【算法与数据结构】复杂度深度解析(超详解)

news2025/1/18 2:06:27

请添加图片描述

文章目录

  • 📝算法效率
  • 🌠 算法的复杂度
  • 🌠 时间复杂度的概念
    • 🌉大O的渐进表示法。
  • 🌠常见复杂度
  • 🌠常见时间复杂度计算举例
    • 🌉常数阶O(1)
    • 🌉对数阶 O(logN)
    • 🌉线性阶 O(N)
    • 🌉平方阶O(N^2)
    • 🌉指数阶O(2^N)
  • 🌠常见复杂度
    • 🌉空间复杂度
    • 🌉空间复杂度为 O(1)
    • 🌉空间复杂度为 O(N)
  • 🚩总结


📝算法效率

如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

**时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。**在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

衡量一个算法好坏主要从以下几个方面来看:

  1. 时间复杂度

时间复杂度反映了算法随问题规模增长所需要的计算时间增长情况。时间复杂度越低,算法效率越高。

对于上述斐波那契递归算法,其时间复杂度是O(2^N),随问题规模的增长,需要计算时间呈指数级增长,效率很低。

  1. 空间复杂度

空间复杂度反映了算法需要使用的辅助空间大小,与问题规模的关系。空间复杂度越低,算法效率越高。

递归算法需要在调用栈中保存大量中间结果,空间复杂度很高。

所以对于斐波那契数列来说,简洁的递归实现时间和空间复杂度都很高,不如使用迭代方式。

总的来说,在评价算法好坏时,时间和空间复杂度应该放在首位,然后是代码质量和其他方面。而不是单纯看代码是否简洁。

🌠 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

**时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。**在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

🌠 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

Func1 执行的基本操作次数 :
在这里插入图片描述

N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

🌉大O的渐进表示法。

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

🌠常见复杂度

常数阶O(1)
对数阶O(logN)
线性阶 O(N)
线性对数阶O(nlogN)O(N*logN)
平方阶O(N^2)
K次方阶O(N^k)
指数阶O(2^N)
K次N方阶O(k^N)
N的阶乘O(N!)

🌠常见时间复杂度计算举例

🌉常数阶O(1)

// 计算Func4的时间复杂度?
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 	++count;
 }
 printf("%d\n", count);
}

Func4中有一个for循环,但是for循环的迭代次数是固定的100次,不依赖输入参数N。在for循环内部,只有一个++count操作,这是一个常数时间的操作。打印count也是常数时间的操作。
所以Func4中的所有操作的时间都不依赖输入参数N,它的时间复杂度是常数级别O(1)。
又如int a = 4;int b= 10;那a+b的复杂度是多少?它的时间复杂度是O(1),无论a为2000万,b为10亿,a+b还是O(1),因为a,b都是int 类型,都是32位,固定好的常数操作,&,/…都是O(1)

🌉对数阶 O(logN)

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid - 1;
		else
			return mid;
	}
	return -1;
}

BinarySearch的时间复杂度是O(logN)

原因:

BinarySearch采用二分查找算法,每次都将搜索区间缩小一半, while循环里面计算mid点和比较a[mid]与x的操作都是常数时间复杂度的, 最坏情况下,需要log2N次循环才能找到元素或判断不存在。所以BinarySearch的时间复杂度取决于while循环迭代的次数,而循环次数是与输入规模N成对数级别的关系,即O(logN)。基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。

🌉线性阶 O(N)

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

Func2里面有一个外层for循环,循环次数是2N,for循环内部的++count是常数时间操作,基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

🌉平方阶O(N^2)

// 计算BubbleSort的时间复杂度?
void BubbleSort1(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

BubbleSort2的时间复杂度是O(n^2)
原因:
BubbleSort采用冒泡排序算法,它有两个循环,外层循环从n遍历到1,循环n次,内层循环每次比较相邻元素,从1遍历到end-1,循环从n-1到1次,所以内层循环的总时间复杂度是Σ(n-1)+(n-2)+...+1 = n(n-1)/2 = O(n^ 2) ,外层循环n次,内层循环每个都为O(n), 所以整体时间复杂度是外层循环次数乘内层循环时间复杂度,即O(n)×O(n)=O(n^ 2 ), 其他操作如交换等都是常数时间,对总时间影响不大,基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)

