SpringCloud Alibaba 之分布式全局事务 Seata 原理分析

news2025/4/17 0:04:44

1. 什么是 Seata?为什么需要它?

想象一下,你去银行转账:

  • 操作1:从你的账户扣款 1000 元
  • 操作2:向对方账户增加 1000 元

如果 操作1 成功,但 操作2 失败了,你的钱就凭空消失了!这就是典型的分布式事务问题

在微服务架构中,不同服务可能在不同的数据库上操作,如何保证多个服务的操作要么全部成功,要么全部失败?Seata(Simple Extensible Autonomous Transaction Architecture) 就是为了解决这个问题而生的。

2. Seata 的核心概念(先理解,再读源码)

Seata 的核心思想是 “两阶段提交(2PC)”,但比传统 2PC 更轻量级。它的核心角色有:

  1. TC(Transaction Coordinator):事务协调者,负责全局事务的提交或回滚(Seata-Server)。
  2. TM(Transaction Manager):事务管理者(通常是业务入口方法),负责开启/提交/回滚全局事务。
  3. RM(Resource Manager):资源管理者(各个微服务),负责管理本地事务,并向 TC 汇报状态。

举个栗子🌰

  • TM 是银行柜员,负责发起转账事务。
  • RM1 是你的账户服务,RM2 是对方账户服务。
  • TC 是银行总部,决定最终是转账成功还是回滚。

3. Seata 的工作流程(源码核心逻辑)

Seata 的全局事务分为两个阶段:

阶段1:执行本地事务(RM 干活)

  1. TMTC 申请开启全局事务(GlobalBeginRequest)。
  2. TC 生成全局事务 ID(XID),并返回给 TM
  3. TM 调用 RM1(你的账户扣款),RM1 执行本地事务,但不提交,而是记录 undo_log(用于回滚)。
  4. RM1TC 注册分支事务,并汇报状态(BranchRegisterRequest)。
  5. TM 调用 RM2(对方账户加钱),同样记录 undo_log,但不提交。
  6. RM2 也向 TC 注册分支事务。

👉 核心源码

  • GlobalTransactionScanner(TM 入口)
  • DefaultCoordinator(TC 处理事务注册)
  • DataSourceProxy(RM 代理数据源,拦截 SQL 生成 undo_log)

阶段2:全局提交或回滚(TC 决策)

  • 如果所有 RM 都成功
    • TC 发送 GlobalCommitRequest,RM 提交本地事务。
  • 如果有 RM 失败
    • TC 发送 GlobalRollbackRequest,RM 根据 undo_log 回滚数据。

👉 核心源码

  • DefaultCore(TC 决策逻辑)
  • AsyncWorker(异步执行提交/回滚)
  • UndoLogManager(RM 回滚时解析 undo_log 恢复数据)

4. Seata 如何保证数据一致性?(关键设计)

(1)undo_log 机制(回滚的关键)

  • 在阶段1,RM 会记录修改前的数据快照(undo_log)。
  • 如果 TC 通知回滚,RM 会根据 undo_log 恢复数据。

源码关键类UndoLogManager

(2)AT 模式(默认模式,自动补偿)

  • 自动生成反向 SQL(如 UPDATE account SET money = money - 100 的回滚 SQL 是 UPDATE account SET money = money + 100)。
  • 依赖数据库本地事务,确保 undo_log 和业务 SQL 在同一个事务里。

源码关键类SQLVisitorFactory(解析 SQL 生成回滚语句)

(3)全局锁(防止脏写)

  • 在阶段1,RM 会申请全局锁,防止其他事务修改相同数据。
  • 如果拿不到锁,事务会失败,避免数据不一致。

源码关键类GlobalLockTemplate

5. 总结(Seata 的优缺点)

优点

对业务代码侵入小(只需加 @GlobalTransactional 注解)。
支持多种模式(AT、TCC、SAGA、XA)。
高性能(相比传统 2PC,减少了阻塞时间)。

缺点

依赖 TC(Seata-Server),TC 单点故障会影响整个系统(可集群部署)。
AT 模式有幻读问题(高并发场景下可能读到中间状态)。

6. 进阶思考(如何优化 Seata?)

