3.0 Hadoop 概念

news2025/1/16 14:02:15

本章着重介绍 Hadoop 中的概念和组成部分,属于理论章节。如果你比较着急可以跳过。但作者不建议跳过,因为它与后面的章节息息相关。

Hadoop 整体设计

Hadoop 框架是用于计算机集群大数据处理的框架,所以它必须是一个可以部署在多台计算机上的软件。部署了 Hadoop 软件的主机之间通过套接字 (网络) 进行通讯。

Hadoop 主要包含 HDFS 和 MapReduce 两大组件,HDFS 负责分布储存数据,MapReduce 负责对数据进行映射、规约处理,并汇总处理结果。

Hadoop 框架最根本的原理就是利用大量的计算机同时运算来加快大量数据的处理速度。例如,一个搜索引擎公司要从上万亿条没有进行规约的数据中筛选和归纳热门词汇就需要组织大量的计算机组成集群来处理这些信息。如果使用传统数据库来处理这些信息的话,那将会花费很长的时间和很大的处理空间来处理数据,这个量级对于任何单计算机来说都变得难以实现,主要难度在于组织大量的硬件并高速地集成为一个计算机,即使成功实现也会产生昂贵的维护成本。

Hadoop 可以在多达几千台廉价的量产计算机上运行,并把它们组织为一个计算机集群。

一个 Hadoop 集群可以高效地储存数据、分配处理任务,这样会有很多好处。首先可以降低计算机的建造和维护成本,其次,一旦任何一个计算机出现了硬件故障,不会对整个计算机系统造成致命的影响,因为面向应用层开发的集群框架本身就必须假定计算机会出故障。

HDFS

Hadoop Distributed File System,Hadoop 分布式文件系统,简称 HDFS。

HDFS 用于在集群中储存文件,它所使用的核心思想是 Google 的 GFS 思想,可以存储很大的文件。

在服务器集群中,文件存储往往被要求高效而稳定,HDFS同时实现了这两个优点。

HDFS 高效的存储是通过计算机集群独立处理请求实现的。因为用户 (一半是后端程序) 在发出数据存储请求时,往往响应服务器正在处理其他请求,这是导致服务效率缓慢的主要原因。但如果响应服务器直接分配一个数据服务器给用户,然后用户直接与数据服务器交互,效率会快很多。

数据存储的稳定性往往通过"多存几份"的方式实现,HDFS 也使用了这种方式。HDFS 的存储单位是块 (Block) ,一个文件可能会被分为多个块储存在物理存储器中。因此 HDFS 往往会按照设定者的要求把数据块复制 n 份并存储在不同的数据节点 (储存数据的服务器) 上,如果一个数据节点发生故障数据也不会丢失。

HDFS 的节点

HDFS 运行在许多不同的计算机上,有的计算机专门用于存储数据,有的计算机专门用于指挥其它计算机储存数据。这里所提到的"计算机"我们可以称之为集群中的节点。

命名节点 (NameNode)

命名节点 (NameNode) 是用于指挥其它节点存储的节点。任何一个"文件系统"(File System, FS) 都需要具备根据文件路径映射到文件的功能,命名节点就是用于储存这些映射信息并提供映射服务的计算机,在整个 HDFS 系统中扮演"管理员"的角色,因此一个 HDFS 集群中只有一个命名节点。

数据节点 (DataNode)

数据节点 (DataNode) 使用来储存数据块的节点。当一个文件被命名节点承认并分块之后将会被储存到被分配的数据节点中去。数据节点具有储存数据、读写数据的功能,其中存储的数据块比较类似于硬盘中的"扇区"概念,是 HDFS 存储的基本单位。

副命名节点 (Secondary NameNode)

副命名节点 (Secondary NameNode) 别名"次命名节点",是命名节点的"秘书"。这个形容很贴切,因为它并不能代替命名节点的工作,无论命名节点是否有能力继续工作。它主要负责分摊命名节点的压力、备份命名节点的状态并执行一些管理工作,如果命名节点要求它这样做的话。如果命名节点坏掉了,它也可以提供备份数据以恢复命名节点。副命名节点可以有多个。

MapReduce

MapReduce 的含义就像它的名字一样浅显:Map 和 Reduce (映射和规约) 。

大数据处理

大量数据的处理是一个典型的"道理简单,实施复杂"的事情。之所以"实施复杂",主要是大量的数据使用传统方法处理时会导致硬件资源 (主要是内存) 不足。

现在有一段文字 (真实环境下这个字符串可能长达 1 PB 甚至更多) ,我们执行一个简单的"数字符"统计,即统计出这段文字中所有出现过的字符出现的数量:

AABABCABCDABCDE

统计之后的结果应该是:

字符出现次数
A5
B4
C3
D2
E1

统计的过程实际上很简单,就是每读取一个字符就要检查表中是否已经有相同的字符,如果没有就添加一条记录并将记录值设置为 1 ,如果有的话就直接将记录值增加 1。

但是如果我们将这里的统计对象由"字符"变成"词",那么样本容量就瞬间变得非常大,以至于一台计算机可能难以统计数十亿用户一年来用过的"词"。

在这种情况下我们依然有办法完成这项工作——我们先把样本分成一段段能够令单台计算机处理的规模,然后一段段地进行统计,每执行完一次统计就对映射统计结果进行规约处理,即将统计结果合并到一个更庞大的数据结果中去,最终就可以完成大规模的数据规约。

