【python】python课设 天气预测数据分析及可视化(完整源码)

news2025/1/11 0:06:33

目录

      • 1. 前言
      • 2. 项目结构
      • 3. 详细介绍
        • 3.1 main.py
        • 3.2 GetModel.py
        • 3.3 GetData.py
        • 3.4 ProcessData.py
        • 3.5天气网.html
      • 4. 成果展示

1. 前言

本文介绍了天气预测数据分析及可视化的实现过程使用joblib导入模型和自定义模块GetModel获取模型,输出模型的MAE。使用pyecharts库进行天气数据的可视化,展示南京当日天气数据的表格。总体来说,该文叙述通过调用自定义模块和第三方库,获取天气数据、进行模型预测,并使用 pyecharts 实现了可视化,展示了南京的实时天气、未来一周的天气趋势以及全国各省会城市今日的天气情况。

2. 项目结构

在这里插入图片描述

  • 天气数据的来源
    GetData文件使用python爬虫技术,爬取南京和全国的天气信息数据
    爬取网站:http://tianqi.2345.com/wea_history/58238.htm
    ProcessDate文件对爬取的天气数据进行了预处理
    几个CSV文件保存的是爬取后并经过处理的数据
  • 天气数据的预测
    GetModel文件通过训练预测模型来预测长春近一周的天气,该文件利用Joblib将模型保存到本地
    Main文件是项目主文件,通过运行该文件即可运行整个项目,该文件前部分获取保存到本地的预测模型来进行预测,并将预测结果打印到控制台
  • 天气数据的可视化
    Main文件后部分实现了天气数据的可视化

3. 详细介绍

3.1 main.py
import joblib
import datetime as DT
import GetModel

from pyecharts.charts import Bar, Grid, Line, Tab
from pyecharts.components import Table
from pyecharts.options import ComponentTitleOpts
from pyecharts.charts import Map
from pyecharts import options as opts


# 训练并保存模型并返回MAE
import ProcessData
import GetData

#import GetModel
r = GetModel.getModel()
print("MAE:", r[0])
# 读取保存的模型
model = joblib.load('Model.pkl')

# 最终预测结果
preds = model.predict(r[1])

print("未来7天预测")
for a in range(1, 8):
    #import datetime as DT
    today = DT.datetime.now()
    time = (today + DT.timedelta(days=a)).date()
    print(time.year, '.', time.month, '.', time.day,
          '最高气温', preds[a][0],
          '最低气温', preds[a][1],
          "空气质量", preds[a][2],
          )


'''
数据可视化代码
通过爬虫获取到的天气信息,利用pyecharts框架来实现绘图功能,实现天气的可视化
'''


'''
可视化当日南京天气数据
'''
# 获取当日南京天气数据
today_data = GetData.getToday(58238)
headers_ = ["日期", "最高温", "最低温", "天气", "风力风向", "空气质量指数"]
rows_ = [
    [today_data['日期'].values[0], today_data['最高温'].values[0], today_data['最低温'].values[0],
     today_data['天气'].values[0], today_data['风力风向'].values[0], today_data['空气质量指数'].values[0]],
]
def table_main() ->Table:
  c=(
    Table()
    .add(headers_, rows_)
    .set_global_opts(
        title_opts=ComponentTitleOpts(title="", subtitle="")
    )
  )
  return c


'''
可视化当日南京近一周的天气质量和气温
'''
# 获取最近七天的天气数据
week_data=GetData.getWeek(58238)
# 最近南京一周的天气和空气
airs = ProcessData.setAir(week_data)
low_temperature = ProcessData.setLowTemp(week_data)
high_temperature = ProcessData.setHighTemp(week_data)

def grid_week() -> Grid:
    x_data = ["前七天", "前六天", "前五天", "前四天", "前三天", "前两天", "前一天"]
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "最高温",
           high_temperature,
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "最低温",
            low_temperature,
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="最高温",
                type_="value",
                min_=-30,
                max_=40,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="天气质量指数",
                min_=0,
                max_=300,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="最低温",
                min_=-30,
                max_=40,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            ),
            title_opts=opts.TitleOpts(title=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )

