Matplotlib热力图的创意绘制指南【第54篇—python:Matplotlib热力图】

news2024/11/28 14:33:19

文章目录

  • Matplotlib热力图的创意绘制指南
      • 1. 简介
      • 2. 基本热力图
      • 3. 自定义颜色映射
      • 4. 添加注释
      • 5. 不同形状的热力图
      • 6. 分块热力图
      • 7. 多子图热力图
      • 8. 3D热力图
      • 9. 高级颜色映射与颜色栏设置
      • 10. 热力图的动态展示
      • 11. 热力图的交互性
      • 12. 标准化数据范围
      • 13. 导出热力图
    • 总结:

Matplotlib热力图的创意绘制指南

热力图在数据可视化中广泛应用,而Matplotlib作为Python中最流行的绘图库之一,提供了丰富的功能来创建各种炫酷的热力图。本文将深入探讨Matplotlib绘制不同类型热力图的参数,并通过实例演示它们的应用。

1. 简介

热力图是通过颜色映射展示矩阵数据的一种有效方式。Matplotlib的imshow函数是一个强大的工具,用于创建各种热力图。在开始实例之前,让我们先了解一下主要的参数:

  • data: 要绘制的矩阵数据。
  • cmap: 颜色映射,决定了热力图中颜色的分布。
  • interpolation: 插值方法,影响热力图的平滑度。
  • vmin和vmax: 指定颜色映射的最小和最大值。

2. 基本热力图

首先,我们来绘制一个基本的热力图,展示数据集的整体分布:

import matplotlib.pyplot as plt
import numpy as np

data = np.random.random((10, 10))  # 生成随机矩阵数据

plt.imshow(data, cmap='viridis', interpolation='nearest')
plt.colorbar()

plt.title('基本热力图')
plt.show()

这个简单的例子中,我们使用了viridis颜色映射和nearest插值方法。

image-20240204002238552

3. 自定义颜色映射

Matplotlib支持多种内置的颜色映射,但我们也可以自定义颜色映射,以使热力图更加个性化。以下是一个自定义颜色映射的例子:

custom_cmap = plt.cm.get_cmap('coolwarm', 5)  # 从'coolwarm'中选择5个颜色

plt.imshow(data, cmap=custom_cmap, interpolation='bilinear')
plt.colorbar()

plt.title('自定义颜色映射')
plt.show()

4. 添加注释

在热力图中添加注释可以更清晰地传达数据的含义。我们可以使用annotate函数在热力图上标注数值:

fig, ax = plt.subplots()
im = ax.imshow(data, cmap='plasma', interpolation='bicubic')

for i in range(len(data)):
    for j in range(len(data[i])):
        text = ax.text(j, i, f'{data[i, j]:.2f}', ha='center', va='center', color='w')

plt.colorbar(im)

plt.title('带有注释的热力图')
plt.show()

5. 不同形状的热力图

Matplotlib还支持绘制不同形状的热力图,如圆形或椭圆形的点。以下是一个示例:

from matplotlib.patches import Ellipse

fig, ax = plt.subplots()
im = ax.imshow(data, cmap='YlGnBu', interpolation='bicubic')

# 添加椭圆形状的点
for i in range(len(data)):
    for j in range(len(data[i])):
        ellipse = Ellipse((j, i), 0.8, 0.8, edgecolor='w', facecolor='none')
        ax.add_patch(ellipse)

plt.colorbar(im)

plt.title('不同形状的热力图')
plt.show()

6. 分块热力图

有时候,我们希望突出显示矩阵中的某些块,以更加突出关键信息。我们可以通过使用imshowextent参数来实现这一目标:

fig, ax = plt.subplots()
block_data = np.random.random((5, 5))  # 生成块状数据

ax.imshow(block_data, cmap='Reds', interpolation='nearest', extent=[2, 7, 2, 7])
plt.colorbar()

plt.title('分块热力图')
plt.show()

image-20240204002304491

7. 多子图热力图

在某些情况下,我们可能需要在同一图中展示多个热力图,以进行比较或呈现不同方面的数据。这可以通过Matplotlib的subplot实现:

fig, axs = plt.subplots(1, 2, figsize=(10, 4))  # 一行两列的子图

# 第一个子图
axs[0].imshow(data, cmap='Blues', interpolation='nearest')
axs[0].set_title('子图1')

# 第二个子图
axs[1].imshow(data.T, cmap='Oranges', interpolation='bicubic')  # 转置数据以展示不同热力图
axs[1].set_title('子图2')

plt.show()

