c\sqrt s } \right) fs_rician(s)=cexp[c(s+1)]I0(2cs )
C为归一化因子,c = 1/(2σ2)

坏状态下接收信号功率S的归一化概率密度函数为
f s _ r a y l _ L N ( s )  =  ∫ 0 ∞ f s ( s ∣ s 0 ) f s 0 ( s 0 ) d s 0  =  10 σ ln10 2 π ∫ 0 ∞ 1 s 0 2 exp [  -  s s 0 − ( 10 log ⁡ 10 s 0 − μ ) 2 2 σ 2 ]   {f_{s\_rayl\_LN}}\left( {\text{s}} \right){\text{ = }}\int_{\text{0}}^\infty {{{\text{f}}_{\text{s}}}\left( {s\left| {{s_0}} \right.} \right){f_{s0}}\left( {{s_0}} \right)} {\text{d}}{{\text{s}}_{\text{0}}} \\ {\text{ = }}\frac{{{\text{10}}}}{{\sigma {\text{ln10}}\sqrt {{\text{2}}\pi } }}\int_{\text{0}}^\infty {\frac{{\text{1}}}{{{{\text{s}}_{\text{0}}}^{\text{2}}}}} {\text{exp}}\left[ {{\text{ - }}\frac{{\text{s}}}{{{{\text{s}}_{\text{0}}}}} - \frac{{{{\left( {10{{\log }_{10}}{s_0} - \mu } \right)}^2}}}{{2{\sigma ^2}}}} \right]{\text{ }} fs_rayl_LN(s) = 0fs(ss0)fs0(s0)ds0 = σln102π 100s021exp[ - s0s2σ2(10log10s0μ)2] 
S0 为短时平均接收功率

总的接收信号功率S的概率密度函数为
f s ( s )  =  ( 1 - A ) f s_rician ( s )  + A f s_rayl_LN ( s ) {f_s}\left( {\text{s}} \right){\text{ = }}\left( {{\text{1 - A}}} \right){{\text{f}}_{{\text{s\_rician}}}}\left( {\text{s}} \right){\text{ + A}}{{\text{f}}_{{\text{s\_rayl\_LN}}}}\left( {\text{s}} \right) fs(s) = (1 - A)fs_rician(s) + Afs_rayl_LN(s)
参数

Rayleigh and Rician 信道生成

2.4.2 Rayleigh and Rician fading
(2.54)
Fundamentals of Wireless Communication

Rayleigh channel (NLoS), Rician channel (LoS)
https://blog.csdn.net/weixin_41181312/article/details/123516627

bandwidth
B = 180 k H z B = 180kHz B=180kHz

Noise power spectral density
N 0 = 1 0 − 170 10 m W / H z {N_0} = {10^{\frac{{ - 170}}{{10}}}}mW/Hz N0=1010170mW/Hz
N 0 , d B m = − 170 d B m / H z {N_{0,dBm}} = - 170dBm/Hz N0,dBm=170dBm/Hz
Noise power
P N = N 0 B ( m W ) = 1 0 − 170 10 × 180000 ( m W ) {P_N} = {N_0}B\left( {mW} \right)= {10^{{{ - 170} \over {10}}}} \times 180000\left( {mW} \right) PN=N0B(mW)=1010170×180000(mW)
P N , d B m = 10 log ⁡ 10 ( P N ) = N 0 , d B m + 10 log ⁡ 10 ( B ) ( d B m ) = − 170 + 10 log ⁡ 10 ( 180000 ) ( d B m ) {P_{N,dBm}} = 10{\log _{10}}\left( {{P_N}} \right) = {N_{0,dBm}} + 10{\log _{10}}\left( B \right)\left( {dBm} \right) = - 170 + 10{\log _{10}}\left( {180000} \right)\left( {dBm} \right) PN,dBm=10log10(PN)=N0,dBm+10log10(B)(dBm)=170+10log10(180000)(dBm)

pathloss
L ( d , f ) = ( 4 π d f c ) 2 L\left( {d,f} \right) = {\left( {{{4\pi df} \over c}} \right)^2} L(d,f)=(c4πdf)2
L d B ( d , f ) = 10 log ⁡ 10 ( L ( d , f ) ) ( d B ) L_{dB}\left( {d,f} \right) = 10{\log _{10}}\left( {L\left( {d,f} \right)} \right)\left( {dB} \right) LdB(d,f)=10log10(L(d,f))(dB)