    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "天气质量指数 "
            "优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
            airs,
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )

    bar.overlap(line)
    return Grid().add(
        bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
    )

'''
可视化预测南京的天气
'''

# 预测南京一周的天气和空气
predict_airs=[]
predict_low_temperature=[]
predict_high_temperature=[]
x_data=[]
for i in range(0,7):
    predict_high_temperature.append(round(preds[i][0],4))
    predict_low_temperature.append(round(preds[i][1],4))
    predict_airs.append(round(preds[i][2],4))
    x_data.append((today + DT.timedelta(days=i)).date())

def grid_week_predict() -> Grid:
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "最高温",
           predict_high_temperature,
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "最低温",
            predict_low_temperature,
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="最高温",
                type_="value",
                min_=-30,
                max_=40,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="天气质量指数",
                min_=0,
                max_=300,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="最低温",
                min_=-30,
                max_=40,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            ),
            title_opts=opts.TitleOpts(title=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )

    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "天气质量指数 "
            "优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
            predict_airs,
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )

    bar.overlap(line)
    return Grid().add(
        bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
    )




'''
获取全国各省会城市今日的天气情况
'''
china_today = GetData.getChinaToday()
china_today.to_csv("china_today.csv")


def setData(str,i):
    return china_today[i:i+1][str].values[0]
provinces = [
    "黑龙江","内蒙古", "吉林",  "辽宁", "河北","天津","山西", "陕西",
    "甘肃","宁夏", "青海","新疆", "西藏", "四川", "重庆", "山东", "河南",
    "江苏", "安徽","湖北", "浙江", "福建", "江西", "湖南", "贵州",
    "广西", "海南","上海","广东","云南","台湾"
]
rows=[]
for i in range(0,31):
    rows.append([provinces[i],setData('最低温',i),setData('最高温',i),setData('天气',i),setData('风力风向',i)])


def today_china_table() ->Table:
  c=(
    Table()
    .add(["省份","最低温","最高温", "天气", "风力风向"], rows)
    .set_global_opts(
     title_opts=ComponentTitleOpts(title="今日全国各省会城市的天气信息表", subtitle="")
  )
  )
  return c


china_airs = ProcessData.setAir(china_today)
airs_list=[]
for i in range(0,31):
    airs_list.append(china_airs[i])



# 分页图的标题
tab = Tab()
tab.add(table_main(), "今日南京")
tab.add(grid_week_predict(), "未来南京")
tab.add(grid_week(), "近一周南京")
tab.add(today_china_table(), "今日中国天气")
tab.render("天气网.html")


'''
 
    all_high_t = []
    all_low_t = []
    all_air = []
    all_high_t.append(preds[a][0])
    all_low_t.append(preds[a][1])
    all_air.append(preds[a][2])
temp = {"最高温": all_high_t, "最低温": all_low_t, "空气质量": all_air}
# 绘画折线图
plt.plot(range(1, 7), temp["最高温"], color="red", label="high_t")
plt.plot(range(1, 7), temp["最低温"], color="blue", label="low_t")
plt.legend()  # 显示图例
plt.ylabel("Temperature(°C)")
plt.xlabel("day")
# 显示
plt.show()
plt.plot(range(1, 7), temp["空气质量"], color="black", label="air")
plt.legend()
plt.ylabel(" ")
plt.xlabel("day")
plt.show()
'''
3.2 GetModel.py

from sklearn.ensemble import RandomForestRegressor
import joblib
from sklearn.metrics import mean_absolute_error
import ProcessData


# 训练并保存模型
def getModel(a="Model.pkl"):
    
    # 获取测试集、训练集、验证集
    [X_train, X_valid, y_train, y_valid, X_test] = ProcessData.ProcessData()

    # 随机树森林模型
    model = RandomForestRegressor(random_state=0, n_estimators=1001)
    # 训练模型
    model.fit(X_train, y_train)
    # 预测模型
    preds = model.predict(X_valid)
    # 用MAE评估
    score = mean_absolute_error(y_valid, preds)
    # 保存模型到本地
    joblib.dump(model, a)
    # 返回MAE
    return [score, X_test]