在以上的案例中,第一阶段的整理工作就是"映射",把数据进行分类和整理,到这里为止,我们可以得到一个相比于源数据小很多的结果。第二阶段的工作往往由集群来完成,整理完数据之后,我们需要将这些数据进行总体的归纳,毕竟有可能多个节点的映射结果出现重叠分类。这个过程中映射的结果将会进一步缩略成可获取的统计结果。

MapReduce 概念

我在 IBM 的网站上找到了一篇 MapReduce 文章,地址:What is Apache MapReduce? | IBM 。现在我改编其中的一个 MapReduce 的处理案例来介绍 MapReduce 的原理细节以及相关概念。

这是一个非常简单的 MapReduce 示例。无论需要分析多少数据,关键原则都是相同的。

假设有 5 个文件,每个文件包含两列,分别记录一个城市的名称以及该城市在不同测量日期记录的相应温度。城市名称是键 (Key) ,温度是值 (Value) 。例如:(厦门,20)。现在我们要在所有数据中找到每个城市的最高温度 (请注意,每个文件中可能出现相同的城市)。

使用 MapReduce 框架,我们可以将其分解为 5 个映射任务,其中每个任务负责处理五个文件中的一个。每个映射任务会检查文件中的每条数据并返回该文件中每个城市的最高温度。

例如,对于以下数据:

城市温度
厦门12
上海34
厦门20
上海15
北京14
北京16
厦门24

上述数据的一个映射任务产生的结果如下所示:

城市最高温度
厦门24
上海34
北京16

假设其他四个映射器任务产生以下结果:

城市最高温度
厦门17
杭州25
上海29
北京36
厦门30
杭州17
上海31
北京35
厦门18
杭州17
上海17
北京27
厦门28
杭州18
上海14
北京27

所有这 5 个结果将被输入到 Reduce 任务中,该任务组合输入结果并输出每个城市的单个值,产生如下的最终结果:

城市最高温度
厦门30
上海34
北京36
杭州25

打个比方,你可以把 MapReduce 想象成人口普查,人口普查局会把若干个调查员派到每个城市。每个城市的每个人口普查人员都将统计该市的部分人口数量,然后将结果汇总返回首都。在首都,每个城市的统计结果将被规约到单个计数(各个城市的人口),然后就可以确定国家的总人口。这种人到城市的映射是并行的,然后合并结果(Reduce)。这比派一个人以连续的方式清点全国中的每一个人效率高得多。

希望你也学会了,更多编程源码模板请来二当家的素材网:https://www.erdangjiade.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

灵活应对:策略模式在软件设计中的应用

策略模式是一种行为型设计模式,它允许定义一系列算法,并将每个算法封装起来,使它们可以互换使用。策略模式让算法的变化独立于使用算法的客户端,使得在不修改原有代码的情况下切换或扩展新的算法成为可能。 使用策略模式的场景包…

无人机遥感技术在地质灾害监测应用分析,多旋翼无人机应急救援技术探讨

地质灾害是指在地球的发展演变过程中, 由各种自然地质作用和人类活动所形成的灾害性地质事件。给人民的生命和财产安全带来严重威胁,因此有必要开展地质灾害预测预报、灾害应急和风险区划 遥感技术的快速发展为我们提供了一种获取实时灾害信息的可靠手段…

使用WPS制作三线表

点击边框和底纹点击1、2、3、4并且应用于表格点击确定 再次选中表格点击右键表格属性选择边框和底纹 选中表格第一行右键点击表格属性选择边框和底纹 如果表格中存在虚线

离线数仓-数据治理

目录 一、前言 1.1 数据治理概念 1.2 数据治理目标 1.3 数据治理要解决的问题 1.3.1 合规性 元数据合规性 数据质量合规性 数据安全合规性 1.3.2 成本 存储资源成本 计算资源成本 二、数据仓库发展阶段 2.1 初始期 2.2 扩张期 2.3 缓慢发展期 2.4 变革期 三、…

基于hadoop+spark的大规模日志的一种处理方案

概述: CDN服务平台上有为客户提供访问日志下载的功能,主要是为了满足在给CDN客户提供服务的过程中,要对所有的记录访问日志,按照客户定制的格式化需求以小时为粒度(或者其他任意时间粒度)进行排序、压缩、打包,供客户进行下载,以便进行后续的核对和分析的诉求。而且CDN…

判断和循环 - switch语句和练习

switch语句格式 switch(表达式) {case 值1:语句体1;break;case 值2:语句体2;break;...default:语句体n1;break; }执行流程: 首先计算表达式的值。依次和case后面的值进行比较,如果有对应的值,就会执行相应的语句,在执行的过程中…

vue项目线上页面刷新报404 解决方法

一.修改配置文件 nginx.conf ,并重新加载或重启 我的nginx版本是1.9.9 location / {try_files $uri $uri/ /index.html; }原因: 打包后的dist下只有一个 index.html 文件及一些静态资源,这个是因为Vue是单页应用(SPA),只有一个…