attenuation
α ( d , f ) = L ( d , f ) − 1 / P N = 10 − L d B ( d , f ) 10 / 10 P N , d B m 10 = 10 − P N , d B m − L d B ( d , f ) 10 \alpha \left( {d,f} \right) = \sqrt {L{{\left( {d,f} \right)}^{ - 1}}/P_N} = \sqrt {{{10}^{{{ - L_{dB}\left( {d,f} \right)} \over {10}}}}/{{10}^{{{P_{N,dBm}} \over {10}}}}} = \sqrt {{{10}^{{{ - P_{N,dBm}- L_{dB}\left( {d,f} \right)} \over {10}}}}} α(d,f)=L(d,f)1/PN =1010LdB(d,f)/1010PN,dBm =1010PN,dBmLdB(d,f)

1 M-antenna transmitter → 1 single-antenna receiver
NLOS
h N L O S = 1 / 2 ( c + j e ) ∈ C M × 1 {{\bf{h}}_{NLOS}} = \sqrt {1/2} \left( {{\bf{c}} + j{\bf{e}}} \right) \in {{\Bbb C}^{M \times 1}} hNLOS=1/2 (c+je)CM×1
Rayleigh
h R a y l e i g h ( d , f ) = α ( d , f ) h N L O S ∈ C M × 1 {{\bf{h}}_{Rayleigh}}\left( {d,f} \right) = \alpha \left( {d,f} \right){{\bf{h}}_{NLOS}} \in {{\Bbb C}^{M \times 1}} hRayleigh(d,f)=α(d,f)hNLOSCM×1
Rician
h R i c i a n ( d , f ) = α ( d , f ) ( ε 1 + ε a ( θ ) + 1 1 + ε h N L O S ) ∈ C M × 1 {{\bf{h}}_{Rician}}\left( {d,f} \right) = \alpha \left( {d,f} \right)\left( {\sqrt {\frac{\varepsilon }{{1 + \varepsilon }}} {\bf{a}}\left( \theta \right) + \sqrt {\frac{1}{{1 + \varepsilon }}} {{\bf{h}}_{NLOS}}} \right) \in {{\Bbb C}^{M \times 1}} hRician(d,f)=α(d,f)(1+εε a(θ)+1+ε1 hNLOS)CM×1

Shadowed-Rician 直射径 散射径

优点
计算量小

Although some mathematical models, such as those of Loo, Barts–Stutzman, and Karasawa et al.,have been developed to describe the satellite channel, the shadowed-Rician model proposed in [19] is a popular model, which provides a significantly less computational burden than other channel models.

Secure Transmission in Cognitive Satellite Terrestrial Networks

K. An, M. Lin, J. Ouyang and W. -P. Zhu, “Secure Transmission in Cognitive Satellite Terrestrial Networks,” in IEEE Journal on Selected Areas in Communications, vol. 34, no. 11, pp. 3025-3037, Nov. 2016, doi: 10.1109/JSAC.2016.2615261.

Given a receiver’s position within the satellite spot beam coverage area, the beam gain factor can be approximated as [1], [2]
b ( φ ) = ( J 1 ( u ) 2 u + 36 J 3 ( u ) u 3 ) 2 b\left ({ \varphi }\right ) = \left ({ {\frac {J_{1}\left ({ u }\right )}{2u} + 36\frac {J_{3}\left ({ u}\right )}{{u_{}^{3}}}} }\right )_{}^{2} b(φ)=(2uJ1(u)+36u3J3(u))2
u = 2.07123 sin ⁡ φ sin ⁡ φ 3 d B u = 2.07123\frac {\sin \varphi }{\sin \varphi _{\mathrm{3dB}}} u=2.07123sinφ3dBsinφ
φ \varphi φ is the angle between the location of the corresponding receiver and the beam center with respect to the satellite, and φ 3 d B \varphi _{\mathrm{3dB}} φ3dB is the 3-dB angle.