3.3 GetData.py
import requests
import pandas as pd
import datetime


# 提供年份和月份,爬取对应的的表格数据
url = "http://tianqi.2345.com/Pc/GetHistory"
headers = {
   "User-Agent":
       """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32"""
}

def craw_table(id,year,month):
    params = {
        "areaInfo[areaId]": id,
        "areaInfo[areaType]": 2,
        "date[year]": year,
        "date[month]": month
    }
    resq = requests.get(url, headers=headers, params=params)
    data = resq.json()["data"]
    # data frame
    df = pd.read_html(data)[0]
    return df


# 输入城市id,爬取该城市今日的天气数据
def getToday(id):
    # 获取当前年份和月份
    today = datetime.datetime.today()
    year = today.year
    month = today.month
    # 获取当日南京天气数据
    month_data =craw_table(id, year, month)
    return month_data.tail(1)

# 输入城市id,爬取该城市近七周的天气数据
def getWeek(id):
    # 获取当前年份和月份
    today = datetime.datetime.today()
    year = today.year
    month = today.month
    # 获取当日南京天气数据
    month_data =craw_table(id, year, month)
    return month_data.tail(7)

# 爬取全国各个省会城市的今日的天气数据
def getChinaToday():
    ids=[50953, 53463,58238,54342,53698,54527,53772,57036 ,52889,53614,52866,51463,
          55591, 56294, 57516,54823,57083,58238, 58321, 57494, 58457,58847,58606,
          57687,57816 ,59431,59758 ,58362 ,59287,56778,59554]
    list=[]
    for i in ids:
        df=getToday(i)
        list.append(df)
    return pd.concat(list).reset_index(drop=True)

# 获取南京最近3年的天气数据,用于预测
def getYears():
    today = datetime.datetime.today()
    df_list = []
    for year in range(today.year-5, today.year):
      for month in range(1, 13):
          df = craw_table(58238,year, month)
          df_list.append(df)

    for month in range(1,today.month+1):
        df = craw_table(58238, today.year, month)
        df_list.append(df)
     # 多年数据合并
    return pd.concat(df_list).reset_index(drop=True)

# 传入一个时间范围,获取某个时间范围的天气数据
def getPredictDate(year0,month0,day0,year1,month1,day1):
    id=58238
    date_list=[]
    if month0!=month1:
      date0=craw_table(id,year0,month0)
      date_ago=date0[day0-1:]
      date1 = craw_table(id,year1, month1)
      date_pre = date1[:day1]

      date_list.append(date_ago)
      date_list.append(date_pre)
      date=pd.concat(date_list).reset_index(drop=True)
    else:
      date0 = craw_table(id, year0, month0)
      date=date0[day0-1:day1]
    return date
3.4 ProcessData.py
from calendar import isleap

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
import GetData
import datetime as DT
'''
处理预测数据
'''


def setAir(week_data):
    airs = []
    for i in week_data['空气质量指数']:
        if isinstance(i, float) or pd.isna(i):
            airs.append(7)  # 或者你偏好的缺失数据的任何默认值
        elif '-' in str(i):
            airs.append(7)
        else:
            i = str(i).split(' ')[0]
            airs.append(int(i))
    return airs

# 气温数据处理:去掉数据的单位°并把数据变为整形
def setHighTemp(week_data):
    temperature = []
    for i in week_data['最高温']:
        i = i.split('°')[0]
        temperature.append(int(i))
    return temperature

def setLowTemp(week_data):
    temperature = []
    for i in week_data['最低温']:
        i = i.split('°')[0]
        temperature.append(int(i))
    return temperature