不要用代码结构来判断时间复杂度,比如只有一个while循环的冒泡排序,

计算BubbleSort2的时间复杂度?
void bubbleSort2(int[] arr) 
{
		if (arr == null || arr.length < 2) 
		{
			return;
		}
		int n = arr.length;
		int end = n - 1, i = 0;
		while (end > 0) {
			if (arr[i] > arr[i + 1]) {
				swap(arr, i, i + 1);
			}
			if (i < end - 1) 
			{
				i++;
			} else 
			{
				end--;
				i = 0;
			}
		}
	}
	void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

冒泡排序每一轮循环都可以使得最后一个元素"沉底",即升序排列, 数组长度为n的排序,需要进行n-1轮比较才能完成排序,每一轮循环需要进行n-1次元素比较,最坏情况下每次比较都需要交换元素,所以总共需要进行(n-1)+(n-2)+...+1 = n(n-1)/2次元素比较,每次元素比较和交换的时间复杂度都是O(1),所以冒泡排序的时间复杂度是O(n^2)
总之,判断算法时间复杂度应该基于操作次数的估算,而不仅仅看代码结构,如循环、递归等。

又比如:N/1+N/2+N/3 ...+N/N,这个流程的时间复杂度是O(N*logN),著名的调和级数

for (int i = 1; i <= N; i++) 
{
		for (int j = i; j <= N; j += i) 
		{
				// 这两个嵌套for循环的流程,时间复杂度为O(N * logN)
				// 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/n,也叫"调和级数",收敛于O(logN)
				// 所以如果一个流程的表达式 : n/1 + n/2 + n/3 + ... + n/n
				// 那么这个流程时间复杂度O(N * logN)
		}
}

对于这个代码,时间复杂度分析需要更仔细:外层循环i1N,循环次数是O(N),内层循环j的起始点是i,终止点是N,但是j的步长是i,也就是j每次增加i,那么内层循环每次迭代的次数大致是N/i,所以总体循环迭代次数可以表示为:∑(N/i) = N*(H(N) - 1) ,其中H(N)是哈密顿数,也就是1N的和,约为O(logN),所以这个算法的时间复杂度是:O(N*(logN)) = O(NlogN)

当然举个例子就更清晰了:

for (int i = 1; i <= N; i++) 
{
		for (int j = i; j <= N; j += i) 
		1 2 3 4 5 6 7 8 9 10 11 12.......N
第一轮: 1 2 3 4 5 6 7 8 9 10 11 12.......i=1,j每次加1,都遍历为N
第二轮:	  2   4   6   8   10    12.......i=2,j每次加2,以2的倍数来遍历为N/2
第三轮:     3     6     9       12.......i=3,j每次加3,以3的倍数来遍历为N/3
第四轮:        4       8        12.......i=4,j每次加4,以4的倍数来遍历为N/4
										 ....
										 i=N,j每次加N,以N的倍数来遍历为N/N
										 N/1+N/2+N/3+N/4+....N/N
1+1/2+1/3+1/4+1/5+......1/N-->O(logN)
N/1+N/2+N/3+N/4+....N/N-->N*(1+1/2+1/3+1/4+1/5+......1/N)->O(N*logN)

我们可以看出:对于循环嵌套,我们需要考虑所有细节,不能简单下定论,给出一个更准确的时间复杂度分析。

🌉指数阶O(2^N)

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

斐波那契递归Fib函数的时间复杂度是O(2^N)

原因:

斐波那契数列的递归定义是:Fib(N) = Fib(N-1) + Fib(N-2),每次调用Fib函数,它会递归调用自己两次。

可以用递归树来表示斐波那契递归调用的关系:

       Fib(N)  
     /        \
   Fib(N-1) Fib(N-2)
  /   \     /     \
...

可以看出每次递归会产生两条子节点,形成一个二叉树结构。

二叉树的高度就是输入N,每一层节点数都是2N次方,根据主定理,当问题可以递归分解成固定数目的子问题时,时间复杂度就是子问题数的对数,即O(c^ N )。这里每次都分解成2个子问题,所以时间复杂度是O(2^ N)Fib递归函数的时间复杂度是指数级的O(2^N),属于最坏情况下的递归。

🌠常见复杂度

🌉空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定

🌉空间复杂度为 O(1)

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

BubbleSort的空间复杂度是O(1)

原因:

BubbleSort是一种原地排序算法,它不需要额外的空间来排序,算法中只使用了几个大小为常数的变量,如end、exchange等,交换元素也是直接在原数组上操作,不需要额外空间,整个排序过程中只使用了固定数量的变量空间,不会随着输入规模n的增加而增加,常数空间对空间复杂度的影响可以忽略不计。所以,BubbleSort的空间复杂度取决于它使用的变量空间,而变量空间不随n的增加而增加,是固定的O(1)级别。