The satellite channels are usually modeled by composite fading distributions to accurately describe the statistical properties of the signal envelope.
Although existing statistical models, such as Loo, Barts-Stutzman, and Karasawa, have been presented to describe the satellite channel, the Shadowed-Rician (SR) model proposed in [33] has been widely used in related work.
In this model, the channel fading coefficient g ˉ \bar g gˉ is described as
g ˉ = A exp ⁡ ( j ψ ) + Z exp ⁡ ( j ζ ) \bar g = A\exp \left ({ {j\psi } }\right ) + Z\exp \left ({ {j\zeta } }\right ) gˉ=Aexp(jψ)+Zexp(jζ)
A A A is the amplitudes of the scattering components, which are independent stationary random processes following Rayleigh distributions.
ψ ψ ψ is a stationary random phase vector with elements uniformly distributed over [ 0 , 2 π ) [0,2π) [0,2π) ,
Z Z Z is the amplitudes of the LOS components, which are independent stationary random processes following Nakagami- m m m distributions.
ζ ζ ζ the deterministic phase vector of the LOS component.

The SR fading distribution can be characterized as g ˉ ∼ S R ( Ω , b , m ) { \bar g} \sim \mathrm {SR}\left ({ {\Omega ,b,m} }\right ) gˉSR(Ω,b,m) with
Ω \Omega Ω being the average power of the LoS component,
2 b 2b 2b the average power of the multipath component, and
m m m the Nakagami- m m m parameter corresponding to the fading severity.
通过分布函数确定??

Combining (33) and (35), the overall channel for satellite link can be modeled as
g = b ( φ ) g ˉ g = \sqrt {b\left ({ {\varphi} }\right )} \bar g g=b(φ) gˉ

b=0.126
m=10
Omega=0.835
φ 3 d B = 0.4 / 180 ∗ π \varphi _{3\mathrm {dB}}=0.4/180*\pi φ3dB=0.4/180π

Resource Allocations for Secure Cognitive Satellite-Terrestrial Networks

The SAT is equipped with N t N_t Nt -antennas
h = b ( φ ) h ~ \mathbf {h}=\sqrt {b(\varphi )}\tilde {\mathbf {h}} h=b(φ) h~
b ( φ ) = ( J 1 ( u ) 2 u + 36 J 3 ( u ) u 3 ) 2 b(\varphi )=\left ({\frac {J_{1}(u)}{2u}+36\frac {J_{3}(u)}{u^{3}} }\right )^{2} b(φ)=(2uJ1(u)+36u3J3(u))2
u = 2.07123 sin ⁡ φ sin ⁡ φ 3 d B u=2.07123\frac {\sin \varphi }{\sin \varphi _{3\mathrm {dB}}} u=2.07123sinφ3dBsinφ
h ~ = A exp ⁡ ( j ψ )  ⁣ +  ⁣ Z exp ⁡ ( j ϕ ) \tilde {\mathbf {h}}=A\exp (j\boldsymbol {\psi })\!+\!Z\exp (j\boldsymbol {\phi }) h~=Aexp(jψ)+Zexp(jϕ)
where b ( φ ) b(\varphi ) b(φ) is the corresponding beam gain factor, which is determined by their location.
φ \varphi φ is the angle between the corresponding receiver and the beam center, 怎么确定??
φ 3 d B = 0.4 / 180 ∗ π \varphi _{3\mathrm {dB}}=0.4/180*\pi φ3dB=0.4/180π is the 3-dB angle.
J 1 ( ⋅ ) J_{1}(\cdot ) J1() and J 3 ( ⋅ ) J_{3}(\cdot ) J3() represent the first-kind Bessel function of order 1 and 3.
h ~ ∈ C N t × 1 \tilde {\mathbf {h}}\in \mathbb {C}^{N_{t}\times 1} h~CNt×1 denotes the channel fading vector from SAT to the receiver, which include the scattering and the line-of-sight (LOS) components.
ψ ∈ [ 0 , 2 π ) \boldsymbol {\psi }\in [0,2\pi ) ψ[0,2π) denotes the stationary random phase 随机
ϕ \boldsymbol {\phi } ϕ denotes the deterministic phase of the LOS component. 怎么确定??
A A A and Z Z Z are the amplitudes of the scattering and the LOS components. 怎么确定??
The beam angles from SAT to PU, to Eve and to SU are set as 0.01°, 0.4° and 0.8°, respectively

the generalized-K model

K. P. Peppas, " Accurate closed-form approximations to generalised- $K$ sum distributions and applications in the performance analysis of equal-gain combining receivers ", IET Commun., vol. 5, no. 7, pp. 982-989, May 2011.
I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, M.-S. Alouini, and H. Yanikomeroglu, “A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels,” IEEE Trans. Commun., vol. 59, no. 10, pp. 2654–2658, Oct. 2011.