# 处理天气数据,为天气状态编码
def setCondition(week_data):
    # 天气状况编码
  flag = []
  for StringData in week_data['最低温']:
    if '晴' in str(StringData):
        flag.append(1)
    elif '多云' in str(StringData):
        flag.append(2)
    elif '阴' in str(StringData):
        flag.append(3)
    elif '雨' in str(StringData):
        flag.append(4)
    elif '雪' in str(StringData):
        flag.append(5)
    elif '雾' in str(StringData) or '霾' in str(StringData):
        flag.append(6)
    elif  '扬沙' in str(StringData):
        flag.append(7)
    else:
        flag.append(-1)
    return flag

def process(date):
   date['最高温']=setHighTemp(date)
   date['最低温']=setLowTemp(date)
   date['空气质量指数']=setAir(date)
   date1=date.drop('天气', axis=1)
   date2=date1.drop('风力风向',axis=1)
   return date2

#原来
def write(years, months,c):
 
    # 取现在日期
    today = DT.datetime.today()
    # 闰年片段
    st = isleap(today.year)

    week_ago = (today - DT.timedelta(days=months[0])).date()
    
    week_pre = (today + DT.timedelta(days=months[1])).date()
    if week_ago.month + week_pre.month == 3 or week_ago.month + week_pre.month == 5:
        if week_ago.month == 2 and not st == isleap(today.year - years[0]):
            if st:
                # 今年是,去年或未来不是,所以-1
                week_ago -= DT.timedelta(days=1)
            else:
                # 今年不是,去年或未来是,所以+1
                week_ago += DT.timedelta(days=1)
   
    # 爬取数据
    id =58238
    # 取到预处理后的用来预测的数据
    date0 = GetData.getPredictDate(week_ago.year-years[0],week_ago.month,week_ago.day,week_pre.year-years[1],week_pre.month,week_pre.day)
    date_=process(date0).set_index("日期")
    date_.to_csv(c)





# 功能: 对用来预测的数据进行预处理

def ProcessData():

    # 写入csv
    write([1,1], [14, 0], "date_train.csv")
    write([1,1],  [0, 14], "date_valid.csv")
    write([0,0], [14, 0], "date_test.csv")

    X_test = pd.read_csv("date_test.csv", index_col="日期", parse_dates=True)
    # 读取测试集和验证集
    X = pd.read_csv("date_train.csv", index_col="日期", parse_dates=True)
    y = pd.read_csv("date_valid.csv", index_col="日期", parse_dates=True)

    my_imputer = SimpleImputer()
    # train_test_split()是sklearn包的model_selection模块中提供的随机划分训练集和测试集的函数;
    # 使用train_test_split函数可以将原始数据集按照一定比例划分训练集和测试集对模型进行训练

    X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)

    imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train))
    imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid))
    imputed_X_train.columns = X_train.columns
    imputed_X_valid.columns = X_valid.columns
    imputed_y_train = pd.DataFrame(my_imputer.fit_transform(y_train))
    imputed_y_valid = pd.DataFrame(my_imputer.transform(y_valid))
    imputed_y_train.columns = y_train.columns
    imputed_y_valid.columns = y_valid.columns
    imputed_X_test = pd.DataFrame(my_imputer.fit_transform(X_test))

    # 返回分割后的数据集
    return [imputed_X_train, imputed_X_valid, imputed_y_train, imputed_y_valid, imputed_X_test]



3.5天气网.html
<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>Awesome-pyecharts</title>
                <script type="text/javascript" src="https://assets.pyecharts.org/assets/v5/echarts.min.js"></script>

    
</head>
<body >
            <style>
        .tab {
            overflow: hidden;
            border: 1px solid #ccc;
            background-color: #f1f1f1;
        }

        .tab button {
            background-color: inherit;
            float: left;
            border: none;
            outline: none;
            cursor: pointer;
            padding: 12px 16px;
            transition: 0.3s;
        }