  • TC 高可用:部署 Seata-Server 集群 + 数据库 HA。
  • 混合模式:核心业务用 TCC(更强一致性),普通业务用 AT(更高性能)。
  • 结合消息队列:用 RocketMQ 事务消息做最终一致性补偿。

🚀 现在,你对 Seata 的源码是不是有了清晰的认识?
💡 动手实践: 搭建一个 Seata Demo,Debug 跟踪 XID 传递和 undo_log 生成,理解会更深刻!

如果有疑问,欢迎留言讨论!🎯

推荐阅读文章

  • 由 Spring 静态注入引发的一个线上T0级别事故(真的以后得避坑)

  • 如何理解 HTTP 是无状态的,以及它与 Cookie 和 Session 之间的联系

  • HTTP、HTTPS、Cookie 和 Session 之间的关系

  • 什么是 Cookie?简单介绍与使用方法

  • 什么是 Session?如何应用?

  • 使用 Spring 框架构建 MVC 应用程序:初学者教程

  • 有缺陷的 Java 代码:Java 开发人员最常犯的 10 大错误

  • 如何理解应用 Java 多线程与并发编程?

  • 把握Java泛型的艺术:协变、逆变与不可变性一网打尽

  • Java Spring 中常用的 @PostConstruct 注解使用总结

  • 如何理解线程安全这个概念?

  • 理解 Java 桥接方法

  • Spring 整合嵌入式 Tomcat 容器

  • Tomcat 如何加载 SpringMVC 组件

  • “在什么情况下类需要实现 Serializable,什么情况下又不需要(一)?”

  • “避免序列化灾难:掌握实现 Serializable 的真相!(二)”

  • 如何自定义一个自己的 Spring Boot Starter 组件(从入门到实践)

  • 解密 Redis:如何通过 IO 多路复用征服高并发挑战!

  • 线程 vs 虚拟线程:深入理解及区别

  • 深度解读 JDK 8、JDK 11、JDK 17 和 JDK 21 的区别

  • 10大程序员提升代码优雅度的必杀技,瞬间让你成为团队宠儿!

  • “打破重复代码的魔咒:使用 Function 接口在 Java 8 中实现优雅重构!”

  • Java 中消除 If-else 技巧总结

  • 线程池的核心参数配置(仅供参考)

  • 【人工智能】聊聊Transformer,深度学习的一股清流(13)

  • Java 枚举的几个常用技巧,你可以试着用用

  • 由 Spring 静态注入引发的一个线上T0级别事故(真的以后得避坑)

  • 如何理解 HTTP 是无状态的,以及它与 Cookie 和 Session 之间的联系

  • HTTP、HTTPS、Cookie 和 Session 之间的关系

  • 使用 Spring 框架构建 MVC 应用程序:初学者教程

  • 有缺陷的 Java 代码:Java 开发人员最常犯的 10 大错误

  • Java Spring 中常用的 @PostConstruct 注解使用总结

  • 线程 vs 虚拟线程:深入理解及区别

  • 深度解读 JDK 8、JDK 11、JDK 17 和 JDK 21 的区别

  • 10大程序员提升代码优雅度的必杀技,瞬间让你成为团队宠儿!