Energy Efficient Adaptive Transmissions in Integrated Satellite-Terrestrial Networks With SER Constraints

Y. Ruan, Y. Li, C. -X. Wang, R. Zhang and H. Zhang, “Power Allocation in Cognitive Satellite-Vehicular Networks From Energy-Spectral Efficiency Tradeoff Perspective,” in IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 2, pp. 318-329, June 2019, doi: 10.1109/TCCN.2019.2905199.

Ka频段 自由空间损耗 雨衰 波束增益

Physical Layer Security in Multibeam Satellite Systems
Ka频段

Z. Lin, M. Lin, J. -B. Wang, T. de Cola and J. Wang, “Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access,” in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 3, pp. 657-670, June 2019, doi: 10.1109/JSTSP.2019.2899731. 不太一样自由空间损耗 雨衰 波束增益 阵列控制向量
mmWave

M. Lin, C. Yin, Z. Lin, J. -B. Wang, T. de Cola and J. Ouyang, “Combined Beamforming with NOMA for Cognitive Satellite Terrestrial Networks,” ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6, doi: 10.1109/ICC.2019.8761139.
Ka频段

Joint Beamforming for Secure Communication in Cognitive Satellite Terrestrial Networks
mmWave

the free space loss (FSL)
C L = ( λ 4 π d ) 2 {C_{L}} = {\left ({{\frac {\lambda }{{4\pi d }}} }\right)^{2}} CL=(4πdλ)2

the rain attenuation fading vector r ∈ C N s × 1 {\mathbf{r}} \in {C^{N_{s} \times 1}} rCNs×1 between the satellite antenna array and the ground user
r = ξ − 1 2 e − j p {\mathbf{r}} = {\xi ^{ - \frac {1}{2}}}{e^{ - j{\mathbf{p}}}} r=ξ21ejp
p {\mathbf{p}} p is the N s × 1 {N_{s}} \times 1 Ns×1 sized phase vector with its components uniformly distributed over [ 0 , 2 π ) [0,2π) [0,2π) 随机
According to ITU-R Recommendation P.1853 [39], the power gain due to rain attenuation in dB, ξ d B = 20 log ⁡ 10 ( ξ ) {\xi _{{\mathrm{dB}}}} = 20{\log _{10}}\left ({\xi }\right) ξdB=20log10(ξ) , commonly follows a lognormal distribution, namely, l n ( ξ d B ) ∼ C N ( μ , σ 2 ) {\mathrm{ln}}\left ({{{\xi _{{\mathrm{dB}}}}} }\right) \sim {\mathcal{ C}}{\mathcal{ N}}\left ({{\mu,{\sigma ^{2}}} }\right) ln(ξdB)CN(μ,σ2) , 随机
where μ \mu μ and σ \sigma σ , both expressed in dB, are the lognormal location and scale parameter, respectively.
μ = − 3.125 \mu=-3.125 μ=3.125
σ = 1.591 \sigma=1.591 σ=1.591

the antenna gain from the m m m -th on-board beam to the user
b m = b max ⁡ ( J 1 ( u m ) 2 u m + 36 J 3 ( u m ) u m 3 ) 2 {b_{m}} = {b_{\max }}{\left ({{\frac {{J_{1}\left ({{u_{m}} }\right)}}{{2{u_{m}}}} + 36\frac {{J_{3}\left ({{u_{m}} }\right)}}{u_{m}^{3}}} }\right)^{2}} bm=bmax(2umJ1(um)+36um3J3(um))2
b max ⁡ {b_{\max }} bmax is the maximal satellite antenna gain of the m m m -th beam,
u m = 2.07123 sin ⁡ ϕ m / 2.07123 sin ⁡ ϕ m sin ⁡ ( ϕ 3 d B ) m sin ⁡ ( ϕ 3 d B ) m {u_{m}} = {{2.07123\sin {\phi _{m}}} \mathord {\left /{ {\vphantom {{2.07123\sin {\phi _{m}}} {\sin {{\left ({{{\phi _{{\mathrm{3dB}}}}} }\right)}_{m}}}}} }\right. } {\sin {{\left ({{{\phi _{{\mathrm{3dB}}}}} }\right)}_{m}}}} um=2.07123sinϕm/2.07123sinϕmsin(ϕ3dB)msin(ϕ3dB)m , 怎么确定??
J 1 ( ⋅ ) {J_{1}}\left ({\cdot }\right) J1() and J 3 ( ⋅ ) {J_{3}}\left ({\cdot }\right) J3() the first-kind Bessel functions of order 1 and 3, respectively.