        .tab button:hover {
            background-color: #ddd;
        }

        .tab button.active {
            background-color: #ccc;
        }

        .chart-container {
            display: block;
        }

        .chart-container:nth-child(n+2) {
            display: none;
        }
    </style>
    <div class="tab">
            <button class="tablinks" onclick="showChart(event, 'c95a7006653c463b87ea5f86fb2fa9d6')">今日南京</button>
            <button class="tablinks" onclick="showChart(event, 'd51b7fb3725d442fafd9365201317690')">未来南京</button>
            <button class="tablinks" onclick="showChart(event, '87f0e6e843f443f986ad5a3539b28a78')">近一周南京</button>
            <button class="tablinks" onclick="showChart(event, '2e9b063085384e43805f0f24afc63b80')">今日中国天气</button>
    </div>

    <div class="box">
                        <style>
            .fl-table {
                margin: 20px;
                border-radius: 5px;
                font-size: 12px;
                border: none;
                border-collapse: collapse;
                max-width: 100%;
                white-space: nowrap;
                word-break: keep-all;
            }

            .fl-table th {
                text-align: left;
                font-size: 20px;
            }

            .fl-table tr {
                display: table-row;
                vertical-align: inherit;
                border-color: inherit;
            }

            .fl-table tr:hover td {
                background: #00d1b2;
                color: #F8F8F8;
            }

            .fl-table td, .fl-table th {
                border-style: none;
                border-top: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-bottom: 3px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                padding: .5em .55em;
                font-size: 15px;
            }

            .fl-table td {
                border-style: none;
                font-size: 15px;
                vertical-align: center;
                border-bottom: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                height: 30px;
            }

            .fl-table tr:nth-child(even) {
                background: #F8F8F8;
            }
        </style>
        <div id="c95a7006653c463b87ea5f86fb2fa9d6" class="chart-container" style="">
            <p class="title" style="font-size: 18px; font-weight:bold;" > </p>
            <p class="subtitle" style="font-size: 12px;" > </p>
            <table class="fl-table">
    <thead>
        <tr>
            <th>日期</th>
            <th>最高温</th>
            <th>最低温</th>
            <th>天气</th>
            <th>风力风向</th>
            <th>空气质量指数</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>2023-12-19 周二</td>
            <td>1°</td>
            <td>-3°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
            <td>66</td>
        </tr>
    </tbody>
</table>
        </div>

