算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)

news2024/11/19 3:49:47

在这里插入图片描述

算法沉淀——动态规划之子序列问题

  • 01.最长定差子序列
  • 02.最长的斐波那契子序列的长度
  • 03.最长等差数列
  • 04.等差数列划分 II - 子序列

01.最长定差子序列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。 

提示:

  • 1 <= arr.length <= 105
  • -104 <= arr[i], difference <= 104

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i] 表示以第 i 个位置的元素为结尾的所有子序列中,最长的等差子序列的长度。
  2. 状态转移方程: 对于 dp[i],上一个定差子序列的取值定为 arr[i] - difference。只要找到以上一个数为结尾的定差子序列长度的 dp[arr[i] - difference],然后加上 1,就是以 i 为结尾的定差子序列的长度。这里可以使用哈希表进行优化,将元素和 dp[j] 绑定,放入哈希表中。
  3. 初始化: 刚开始的时候,需要把第一个元素放进哈希表中,即 hash[arr[0]] = 1
  4. 填表顺序: 根据状态转移方程,填表顺序是从左往右。
  5. 返回值: 根据状态表达,返回整个 dp 数组中的最大值。

代码

class Solution {
public:
    int longestSubsequence(vector<int>& arr, int difference) {
        unordered_map<int,int> hash;
        hash[arr[0]]=1;

        int ret=1;
        for(int i=1;i<arr.size();i++){
            hash[arr[i]]=hash[arr[i]-difference]+1;
            ret=max(ret,hash[arr[i]]);
        }
        return ret;
    }
};

02.最长的斐波那契子序列的长度

题目链接:https://leetcode.cn/problems/length-of-longest-fibonacci-subsequence/

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8][3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。

示例 2:

输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= arr.length <= 1000
  • 1 <= arr[i] < arr[i + 1] <= 10^9

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[j][i] 表示以第 j 位置以及第 i 位置的元素为结尾的所有的子序列中,最长的斐波那契子序列的长度。
  2. 状态转移方程:nums[j] = bnums[i] = c,那么这个序列的前一个元素就是 a = c - b。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么 dp[j][i] = dp[k][j] + 1
    • 如果 a 存在,但是 b < a < c,那么 dp[j][i] = 2
    • 如果 a 不存在,那么 dp[j][i] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标,可以在填表之前,将所有的「元素 + 下标」绑定在一起,放到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定最后一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 返回 dp 表中的最大值 ret。但是 ret 可能小于 3,小于 3 说明不存在,需要判断一下。

代码

class Solution {
public:
    int lenLongestFibSubseq(vector<int>& arr) {
        int n=arr.size();
        unordered_map<int,int> hash;
        for(int i=0;i<n;i++) hash[arr[i]]=i;

        vector<vector<int>> dp(n,vector<int>(n,2));
        int ret=2;
        for(int i=2;i<n;++i){
            for(int j=1;j<i;j++){
                int x=arr[i]-arr[j];
                if(x<arr[j]&&hash.count(x))
                    dp[j][i] = dp[hash[x]][j]+1;
                ret = max(ret,dp[j][i]);
            }
        }
        return ret<3?0:ret;
    }
};

03.最长等差数列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence/

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。 

提示:

  • 2 <= nums.length <= 1000
  • 0 <= nums[i] <= 500

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,最长的等差序列的长度。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么我们需要以 k 位置以及 i 位置元素为结尾的最长等差序列的长度,然后再加上 j 位置的元素即可。于是 dp[i][j] = dp[k][i] + 1。这里因为会有许多个 k,我们仅需离 i 最近的 k 即可。因此任何最长的都可以以 k 为结尾;
    • 如果 a 存在,但是 b < a < c,那么 dp[i][j] = 2
    • 如果 a 不存在,那么 dp[i][j] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。可以一边动态规划,一边保存最近的元素的下标,不用保存下标数组。遍历的时候,先固定倒数第二个数,再遍历倒数第一个数。这样可以在 i 使用完时候,将 nums[i] 扔到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定倒数第二个数;
    • 然后枚举倒数第一个数。
  6. 返回值: 返回 dp 表中的最大值。

代码

class Solution {
public:
    int longestArithSeqLength(vector<int>& nums) {
        unordered_map<int,int> hash;
        hash[nums[0]]=0;

        int n=nums.size();
        vector<vector<int>> dp(n,vector<int>(n,2));
        int ret=2;

        for(int i=1;i<n;i++){
            for(int j=i+1;j<n;j++){
                int x=2*nums[i]-nums[j];
                if(hash.count(x)) dp[i][j] = dp[hash[x]][i] + 1;
                ret=max(ret,dp[i][j]);
            }
            hash[nums[i]]=i;
        }

        return ret;
    }
};