🌉空间复杂度为 O(N)

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;

	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

斐波那契数列递归算法Fibonacci的空间复杂度是O(n)

原因:
算法使用了一个长整型数组fibArray来存储计算出来的前n项斐波那契数列,这个数组需要的空间大小是n+1,随着输入n的增加而线性增长,除此之外,递归过程中没有其他额外空间开销, 所以空间消耗完全取决于fibArray数组的大小,即O(n),常数因子可以忽略,所以算法的空间复杂度为O(n)。

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

阶乘递归算法Fac的空间复杂度是O(N)

原因:

Fac函数是递归定义的,每递归一次就会在函数调用栈中push一个栈帧,递归深度等于输入N,随着N增加而增加,每个栈帧中保存的信息(如参数N值等)大小为常量,所以总的栈空间大小就是递归深度N乘以每个栈帧大小,即O(N),Fac函数内部没有其他额外空间开销。阶乘递归算法Fac之所以空间复杂度为O(N),是因为它使用递归调用栈的深度正比于输入N,而栈深度决定了总空间需求。


🚩总结

感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘

请添加图片描述

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=34m59s418000k

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1475857.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LiveGBS流媒体平台GB/T28181功能-查看国标设备下通道会话列表直播|回放|对讲|播放|录像|级联UDP|TCP|H264|H265会话

LiveGBS流媒体平台GB/T28181功能-查看直播|回放|对讲|播放|录像|级联UDP|TCP|H264|H265会话 1、会话列表2、会话类型3、搭建GB28181视频直播平台 1、会话列表 LiveGBS-> 国标设备-》点击在线状态 点击会话列表 2、会话类型 下拉会话类型可以看到 直播会话、回放会话、下载…

武器大师——操作符详解(上)

目录 一、操作符的分类 二、二进制和进制转换 2.1.二进制与十进制的互相转化 2.1.1 二进制转十进制 2.1.2 十进制转二进制 ​编辑 2.2.二进制转8进制和16进制 2.2.1 转8进制 2.2.2 转16进制 三、原码、反码、补码 四、移位操作符 4.1.左移操作符&#xff08;<…

【web APIs】3、(学习笔记)有案例!

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、概念其他事件页面加载事件元素滚动事件页面尺寸事件 元素尺寸与位置 二、案例举例电梯导航 前言 掌握阻止事件冒泡的方法理解事件委托的实现原理 一、概念…

省市区街道/乡镇四级联动vue3

最近优化了一个省.市.区/县、乡镇/街道的四级联动组件&#xff0c;技术栈是element vue3记录一下。 本来是这样的三级联动&#xff1a; 这个三级联动很简单&#xff0c;直接利用el-select组件把地区值带进去就行了&#xff0c;现在要优化成省.市.区/县、乡镇/街道的四级联动&…

若依前后端分离版开源项目学习

前言&#xff1a;vscode中vue代码没有高亮显示&#xff0c;可以下载vetur插件解决&#xff0c;ctrl点击无法跳转函数定义问题&#xff0c;可以下载vue-helper插件解决&#xff1b;idea中ctrl点击函数即可跳转函数定义。 一、登录 1.生成验证码 基本思路&#xff1a; 后端生…

算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)

算法沉淀——动态规划之子序列问题 01.最长定差子序列02.最长的斐波那契子序列的长度03.最长等差数列04.等差数列划分 II - 子序列 01.最长定差子序列 题目链接&#xff1a;https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/ 给你一个整数数…

高级语言期末2011级A卷(软件学院)

1.编写函数&#xff0c;判定正整数m和n&#xff08;均至少为2&#xff09;是否满足&#xff1a;数m为数n可分解的最小质因数&#xff08;数n可分解的最小质因数为整除n的最小质数&#xff09; 提示&#xff1a;判定m为质数且m是n的最小因数 #include <stdio.h> #include…

【kubernetes】关于k8s集群的资源发布方式(灰度/滚动发布)

目录 一、常见的发布方式 二、详解kubectl陈述式方式做灰度发布&#xff08;金丝雀发布&#xff09; 步骤一&#xff1a;先基于deployment控制器创建pod&#xff0c;然后发布 步骤二&#xff1a;基于命令行灰度发布 步骤三&#xff1a;测试等到版本稳定以后&#xff0c;再完…