                <div id="d51b7fb3725d442fafd9365201317690" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
            document.getElementById('d51b7fb3725d442fafd9365201317690').style.width = document.getElementById('d51b7fb3725d442fafd9365201317690').parentNode.clientWidth + 'px';
        var chart_d51b7fb3725d442fafd9365201317690 = echarts.init(
            document.getElementById('d51b7fb3725d442fafd9365201317690'), 'white', {renderer: 'canvas'});
        var option_d51b7fb3725d442fafd9365201317690 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#d14a61",
        "#5793f3",
        "#675bba",
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "\u6700\u9ad8\u6e29",
            "yAxisIndex": 0,
            "legendHoverLink": true,
            "data": [
                6.8277,
                6.3958,
                6.3958,
                6.3958,
                6.4043,
                8.8561,
                8.8247
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "\u6700\u4f4e\u6e29",
            "yAxisIndex": 1,
            "legendHoverLink": true,
            "data": [
                -1.2148,
                -2.0799,
                -2.0799,
                -2.0799,
                -2.5325,
                2.0839,
                2.1768
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "line",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)",
            "connectNulls": false,
            "xAxisIndex": 0,
            "yAxisIndex": 2,
            "symbolSize": 4,
            "showSymbol": true,
            "smooth": false,
            "clip": true,
            "step": false,
            "data": [
                [
                    "2023-12-20",
                    16.4505
                ],
                [
                    "2023-12-21",
                    13.8302
                ],
                [
                    "2023-12-22",
                    13.8302
                ],
                [
                    "2023-12-23",
                    13.8302
                ],
                [
                    "2023-12-24",
                    14.8611
                ],
                [
                    "2023-12-25",
                    74.2737
                ],
                [
                    "2023-12-26",
                    67.959
                ]
            ],
            "hoverAnimation": true,
            "label": {
                "show": false,
                "margin": 8
            },
            "logBase": 10,
            "seriesLayoutBy": "column",
            "lineStyle": {
                "show": true,
                "width": 1,
                "opacity": 1,
                "curveness": 0,
                "type": "solid"
            },
            "areaStyle": {
                "opacity": 0
            },
            "zlevel": 0,
            "z": 0
        }
    ],
    "legend": [
        {
            "data": [
                "\u6700\u9ad8\u6e29",
                "\u6700\u4f4e\u6e29",
                "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "axis",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "cross"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            },
            "data": [
                "2023-12-20",
                "2023-12-21",
                "2023-12-22",
                "2023-12-23",
                "2023-12-24",
                "2023-12-25",
                "2023-12-26"
            ]
        }
    ],
    "yAxis": [
        {
            "name": "\u6700\u4f4e\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#5793f3"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 80,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u6700\u9ad8\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#d14a61"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 0,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#675bba"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value}"
            },
            "inverse": false,
            "position": "left",
            "offset": 0,
            "splitNumber": 5,
            "min": 0,
            "max": 300,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "title": [
        {
            "show": true,
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ],
    "grid": [
        {
            "show": false,
            "zlevel": 0,
            "z": 2,
            "left": "5%",
            "right": "20%",
            "containLabel": false,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "shadowOffsetX": 0,
            "shadowOffsetY": 0
        }
    ]
};
        chart_d51b7fb3725d442fafd9365201317690.setOption(option_d51b7fb3725d442fafd9365201317690);
    </script>
                <div id="87f0e6e843f443f986ad5a3539b28a78" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
            document.getElementById('87f0e6e843f443f986ad5a3539b28a78').style.width = document.getElementById('87f0e6e843f443f986ad5a3539b28a78').parentNode.clientWidth + 'px';
        var chart_87f0e6e843f443f986ad5a3539b28a78 = echarts.init(
            document.getElementById('87f0e6e843f443f986ad5a3539b28a78'), 'white', {renderer: 'canvas'});
        var option_87f0e6e843f443f986ad5a3539b28a78 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#d14a61",
        "#5793f3",
        "#675bba",
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "\u6700\u9ad8\u6e29",
            "yAxisIndex": 0,
            "legendHoverLink": true,
            "data": [
                10,
                13,
                2,
                0,
                0,
                1,
                1
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "\u6700\u4f4e\u6e29",
            "yAxisIndex": 1,
            "legendHoverLink": true,
            "data": [
                5,
                5,
                -3,
                -5,
                -2,
                -2,
                -3
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "line",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)",
            "connectNulls": false,
            "xAxisIndex": 0,
            "yAxisIndex": 2,
            "symbolSize": 4,
            "showSymbol": true,
            "smooth": false,
            "clip": true,
            "step": false,
            "data": [
                [
                    "\u524d\u4e03\u5929",
                    59
                ],
                [
                    "\u524d\u516d\u5929",
                    63
                ],
                [
                    "\u524d\u4e94\u5929",
                    29
                ],
                [
                    "\u524d\u56db\u5929",
                    50
                ],
                [
                    "\u524d\u4e09\u5929",
                    26
                ],
                [
                    "\u524d\u4e24\u5929",
                    42
                ],
                [
                    "\u524d\u4e00\u5929",
                    66
                ]
            ],
            "hoverAnimation": true,
            "label": {
                "show": false,
                "margin": 8
            },
            "logBase": 10,
            "seriesLayoutBy": "column",
            "lineStyle": {
                "show": true,
                "width": 1,
                "opacity": 1,
                "curveness": 0,
                "type": "solid"
            },
            "areaStyle": {
                "opacity": 0
            },
            "zlevel": 0,
            "z": 0
        }
    ],
    "legend": [
        {
            "data": [
                "\u6700\u9ad8\u6e29",
                "\u6700\u4f4e\u6e29",
                "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "axis",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "cross"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            },
            "data": [
                "\u524d\u4e03\u5929",
                "\u524d\u516d\u5929",
                "\u524d\u4e94\u5929",
                "\u524d\u56db\u5929",
                "\u524d\u4e09\u5929",
                "\u524d\u4e24\u5929",
                "\u524d\u4e00\u5929"
            ]
        }
    ],
    "yAxis": [
        {
            "name": "\u6700\u4f4e\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#5793f3"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 80,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u6700\u9ad8\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#d14a61"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 0,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#675bba"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value}"
            },
            "inverse": false,
            "position": "left",
            "offset": 0,
            "splitNumber": 5,
            "min": 0,
            "max": 300,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "title": [
        {
            "show": true,
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ],
    "grid": [
        {
            "show": false,
            "zlevel": 0,
            "z": 2,
            "left": "5%",
            "right": "20%",
            "containLabel": false,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "shadowOffsetX": 0,
            "shadowOffsetY": 0
        }
    ]
};
        chart_87f0e6e843f443f986ad5a3539b28a78.setOption(option_87f0e6e843f443f986ad5a3539b28a78);
    </script>
                        <style>
            .fl-table {
                margin: 20px;
                border-radius: 5px;
                font-size: 12px;
                border: none;
                border-collapse: collapse;
                max-width: 100%;
                white-space: nowrap;
                word-break: keep-all;
            }