the overall satellite channel
f = C L r ⊙ b 1 2 {\mathbf{f}} = \sqrt {C_{L}} {\mathbf{r}} \odot {{\mathbf{b}}^{\frac {1}{2}}} f=CL rb21
b = [ b 1 , ⋯   , b N s ] T ∈ C N s × 1 {\mathbf{b}} = {\left [{ {b_{1}, \cdots,{b_{N_{s}}}} }\right]^{T}} \in {C^{N_{s} \times 1}} b=[b1,,bNs]TCNs×1 is the beam gain vector

f=20GHz
b max ⁡ = 52 d B {b_{\max }}=52dB bmax=52dB
φ 3 d B = 0.4 / 180 ∗ π \varphi _{3\mathrm {dB}}=0.4/180*\pi φ3dB=0.4/180π
噪声带宽=50MHz

L个散射体的阵列响应

Adaptive scheduling for millimeter wave multi-beam satellite communication systems

Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial Networks via Cooperative Beamforming
J. Du, C. Jiang, H. Zhang, X. Wang, Y. Ren and M. Debbah, “Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial Networks via Cooperative Beamforming,” in IEEE Journal on Selected Areas in Communications, vol. 36, no. 7, pp. 1367-1382, July 2018, doi: 10.1109/JSAC.2018.2824623.
mmWave

the channel vector h n ∈ C N s × 1 {{\mathbf {h}}_{n}}\in {{\mathbb {C}}^{{N_{s}}\times 1}} hnCNs×1 of FSS terminal n n n ( n ∈ N ≜ { 1 , 2 , ⋯   , N } n \in \mathsf {\mathcal {N}} \triangleq \left \{{ 1,2, \cdots,N }\right \} nN{1,2,,N} )
h n = N s L ∑ l = 1 L δ n , l α ( θ n , l ) , ∀ n ∈ N {{\mathbf {h}}_{n}}=\sqrt {\frac {{N_{s}}}{L}}\sum \nolimits _{l=1}^{L}{{\delta _{n,l}}\boldsymbol {\alpha }\left ({{\theta _{n,l}} }\right)},\quad \forall n\in \mathsf {\mathcal {N}} hn=LNs l=1Lδn,lα(θn,l),nN
where L L L is the number of scatters,
δ n , l {\delta _{n,l}} δn,l and θ n , l {\theta _{n,l}} θn,l are the complex gain and normalized direction of the LOS path for FSS n n n , respectively.
In addition, δ n , l 2 ∼ C N ( 0 , σ 0 2 ) {\delta _{n,l}^{2}}\sim \mathsf {\mathcal {C}\mathcal {N}}\left ({0,\sigma _{0}^{2} }\right) δn,l2CN(0,σ02) is independent identically distributed (i.i.d.) complex Gaussian distribution with zero-mean, and covariance σ 0 2 = 1 \sigma _{0}^{2}=1 σ02=1 , which indicates Rician factor, and 随机
θ n , l ∼ U [ − 1 , 1 ] {\theta _{n,l}}\sim U\left [{ -1,1 }\right] θn,lU[1,1] is i.i.d. uniformly distributed. 随机
L=2 [36]