Java项目开发如何设计整体架构,字节跳动服务端研发面试

并发编程共享模型篇 并发编程概览进程与线程Java线程共享模型之管程共享模型之内存共享模型之无锁共享模型之不可变共享模型之工具 共享模型之管程 原理之 Monitor(锁) 原理之伪共享 模式篇—正确姿势 同步模式之保护性智停同步模式之Blking同步模式之顺序控制异步模式之生产…

【数据结构(C语言)】排序详解

目录 文章目录 前言 一、排序的概念 1.1 排序的概念 1.2 常见的排序算法 二、插入排序 2.1 直接插入排序 2.1.1 基本思想 2.1.2 特性总结 2.1.3 代码实现 2.2 希尔排序 2.2.1 基本思想 2.2.2 特性总结 2.2.3 代码实现 三、选择排序 3.1 直接选择排序 3.1.1…

要在Javascript中实现表格新增行功能,且添加元素,增删操作

起始表格元素&#xff1a; <!-- table>(thead>tr>th*6)(tbody>tr>td*6) --><div class"container"><table id"myTable"><caption><h3>员工信息管理系统</h3></caption><thead><tr>&…

初识Lombok

前言 最近读一些公司的业务代码&#xff0c;发现近几年的java项目工程中都使用了lombok&#xff0c;lombok是一个可以自动生成get,set、toString等模板类方法的工具框架&#xff0c;程序再引入lombok后&#xff0c;添加一个注解便可以不写get\set\toString等方法。 Lombok示例…

人工智能_CPU微调ChatGLM大模型_使用P-Tuning v2进行大模型微调_007_微调_002---人工智能工作笔记0102

这里我们先试着训练一下,我们用官方提供的训练数据进行训练. 也没有说使用CPU可以进行微调,但是我们先执行一下试试: https://www.heywhale.com/mw/project/6436d82948f7da1fee2be59e 可以看到说INT4量化级别最低需要7GB显存可以启动微调,但是 并没有说CPU可以进行微调.我们…

C语言中如何进行内存管理

主页&#xff1a;17_Kevin-CSDN博客 收录专栏&#xff1a;《C语言》 C语言是一种强大而灵活的编程语言&#xff0c;但与其他高级语言不同&#xff0c;它要求程序员自己负责内存的管理。正确的内存管理对于程序的性能和稳定性至关重要。 一、引言 C 语言是一门广泛使用的编程语…

【算法历练】动态规划副本—路径问题

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;宙でおやすみ 1:02━━━━━━️&#x1f49f;──────── 2:45 &#x1f504; ◀️ ⏸ ▶️ ☰ &#…

现在在市场上云主机一般多少钱?影响其价格的因素有哪些

现在很多人都会购买云主机来帮助自己存储一些数据&#xff0c;但是很多人在购买云主机的时候最担心的就是云主机的价格。 由于很多人担心云服务器的价格会很高&#xff0c;因此一直在密切关注目前市场上各品牌云主机的相关价格。 下面就给大家详细介绍一下现在市场上一台云主机…

【DDD】学习笔记-领域驱动设计对持久化的影响

资源库的实现 如何重用资源库的实现&#xff0c;以及如何隔离领域层与基础设施层的持久化实现机制&#xff0c;具体的实现还要取决于开发者对 ORM 框架的选择。Hibernate、MyBatis、jOOQ 或者 Spring Data JPA&#xff08;当然也包括基于 .NET 的 Entity Framework、NHibernat…

若依Vue3:新一代前后端分离权限管理系统

若依Vue3&#xff1a;新一代前后端分离权限管理系统 随着技术的不断进步&#xff0c;前后端分离的开发模式逐渐成为主流&#xff0c;特别是在构建权限管理系统时。在这样的背景下&#xff0c;若依Vue3应运而生&#xff0c;作为基于Spring Boot、Spring Security、JWT、Vue3、V…

【C++】树形关联式容器set、multiset、map和multimap的介绍与使用

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.关联式容器 2.键…

二叉搜索树在线OJ题讲解

二叉树创建字符串 我们首先进行题目的解读&#xff1a; 大概意思就是用&#xff08;&#xff09;把每个节点的值给括起来&#xff0c;然后再经过一系列的省略的来得到最后的结果 大家仔细观察题目给出的列子就可以发现&#xff0c;其实这个题目可以大致分为三种情况&#xff1…