8. 3D热力图

Matplotlib还支持绘制3D热力图,这对于展示具有三维结构的数据非常有用:

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')

x, y = np.meshgrid(range(len(data)), range(len(data)))
ax.plot_surface(x, y, data, cmap='viridis')

ax.set_title('3D热力图')
plt.show()

9. 高级颜色映射与颜色栏设置

Matplotlib允许进一步探索颜色映射和颜色栏的高级设置,以满足更复杂的需求。以下是一个演示自定义颜色栏和添加颜色栏标签的例子:

fig, ax = plt.subplots()
im = ax.imshow(data, cmap='coolwarm', interpolation='nearest')

# 自定义颜色栏
cbar = plt.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.set_label('数据值', rotation=270, labelpad=15)

plt.title('高级颜色栏设置')
plt.show()

image-20240204002506344

10. 热力图的动态展示

有时,我们希望以动态方式展示数据的变化,这可以通过使用Matplotlib的FuncAnimation实现。以下是一个简单的动态热力图实例:

from matplotlib.animation import FuncAnimation

fig, ax = plt.subplots()
data_frames = [np.random.random((10, 10)) for _ in range(10)]  # 生成多帧数据

def update(frame):
    ax.clear()
    im = ax.imshow(data_frames[frame], cmap='Blues', interpolation='nearest')
    plt.title(f'动态热力图 - 帧 {frame}')

ani = FuncAnimation(fig, update, frames=len(data_frames), interval=500, repeat=False)
plt.show()

11. 热力图的交互性

为了使热力图更具交互性,可以使用Matplotlib的imshow结合mplcursors库实现数据点的悬停显示:

import mplcursors

fig, ax = plt.subplots()
im = ax.imshow(data, cmap='Greens', interpolation='nearest')

mplcursors.cursor(hover=True).connect("add", lambda sel: sel.annotation.set_text(f'{sel.artist.get_array()[sel.target.index]:.2f}'))

plt.title('交互式热力图')
plt.show()

这样,当鼠标悬停在热力图的数据点上时,会显示相应的数值。

image-20240204002444309

12. 标准化数据范围

有时,为了更清晰地显示数据的差异,我们可能需要标准化数据范围。这可以通过Normalize类来实现:

from matplotlib.colors import Normalize

normalized_data = Normalize()(data)  # 将数据标准化

fig, ax = plt.subplots()
im = ax.imshow(normalized_data, cmap='YlGnBu', interpolation='bicubic')
plt.colorbar(im, label='标准化值范围')

plt.title('标准化热力图')
plt.show()

13. 导出热力图

最后,我们可以通过Matplotlib将绘制的热力图导出为图像文件,以便进一步使用或分享:

fig, ax = plt.subplots()
im = ax.imshow(data, cmap='coolwarm', interpolation='nearest')
plt.colorbar(im)

plt.title('导出热力图')
plt.savefig('heatmap.png')

以上是一系列关于Matplotlib绘制不同种类炫酷热力图的示例和技巧。通过这些例子,我们深入了解了Matplotlib的强大功能,以及如何通过调整参数和应用不同的技巧,创建出丰富多彩、具有交互性和高级特性的热力图。希望这些实例对于您在数据可视化中的工作提供了有益的指导。

总结:

通过本文的介绍,我们深入探讨了Matplotlib库在绘制不同种类炫酷热力图时的多种技术和参数设置。以下是我们所学到的关键点:

  1. 基础知识: 我们了解了Matplotlib中绘制热力图的基本参数,如datacmapinterpolationvminvmax,这些参数对热力图的外观和可读性有着重要影响。

