今天我们来了解一下二叉树是什么。
二叉树介绍
要想明白二叉树,还得先了解一下树的定义。
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
1、树有一个特殊的节点,被称作根节点,根节点之上就没有别的节点了。
2、除根节点外,其余节点被分成M(M>0)个互不相交的集合T1、T2、.....Tm,其中每一个集合Ti(1<=i<=m)又是一颗结构与树类似的子树,每颗子树的节点有且只有一个前驱,可以拥有0个或者多个后继。
3、因此,树是递归定义的。
如图,左图为现实生活中的树,右边是我们的“树”,他们的区别为数据结构中的树根是朝上的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构。
树的相关概念
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
现在我们大概了解了树之后,我们来看看二叉树。
二叉树
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
根据上图可以看出:
二叉树不存在度大于2的节点
二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。
注意:对于任意的二叉树都是由以下几种情况复合形成的
现实中的二叉树:
特殊的二叉树
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
二叉树的性质
性质2:深度为h的二叉树中至多含有2h-1个节点 。
性质3:若在任意一棵二叉树中,有n0个叶子节点,有n2个度为2的节点,则必有n0=n2+1 。
性质4:具有n个节点的满二叉树深为log2n+1。
性质5:若对一棵有n个节点的完全二叉树进行顺序编号(1≤i≤n),那么,对于编号为i(i≥1)的节点:
当i=1时,该节点为根,它无双亲节点 。
当i>1时,该节点的双亲节点的编号为i/2 。
若2i≤n,则有编号为2i的左节点,否则没有左节点 。
若2i+1≤n,则有编号为2i+1的右节点,否则没有右节点 。
二叉树的存储结构:
1. 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我后面的博客会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链。三叉链在后续的红黑树中会提到。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pParent; // 指向当前节点的双亲
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
关于二叉树的相关概念就先介绍到这里,后面的博客会有二叉树的顺序结构(堆)以及链式结构(二叉链)的代码实现。