04.等差数列划分 II - 子序列

题目链接:https://leetcode.cn/problems/arithmetic-slices-ii-subsequence/

给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。

如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。

  • 例如,[1, 3, 5, 7, 9][7, 7, 7, 7][3, -1, -5, -9] 都是等差序列。
  • 再例如,[1, 1, 2, 5, 7] 不是等差序列。

数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。

  • 例如,[2,5,10][1,2,1,***2***,4,1,***5\***,***10***] 的一个子序列。

题目数据保证答案是一个 32-bit 整数

示例 1:

输入:nums = [2,4,6,8,10]
输出:7
解释:所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]

示例 2:

输入:nums = [7,7,7,7,7]
输出:16
解释:数组中的任意子序列都是等差子序列。

提示:

  • 1 <= nums.length <= 1000
  • -231 <= nums[i] <= 231 - 1

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,等差子序列的个数。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么以 k 元素以及 i 元素结尾的等差序列的个数为 dp[k][i],在这些子序列的后面加上 j 位置的元素依旧是等差序列。但是这里会多出来一个以 k, i, j 位置的元素组成的新的等差序列,因此 dp[i][j] += dp[k][i] + 1
    • 因为 a 可能有很多个,需要全部累加起来。
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。因此在 dp 之前,将所有元素和下标数组绑定在一起,放到哈希表中。这里保存下标数组是因为需要统计个数。
  4. 初始化: 刚开始是没有等差数列的,因此初始化 dp 表为 0
  5. 填表顺序:
    • 先固定倒数第一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 统计所有的等差子序列,返回 dp 表中所有元素的和。

代码

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        int n=nums.size();

        unordered_map<long long,vector<int>> hash;
        for(int i=0;i<n;i++) hash[nums[i]].push_back(i);

        vector<vector<int>> dp(n,vector<int>(n));
        int sum=0;

        for(int j=2;j<n;j++){
            for(int i=1;i<j;i++){
                long long x=(long long)nums[i]*2-nums[j];
                if(hash.count(x)) 
                    for(int& k:hash[x])
                        if(k<i) dp[i][j]+=dp[k][i]+1;
                sum+=dp[i][j];
            }
        }
        return sum;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1475848.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高级语言期末2011级A卷(软件学院)

1.编写函数&#xff0c;判定正整数m和n&#xff08;均至少为2&#xff09;是否满足&#xff1a;数m为数n可分解的最小质因数&#xff08;数n可分解的最小质因数为整除n的最小质数&#xff09; 提示&#xff1a;判定m为质数且m是n的最小因数 #include <stdio.h> #include…

【kubernetes】关于k8s集群的资源发布方式(灰度/滚动发布)

目录 一、常见的发布方式 二、详解kubectl陈述式方式做灰度发布&#xff08;金丝雀发布&#xff09; 步骤一&#xff1a;先基于deployment控制器创建pod&#xff0c;然后发布 步骤二&#xff1a;基于命令行灰度发布 步骤三&#xff1a;测试等到版本稳定以后&#xff0c;再完…

Java项目开发如何设计整体架构,字节跳动服务端研发面试

并发编程共享模型篇 并发编程概览进程与线程Java线程共享模型之管程共享模型之内存共享模型之无锁共享模型之不可变共享模型之工具 共享模型之管程 原理之 Monitor(锁) 原理之伪共享 模式篇—正确姿势 同步模式之保护性智停同步模式之Blking同步模式之顺序控制异步模式之生产…

【数据结构(C语言)】排序详解

目录 文章目录 前言 一、排序的概念 1.1 排序的概念 1.2 常见的排序算法 二、插入排序 2.1 直接插入排序 2.1.1 基本思想 2.1.2 特性总结 2.1.3 代码实现 2.2 希尔排序 2.2.1 基本思想 2.2.2 特性总结 2.2.3 代码实现 三、选择排序 3.1 直接选择排序 3.1.1…

要在Javascript中实现表格新增行功能,且添加元素,增删操作

起始表格元素&#xff1a; <!-- table>(thead>tr>th*6)(tbody>tr>td*6) --><div class"container"><table id"myTable"><caption><h3>员工信息管理系统</h3></caption><thead><tr>&…

初识Lombok

前言 最近读一些公司的业务代码&#xff0c;发现近几年的java项目工程中都使用了lombok&#xff0c;lombok是一个可以自动生成get,set、toString等模板类方法的工具框架&#xff0c;程序再引入lombok后&#xff0c;添加一个注解便可以不写get\set\toString等方法。 Lombok示例…

人工智能_CPU微调ChatGLM大模型_使用P-Tuning v2进行大模型微调_007_微调_002---人工智能工作笔记0102

这里我们先试着训练一下,我们用官方提供的训练数据进行训练. 也没有说使用CPU可以进行微调,但是我们先执行一下试试: https://www.heywhale.com/mw/project/6436d82948f7da1fee2be59e 可以看到说INT4量化级别最低需要7GB显存可以启动微调,但是 并没有说CPU可以进行微调.我们…