《Python 网络爬虫简易速速上手小册》第6章:Python 爬虫的优化策略(2024 最新版)

文章目录 6.1 提高爬虫的效率6.1.1 重点基础知识讲解6.1.2 重点案例:使用 asyncio 和 aiohttp 实现异步爬虫6.1.3 拓展案例 1:利用 Scrapy 的并发特性6.1.4 拓展案例 2:使用缓存来避免重复请求 6.2 处理大规模数据爬取6.2.1 重点基础知识讲解…

新加坡大带宽服务器优势特点

随着互联网技术的不断进步,大带宽服务器在满足高速数据传输需求方面发挥着越来越重要的作用。新加坡,作为全球互联网基础设施的重要枢纽,其大带宽服务器在全球范围内备受关注。本文将深入探讨新加坡大带宽服务器的优势特点,以及如…

蓝桥杯每日一题----区间dp

前言 暂时没啥好说的,直接进入正题吧 引入 涂色PAINT 读题发现要求的是使一段区间满足要求的最小操作次数,考虑用动态规划去做。 第一步:考虑缩小规模,这里的规模其实就是区间长度,那么dp数组应该可以表示某个区间&…

白话 Transformer 原理-以 BERT 模型为例

白话 Transformer 原理-以 BERT 模型为例 第一部分:引入 1-向量 在数字化时代,数学运算最小单位通常是自然数字,但在 AI 时代,这个最小单元变成了向量,这是数字化时代计算和智能化时代最重要的差别之一。 举个例子:银行在放款前,需要评估一个人的信用度;对于用户而…

解析Python中HTTP代理的常见问题

在Python编程中,HTTP代理是一个经常被提及的概念,尤其在处理网络请求和爬虫时。但与此同时,使用HTTP代理也经常会遇到一些令人头疼的问题。接下来,就让我们一起解析一下Python中使用HTTP代理时常见的那些问题。 1. 代理服务器无响…

06、全文检索 -- Solr -- Solr 全文检索之在图形界面管理 Core 的 Schema(演示对 普通字段、动态字段、拷贝字段 的添加和删除)

目录 Solr 全文检索之管理 Schema使用Web控制台管理Core的Schema3 种 字段解释:Field:普通字段Dynamic Field:动态字段Copy Field:拷贝字段 演示:添加 普通字段( Field )演示:添加 动…

CSS写渐变边框线条

box-sizing: border-box; border-top: 1px solid; border-image: linear-gradient(to right, red, blue) 1;

建筑行业数字化:从设计到运维的全面革新

随着科技的快速发展,数字化技术在各行各业中的应用越来越广泛。建筑行业作为传统产业,也在积极拥抱数字化技术,以提高效率、降低成本并实现可持续发展。本文将主要探讨建筑行业数字化的几个关键领域,包括建筑设计数字化、施工管理…

CDH6.3.2 多 Spark 版本共存

一 部署Spark客户端 1.1 部署spark3客户端 tar -zxvf spark-3.3.1-bin-3.0.0-cdh6.3.2.tgz -C /opt/cloudera/parcels/CDH/lib cd /opt/cloudera/parcels/CDH/lib mv spark-3.3.1-bin-3.0.0-cdh6.3.2/ spark3将 CDH 集群的 spark-env.sh 复制到 /opt/cloudera/parcels/CDH/li…

《Python 网络爬虫简易速速上手小册》第3章:Python 网络爬虫的设计(2024 最新版)

文章目录 3.1 设计高效的爬取策略3.1.1 重点基础知识讲解3.1.2 重点案例:使用 Scrapy 框架进行并发爬取3.1.3 拓展案例 1:使用 Requests 和 gevent 进行异步请求3.1.4 拓展案例 2:利用缓存机制避免重复请求 3.2 管理爬虫的请求频率3.2.1 重点…

【AIGC核心技术剖析】AI生成音乐:MAGNeT一种直接操作多个音频令牌流的掩码生成序列建模方法

MAGNeT是一种直接操作多个音频令牌流的掩码生成序列建模方法。与先前的工作不同,MAGNeT由一个单阶段、非自回归的变压器组成。在训练期间,论文使用掩码调度器预测从掩码令牌中获得的跨度,而在推断期间,论文通过多个解码步骤逐渐构…

微信小程序 使用npm包

1. 微信小程序 使用npm包 1.1. npm初始化 如果你的小程序项目没有安装过npm包的话,你需要先初始化npm npm init1.2. 安装npm包 这里以vant-weapp(小程序UI组件库)为例: npm i vant-weapp -S --production1.3. npm包构建 1.3.1. 点击微信开发者工具右…

怎样理解Vue单向数据流

在前端开发中,数据流是一个非常重要的概念。Vue.js作为一种流行的前端框架,采用了单向数据流的架构,旨在简化开发过程并提高应用的可维护性。本文将探讨Vue单向数据流的含义以及它的使用方法。 什么是单向数据流? 在Vue中&#…