Moreover, when a uniform linear array (ULA) is adopted, the normalized array response α ( θ ) α(θ) α(θ) is given by
α ( θ ) = 1 N s [ 1 , e − j 2 π λ d sin ⁡ ( φ ) , ⋯   , e − j 2 π λ ( N s − 1 ) d sin ⁡ ( φ ) ] T \boldsymbol {\alpha }\left ({\theta }\right) = \frac {1}{\sqrt {{N_{s}}}}{{\left [{ 1,{e^{-j\frac {2\pi }{\lambda }d\sin \left ({\varphi }\right)}}, \cdots,{e^{-j\frac {2\pi }{\lambda }\left ({{N_{s}} - 1 }\right)d\sin \left ({\varphi }\right)}} }\right]}^{T}} α(θ)=Ns 1[1,ejλ2πdsin(φ),,ejλ2π(Ns1)dsin(φ)]T
normalized direction θ n θn θn is related to the physical azimuth angle of departure (AoD) of φ ∈ [ − π / 2 , π / 2 ] φ∈[−π/2,π/2] φ[π/2,π/2] as θ = ( 2 d / λ ) s i n ( φ ) θ=(2d/λ)sin(φ) θ=(2d/λ)sin(φ) , 怎么确定??
where d d d is the antenna spacing (i.e., the distance between the two adjacent antennas), and
λ λ λ is the carrier wavelength.
In this work, we assume the critically sampled environment, i.e, d / λ = 0.5 d/λ=0.5 d/λ=0.5 , considering that the normalized AoD is the sine function of the actual AoD.



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/152130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis的String类型,原来这么占内存

Redis的String类型,原来这么占内存 存一个 Long 类型这么占内存,Redis 的内存开销都花在哪儿了? 1、场景介绍 假设现在我们要开发一个图片存储系统,要求这个系统能够根据图片 ID 快速查找到图片存储对象 ID。图片 ID 和图片存储对…

【Flink基础】-- 源码中的注解

1.Flink自定义注解级别在升级 Flink版本至 1.15.3时,偶然遇到了一个异常,然后就准备详细了解下源码中的注解。设计注解的初衷:为了更好地进行代码和版本管理,Flink使用了Java的注解特性自定义了注解,对代码进行增强说明…

Kubernetes安全扫描之kubescape

一 背景 Kubescape 是第一个用于测试 Kubernetes 是否按照 NSA 和 CISA 的 Kubernetes 强化指南中定义的安全部署的工具 使用 Kubescape 测试集群或扫描单个 YAML 文件并将其集成到您的流程中。 二 特性 功能:提供多云 K8s 集群检测,包括风险分析、安…

stack 中缀表达式求值

【解法一】双栈思路梳理 【解法二】利用逆波兰表达式求解(中缀转后缀) 这个有俩种方法,一是直接根据条件进行各种情况的推导直接由中缀表达式求解, 二就是将中缀表达式转化为后缀表达式,利用更容易的逆波兰表达式求解…

分享微信小程序开发详细步骤

1、梳理小程序开发功能需求自己可以用思维导图写出自己想要开发的小程序里面,需要设置哪些功能,这些功能帮助我解决什么问题。然后把想法用文字形式在思维导图中写出来。如果不知道如果梳理,也可以找专业的产品经理协助处理。如果不知道功能可…

Vector - VT System - CANCANFDLIN板卡_VT6104|6204

对于做车载开发或者测试的朋友来说,大部分对于CANoe(VN1600系列)是相当的熟悉,我们知道CANoe支持CAN&CANFD&LIN,都有对应的硬件来匹配;但是如果需要做台架测试,VN1600系列的硬件放在架子…

读书笔记:来自一个外企优秀销售的业务心法和秘籍(中)

01 普通销售能达到的三种境界第一 投其所好 (110)销售把自己的资源1奉献出去,控制不了对方的回报,新人都处在这个阶段。第二 互利互惠 (1+1=1)大家互相贡献自己的一部分,…

满足你一切需求的 MMYOLO/MMDet 可视化 (一)

可视化在深度学习时代算是核心需求,借助可视化功能,研究者可以快速定位分析模型以及排查问题。在 OpenMMLab 2.0 时代,MMEngine 对常用的可视化需求进行了设计和实现,其具备如下功能: 提供丰富的开箱即用可视化功能&a…

TP6队列与延时队列

安装在此我就不再略过TP6的项目创建过程了&#xff0c;大致就是安装composer工具&#xff0c;安装成功以后&#xff0c;再使用composer去创建项目即可。think-queue 安装composer require topthink/think-queue项目中添加驱动配置我们需要在安装好的config下找到 queue.php<…