C语言中如何进行内存管理

主页&#xff1a;17_Kevin-CSDN博客 收录专栏&#xff1a;《C语言》 C语言是一种强大而灵活的编程语言&#xff0c;但与其他高级语言不同&#xff0c;它要求程序员自己负责内存的管理。正确的内存管理对于程序的性能和稳定性至关重要。 一、引言 C 语言是一门广泛使用的编程语…

【算法历练】动态规划副本—路径问题

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;宙でおやすみ 1:02━━━━━━️&#x1f49f;──────── 2:45 &#x1f504; ◀️ ⏸ ▶️ ☰ &#…

现在在市场上云主机一般多少钱?影响其价格的因素有哪些

现在很多人都会购买云主机来帮助自己存储一些数据&#xff0c;但是很多人在购买云主机的时候最担心的就是云主机的价格。 由于很多人担心云服务器的价格会很高&#xff0c;因此一直在密切关注目前市场上各品牌云主机的相关价格。 下面就给大家详细介绍一下现在市场上一台云主机…

【DDD】学习笔记-领域驱动设计对持久化的影响

资源库的实现 如何重用资源库的实现&#xff0c;以及如何隔离领域层与基础设施层的持久化实现机制&#xff0c;具体的实现还要取决于开发者对 ORM 框架的选择。Hibernate、MyBatis、jOOQ 或者 Spring Data JPA&#xff08;当然也包括基于 .NET 的 Entity Framework、NHibernat…

若依Vue3:新一代前后端分离权限管理系统

若依Vue3&#xff1a;新一代前后端分离权限管理系统 随着技术的不断进步&#xff0c;前后端分离的开发模式逐渐成为主流&#xff0c;特别是在构建权限管理系统时。在这样的背景下&#xff0c;若依Vue3应运而生&#xff0c;作为基于Spring Boot、Spring Security、JWT、Vue3、V…

【C++】树形关联式容器set、multiset、map和multimap的介绍与使用

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.关联式容器 2.键…

二叉搜索树在线OJ题讲解

二叉树创建字符串 我们首先进行题目的解读&#xff1a; 大概意思就是用&#xff08;&#xff09;把每个节点的值给括起来&#xff0c;然后再经过一系列的省略的来得到最后的结果 大家仔细观察题目给出的列子就可以发现&#xff0c;其实这个题目可以大致分为三种情况&#xff1…

基于 LVGL 使用 SquareLine Studio 快速设计 UI 界面

目录 简介注册与软件获取工程配置设计 UI导出源码板级验证更多内容 简介 SquareLine Studio 是一款专业的 UI 设计软件&#xff0c;它与 LVGL&#xff08;Light and Versatile Graphics Library&#xff0c;轻量级通用图形库&#xff09;紧密集成。LVGL 是一个轻量化的、开源的…

[linux][xdp] xdp 入门

xdp 全称 eXpress Data Path&#xff0c;是 linux ebpf 中的一个功能。ebpf 在内核中预留了一些插入点&#xff0c;用户可以在这些插入点插入自己的处理逻辑&#xff0c;当数据路过插入点时可以做一些预期的处理&#xff0c;具体实现方式如下&#xff1a; ① 用户编写数据处理…

【C++私房菜】序列式容器的迭代器失效问题

目录 一、list的迭代器失效 二、vector的迭代器失效 1、空间缩小操作 2、空间扩大操作 三、总结 在C中&#xff0c;当对容器进行插入或删除操作时&#xff0c;可能会导致迭代器失效的问题。所谓迭代器失效指的是&#xff0c;原先指向容器中某个元素的迭代器&#xff0c;在…

尚硅谷webpack5笔记2

Loader 原理 loader 概念 帮助 webpack 将不同类型的文件转换为 webpack 可识别的模块。 loader 执行顺序 分类pre: 前置 loadernormal: 普通 loaderinline: 内联 loaderpost: 后置 loader执行顺序4 类 loader 的执行优级为:pre > normal > inline > post 。相…

在Node.js中如何实现用户身份验证和授权

当涉及到构建安全的应用程序时&#xff0c;用户身份验证和授权是至关重要的一环。在Node.js中&#xff0c;我们可以利用一些流行的库和技术来实现这些功能&#xff0c;确保我们的应用程序具有所需的安全性。本篇博客将介绍如何在Node.js中实现用户身份验证和授权。 用户身份验…

密码学系列(四)——对称密码2

一、RC4 RC4&#xff08;Rivest Cipher 4&#xff09;是一种对称流密码算法&#xff0c;由Ron Rivest于1987年设计。它以其简单性和高速性而闻名&#xff0c;并广泛应用于网络通信和安全协议中。下面是对RC4的详细介绍&#xff1a; 密钥长度&#xff1a; RC4的密钥长度可变&am…