  2. 常见热力图类型: 通过实例,我们探讨了基本热力图、自定义颜色映射、注释、不同形状的热力图、分块热力图、多子图热力图、3D热力图等常见热力图类型的绘制方法。

  3. 高级设置: 我们学习了如何进行高级颜色映射与颜色栏设置,以及如何通过调整颜色栏标签、动态展示、交互性、标准化数据范围等技巧,使热力图更具个性和可读性。

  4. 实用技巧: 我们介绍了一些实用的技巧,如添加颜色栏、导出热力图为图像文件、热力图的交互显示等,以提高图表的可用性和可分享性。

通过这些实例,读者可以更加灵活地应用Matplotlib库绘制符合自身需求的炫酷热力图。无论是在数据科学、机器学习可视化,还是其他领域的数据分析中,Matplotlib都是一个强大的工具,通过调整参数和灵活运用不同的技巧,可以创建出引人注目的数据可视化效果。希望本文的内容对读者在使用Matplotlib时有所启发,促使更多创造性和有趣的数据可视化工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】- 继承(继承定义!!基本格式!切片概念!!菱形继承详解!)

继承 了解继承继承的定义基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承和友元菱形继承和菱形虚拟继承 了解继承 继承机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保 持原有类特性的基础上进行扩展,增加功能&a…

【lesson10】高并发内存池细节优化

文章目录 大于256KB的大块内存申请问题大于256KB的大块释放申请问题使用定长内存池脱离使用new释放对象时优化为不传对象大小完整版代码Common.hObjectPool.hThreadCache.hThreadCache.cppConcurrentAlloc.hCentralCache.hCentralCache.cppPageCache.hPageCache.cpp 大于256KB的…

centos 7.7 离线安装docker

centos 7.7 离线安装docker Index of linux/static/stable/x86_64/https://download.docker.com/linux/static/stable/x86_64/ 【1】离线下载docker 压缩包上传至 /usr/local 目录,解压缩,并复制到 /usr/bin/ 目录中。 cd /usr/local/tar -zxvf docke…

C++:CSDN云服务器3.0

废话一会儿 终于,CSDN云服务器又更了 事情是这样的: 我的一个室友,知道了我的CSDN云服务器,觉得感兴趣,就让我开发一个3.0版本的。我媜了好久好久,搞出来个怪名堂,刷块刷得不行。他表示这简直…

List的模拟实现 迭代器

———————————————————— list与vector相比,插入、删除等操作实现的成本非常低,如果在C语言阶段熟悉理解过链表,那么现在实现起来list就显得比较简单,可以说操作层面上比vector更简洁,因为list没有扩…

Leetcode—38. 外观数列【中等】

2024每日刷题&#xff08;111&#xff09; Leetcode—38. 外观数列 实现代码 class Solution { public:string countAndSay(int n) {string ans "1";while(--n) {string next;for(int i 0; i < ans.size(); i) {int cnt 1;char c ans[i];while(i 1 < an…

platfrom tree架构下实现3-Wire驱动(DS1302)

目录 概述 1 认识DS1302 1.1 DS1302 硬件电路 1.2 操作DS1302 1.3 注意要点 2 IO引脚位置 3 添加驱动节点 3.1 更新内核.dts 3.2 更新板卡.dtb 4 驱动程序实现 4.1 编写驱动程序 4.2 编写驱动程序的Makefile 4.3 安装驱动程序 5 验证驱动程序 5.1 编写测试程序…

机器学习数据预处理--连续变量分箱

文章目录 原理概念等宽分箱等频分箱聚类分箱有监督分箱 原理概念 连续变量分箱即对连续型字段进行离散化处理&#xff0c;也就是将连续型字段转化为离散型字段。连续字段的离散过程如下所示&#xff1a; 连续变量的离散过程也可以理解为连续变量取值的重新编码过程&#xff0c…

Qt环境搭建+简单程序实现

Qt是什么 Qt是一个跨平台的C图形用户界面应用程序框架。 框架的本质就是一群大佬发明的让菜鸡写出来的代码也也比较规范 也就是限制程序员的自由&#xff0c;让程序员写出来的代码规范。 库和框架有相似性。 库是被程序员调用的&#xff0c;&#xff08;程序员是主体&…