  • 探索 Lombok 的 @Builder 和 @SuperBuilder:避坑指南(一)

  • 为什么用了 @Builder 反而报错?深入理解 Lombok 的“暗坑”与解决方案(二)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2335413.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Large Language Model(LLM)的训练和微调

之前一个偏工程向的论文中了,但是当时对工程理论其实不算很了解,就来了解一下 工程流程 横轴叫智能追寻 竖轴上下文优化 Prompt不行的情况下加shot(提示),如果每次都要加提示,就可以试试知识库增强检索来给提示。 如果希望增强…

统计销量前十的订单

传入参数&#xff1a; 传入begin和end两个时间 返回参数 返回nameList和numberList两个String类型的列表 controller层 GetMapping("/top10")public Result<SalesTop10ReportVO> top10(DateTimeFormat(pattern "yyyy-MM-dd") LocalDate begin,Dat…

AI大模型原理可视化工具:深入浅出理解大语言模型的工作原理

AI大模型原理可视化工具&#xff1a;深入浅出理解大语言模型的工作原理 在人工智能快速发展的今天&#xff0c;大语言模型&#xff08;如GPT、BERT等&#xff09;已经成为改变世界的重要技术。但对于很多人来说&#xff0c;理解这些模型的工作原理仍然是一个挑战。为了帮助更多…

qt designer 创建窗体选择哪种屏幕大小

1. 新建窗体时选择QVGA还是VGA 下面这个图展示了区别 这里我还是选择默认&#xff0c;因为没有特殊需求&#xff0c;只是在PC端使用

Spark-SQL核心编程(一)

一、Spark-SQL 基础概念 1.定义与起源&#xff1a;Spark SQL 是 Spark 用于结构化数据处理的模块&#xff0c;前身是 Shark。Shark 基于 Hive 开发&#xff0c;提升了 SQL-on-Hadoop 的性能&#xff0c;但因对 Hive 依赖过多限制了 Spark 发展&#xff0c;后被 SparkSQL 取代&…

AI与无人驾驶汽车:如何通过机器学习提升自动驾驶系统的安全性?

引言 想象一下&#xff0c;在高速公路上&#xff0c;一辆无人驾驶汽车正平稳行驶。突然&#xff0c;前方的车辆紧急刹车&#xff0c;而旁边车道有一辆摩托车正快速接近。在这千钧一发的瞬间&#xff0c;自动驾驶系统迅速分析路况&#xff0c;判断最安全的避险方案&#xff0c;精…

第5篇:Linux程序访问控制FPGA端LEDR<三>

Q&#xff1a;如何具体设计.c程序代码访问控制FPGA端外设&#xff1f; A&#xff1a;以控制DE1-SoC开发板的LEDR为例的Linux .C程序代码。头文件fcntl.h和sys/mman.h用于使用/dev/mem文件&#xff0c;以及mmap和munmap内核函数&#xff1b;address_map_arm.h指定了DE1-SoC_Com…

城市应急安防系统EasyCVR视频融合平台:如何实现多源视频资源高效汇聚与应急指挥协同

一、方案背景 1&#xff09;项目背景 在当今数字化时代&#xff0c;随着信息技术的飞速发展&#xff0c;视频监控和应急指挥系统在公共安全、城市应急等领域的重要性日益凸显。尤其是在关键场所&#xff0c;高效的视频资源整合与传输能力对于应对突发公共事件、实现快速精准的…

【笔记ing】AI大模型-03深度学习基础理论

神经网络&#xff1a;A neural network is a network or circuit of neurons,or in a modern sense,an artificial neural network,composed of artificial neurons or nodes.神经网络是神经元的网络或回路&#xff0c;或者在现在意义上来说&#xff0c;是一个由人工神经元或节…

07软件测试需求分析案例-修改用户信息

修改用户信息是后台管理菜单的一个功能模块&#xff0c;只有admin才有修改权限。包括查询用户名进行显示用户相关信息&#xff0c;并且修改用户相关信息的功能。 1.1 通读文档 通读需求规格说明书是提取信息&#xff0c;提出问题&#xff0c;输出具有逻辑、规则、流程的业务…