Solon v1.12.1 发布,已累计 10000+ 次提交

一个更现代感的 Java 应用开发框架&#xff1a;更快、更小、更自由。没有 Spring&#xff0c;没有 Servlet&#xff0c;没有 JavaEE&#xff1b;独立的轻量生态。主框架仅 0.1 MB。 Controller public class App {public static void main(String[] args) {Solon.start(App.cl…

leetcode刷题精讲————17.电话号码的字母组合

力扣https://leetcode.cn/problems/letter-combinations-of-a-phone-number/description/ 这道题要用到多叉树遍历、回溯、递归、排列组合等相关知识&#xff0c;算是比较经典的例题了&#xff0c;掌握它的核心思想就可以解决这一大类问题。 首先&#xff0c;2~9的数字对应不同…

JS 安全策略 101

依赖审计 依赖审计其实就是利用 npm 或是 yarn 自带的一个 audit 命令检测 node_module 里存在的一些具有安全隐患的依赖项。我习惯用yarn audit, 所以给大家放了张自己博客的 yarn 审计结果。这里显示&#xff1a;一个叫 trim 的包太老了&#xff0c;有很高的安全风险。 有风…

【数据结构初阶】5. 栈和队列

栈 1.1 栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。**进行数据插入和删除操作的一端 称为栈顶&#xff0c;另一端称为栈底。**栈中的数据元素遵守后进先出LIFO&#xff08;Last In First Out&#xff09;的原则…

win7安装onenote2016时碰到30094-1011(0)的 问题

安装办法用途【1】中所有的更新【1】中下载IE11的依赖IE11360软件管家解决OneNote的登录界面不显示问题微软常用运行库360软件管家kernalbase.dll等文件的缺失windowsupdateagent-7.6-x64官网下载Windows6.1-KB4474419-v3-ia64.msu控制面板的update中选择安装支持sha-2校验【3】…

【算法】差分数组

目录1.概述2.代码实现3.应用本文参考&#xff1a; LABULADONG 的算法网站 1.概述 &#xff08;1&#xff09;差分数组的思想与前缀和算法的非常近似&#xff08;有关前置和算法的具体细节可以参考前缀和算法这篇文章&#xff09;&#xff0c;其主要适用于频繁地对原始数组的某…

国产单通道直流有刷马达驱动芯片型号推荐

直流有刷马达驱动芯片是一款适应消费类、工业类的单通道直流有刷驱动IC&#xff0c;适用于各类玩具&#xff0c;智能家居&#xff0c;智能三表。小封装&#xff0c;低功耗&#xff0c;内置完善的保护机制&#xff08;过温/过流/过压&#xff09;。具有一个PWM&#xff08;INA/I…

写了2年文章的我,昨天第一次露脸直播。

作为一名不知名的技术博主&#xff0c;上周六晚上在视频号第一次做露脸直播。 勇敢的迈出视频号开播的第一步&#xff0c;并且数据不错&#xff0c;这个感觉很爽&#xff0c;和写作输出完全是两回事。 写这篇文章的目的是鼓励技术博主们&#xff0c;也尝试一下直播和做视频。 …

ClickHouse 挺快,esProc SPL 更快

开源分析数据库ClickHouse以快著称&#xff0c;真的如此吗&#xff1f;我们通过对比测试来验证一下。 ClickHouse vs Oracle 先用ClickHouse&#xff08;简称CH&#xff09;、Oracle数据库&#xff08;简称ORA&#xff09;一起在相同的软硬件环境下做对比测试。测试基准使用国…

基于ESP8266和SU-03T的离线语音红外遥控器设计

一. 系统设计及框图 之前设计了基于ESP32模块的智能红外遥控器&#xff0c;具体功能见以下CSDN链接&#xff1a; 智能红外遥控器&#xff08;一&#xff09;&#xff1a;功能简介_远望创客学堂的博客-CSDN博客 上面这款智能红外遥控器可以实现红外的远程控制&#xff0c;也可…

【从零开始学习深度学习】44. 图像增广的几种常用方式并使用图像增广训练模型【Pytorch】

大规模数据集是成功应用深度神经网络的前提&#xff0c;图像增广&#xff08;image augmentation&#xff09;技术通过对训练图像做一系列随机改变&#xff0c;来产生相似但又不同的训练样本&#xff0c;从而扩大训练数据集的规模。图像增广的另一种解释是&#xff0c;随机改变…