PyTorch 2.2 中文官方教程(二)

在 YouTube 上介绍 PyTorch PyTorch 介绍 - YouTube 系列 原文&#xff1a;pytorch.org/tutorials/beginner/introyt.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 介绍 || 张量 || 自动微分 || 构建模型 || TensorBoard 支持 || 训练模型 || 模型理解 作者&a…

05 - python操作JSON

JSON认识 JSON&#xff0c;一种轻量级的文本数据交换格式&#xff0c;比XML更小更快&#xff0c;更易解析&#xff0c;爬虫经常要获取接口数据&#xff0c;接口数据就是JSON格式的。 格式示例 # 格式1&#xff1a;JSON 对象 {"name": "李嘉图", "a…

pytorch索引和切片

目录 1. 按索引方式取数据2. 以python切片方式取数据3. 指定index取数据4. ...代表除其前后指定维度外的所有维度5. masked_select() 使用掩码选择元素6. take 矩阵打平后选取 1. 按索引方式取数据 a[0,0,2,4] 其中0&#xff0c;0&#xff0c;2&#xff0c;4是索引从0开始 2. …

3.0 Hadoop 概念

本章着重介绍 Hadoop 中的概念和组成部分&#xff0c;属于理论章节。如果你比较着急可以跳过。但作者不建议跳过&#xff0c;因为它与后面的章节息息相关。 Hadoop 整体设计 Hadoop 框架是用于计算机集群大数据处理的框架&#xff0c;所以它必须是一个可以部署在多台计算机上…

灵活应对:策略模式在软件设计中的应用

策略模式是一种行为型设计模式&#xff0c;它允许定义一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以互换使用。策略模式让算法的变化独立于使用算法的客户端&#xff0c;使得在不修改原有代码的情况下切换或扩展新的算法成为可能。 使用策略模式的场景包…

无人机遥感技术在地质灾害监测应用分析,多旋翼无人机应急救援技术探讨

地质灾害是指在地球的发展演变过程中&#xff0c; 由各种自然地质作用和人类活动所形成的灾害性地质事件。给人民的生命和财产安全带来严重威胁&#xff0c;因此有必要开展地质灾害预测预报、灾害应急和风险区划 遥感技术的快速发展为我们提供了一种获取实时灾害信息的可靠手段…

使用WPS制作三线表

点击边框和底纹点击1、2、3、4并且应用于表格点击确定 再次选中表格点击右键表格属性选择边框和底纹 选中表格第一行右键点击表格属性选择边框和底纹 如果表格中存在虚线

离线数仓-数据治理

目录 一、前言 1.1 数据治理概念 1.2 数据治理目标 1.3 数据治理要解决的问题 1.3.1 合规性 元数据合规性 数据质量合规性 数据安全合规性 1.3.2 成本 存储资源成本 计算资源成本 二、数据仓库发展阶段 2.1 初始期 2.2 扩张期 2.3 缓慢发展期 2.4 变革期 三、…

基于hadoop+spark的大规模日志的一种处理方案

概述: CDN服务平台上有为客户提供访问日志下载的功能,主要是为了满足在给CDN客户提供服务的过程中,要对所有的记录访问日志,按照客户定制的格式化需求以小时为粒度(或者其他任意时间粒度)进行排序、压缩、打包,供客户进行下载,以便进行后续的核对和分析的诉求。而且CDN…

判断和循环 - switch语句和练习

switch语句格式 switch(表达式) {case 值1:语句体1;break;case 值2:语句体2;break;...default:语句体n1;break; }执行流程&#xff1a; 首先计算表达式的值。依次和case后面的值进行比较&#xff0c;如果有对应的值&#xff0c;就会执行相应的语句&#xff0c;在执行的过程中…

vue项目线上页面刷新报404 解决方法

一.修改配置文件 nginx.conf &#xff0c;并重新加载或重启 我的nginx版本是1.9.9 location / {try_files $uri $uri/ /index.html; }原因&#xff1a; 打包后的dist下只有一个 index.html 文件及一些静态资源&#xff0c;这个是因为Vue是单页应用(SPA)&#xff0c;只有一个…