设计模式 --- 状态模式

状态模式​​是一种​​行为型设计模式​​&#xff0c;允许对象在内部状态改变时动态改变其行为​​&#xff0c;使对象的行为看起来像是改变了。该模式通过将状态逻辑拆分为独立类​​&#xff0c;消除复杂的条件分支语句&#xff0c;提升代码的可维护性和扩展性。 状态模式的…

深入剖析Go Channel:从底层原理到高阶避坑指南|Go语言进阶(5)

文章目录 引言channel的底层数据结构channel操作原理发送操作(ch <- data)接收操作(<-ch) 常见陷阱及避坑指南1. 死锁问题2. 关闭channel的错误方式3. 内存泄漏4. nil channel特性5. 性能考量 最佳实践总结 引言 Channel是Go语言实现CSP并发模型的核心机制&#xff0c;提…

OpenCV 图形API(31)图像滤波-----3x3 腐蚀操作函数erode3x3()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用3x3矩形结构元素腐蚀图像。 该函数通过使用中心作为锚点的3x3矩形结构元素来腐蚀源图像。腐蚀操作可以应用多次&#xff08;迭代&#xff0…

AI Agent开发大全第二十八课-MCP实现本地命令调用怎么做的?

开篇 MCP很强大,Client端一旦实现了稳定的连接和执行流程后任Server端随意改动都可兼容,这就是热插拨功能。 如果我们仅仅满足于MCP查点网上资料、读点图片即文字型的功能肯定是不能充分发挥MCP的强大之处的,正应了Google以及Anthropic最近的研究报告上说的:不要再在chat…

A2A协议实现详解及示例

A2A协议概述 A2A (Agent2Agent) 是Google推出的一个开放协议&#xff0c;旨在使AI智能体能够安全地相互通信和协作。该协议打破了孤立智能体系统之间的壁垒&#xff0c;实现了复杂的跨应用自动化。[1] A2A协议的核心目标是让不同的AI代理能够相互通信、安全地交换信息以及在各…

活动图与流程图的区别与联系:深入理解两种建模工具

目录 前言1. 活动图概述1.1 活动图的定义1.2 活动图的基本构成要素1.3 活动图的应用场景 2. 流程图概述2.1 流程图的定义2.2 流程图的基本构成要素2.3 流程图的应用场景 3. 活动图与流程图的联系4. 活动图与流程图的区别4.1 所属体系不同4.2 表达能力差异4.3 使用目的与语境4.4…

图片文本识别OCR+DeepSeekapi实现提取图片关键信息

用到的技术&#xff1a; 通过腾讯OCR文字识别&#xff0c;deepseek的api实现 目录 需求分析&#xff1a; 文字识别&#xff08;OCR&#xff09;具体实现步骤 起步工作 代码编写 deepseek整合消息&#xff0c;返回文本关键信息 起步工作 编写工具类 具体调用实现 具体…

go 通过汇编分析函数传参与返回值机制

文章目录 概要一、前置知识二、汇编分析2.1、示例2.2、汇编2.2.1、 寄存器传值的汇编2.2.2、 栈内存传值的汇编 三、拓展3.1 了解go中的Duff’s Device3.2 go tool compile3.2 call 0x46dc70 & call 0x46dfda 概要 在上一篇文章中&#xff0c;我们研究了go函数调用时的栈布…

解决Ubuntu Desktop 24.04 VMware中安装后不能全屏显示,只能居中的问题

Ubuntu Desktop 24.04 VMware中安装后不能全屏显示&#xff0c;只能居中。 sudo apt-get install open-vm-tools sudo apt-get install open-vm*

【笔记ing】AI大模型-04逻辑回归模型

一个神经网络结构&#xff0c;其中的一个神经网络层&#xff0c;本质就是一个逻辑回归模型 深度神经网络的本质就是多层逻辑回归模型互相连接或采用一定的特殊连接的方式连接在一起构成的。其中每一个层本质就是一个逻辑回归模型。 逻辑回归模型基本原理 逻辑回归&#xff0…