            .fl-table th {
                text-align: left;
                font-size: 20px;
            }

            .fl-table tr {
                display: table-row;
                vertical-align: inherit;
                border-color: inherit;
            }

            .fl-table tr:hover td {
                background: #00d1b2;
                color: #F8F8F8;
            }

            .fl-table td, .fl-table th {
                border-style: none;
                border-top: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-bottom: 3px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                padding: .5em .55em;
                font-size: 15px;
            }

            .fl-table td {
                border-style: none;
                font-size: 15px;
                vertical-align: center;
                border-bottom: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                height: 30px;
            }

            .fl-table tr:nth-child(even) {
                background: #F8F8F8;
            }
        </style>
        <div id="2e9b063085384e43805f0f24afc63b80" class="chart-container" style="">
            <p class="title" style="font-size: 18px; font-weight:bold;" > 今日全国各省会城市的天气信息表</p>
            <p class="subtitle" style="font-size: 12px;" > </p>
            <table class="fl-table">
    <thead>
        <tr>
            <th>省份</th>
            <th>最低温</th>
            <th>最高温</th>
            <th>天气</th>
            <th>风力风向</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>黑龙江</td>
            <td>-29°</td>
            <td>-20°</td>
            <td>多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>内蒙古</td>
            <td>-26°</td>
            <td>-16°</td>
            <td>~</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>吉林</td>
            <td>-3°</td>
            <td>1°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>辽宁</td>
            <td>-25°</td>
            <td>-11°</td>
            <td>~多云</td>
            <td>北风3</td>
        </tr>
        <tr>
            <td>河北</td>
            <td>-11°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>天津</td>
            <td>-11°</td>
            <td>-5°</td>
            <td></td>
            <td>西北风4</td>
        </tr>
        <tr>
            <td>山西</td>
            <td>-16°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>陕西</td>
            <td>-3°</td>
            <td>4°</td>
            <td>~多云</td>
            <td>东北风3</td>
        </tr>
        <tr>
            <td>甘肃</td>
            <td>-10°</td>
            <td>-1°</td>
            <td></td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>宁夏</td>
            <td>-17°</td>
            <td>-8°</td>
            <td>多云~</td>
            <td>东风2</td>
        </tr>
        <tr>
            <td>青海</td>
            <td>-13°</td>
            <td>4°</td>
            <td>多云~</td>
            <td>西风2</td>
        </tr>
        <tr>
            <td>新疆</td>
            <td>-22°</td>
            <td>-18°</td>
            <td>多云~</td>
            <td>东南风1</td>
        </tr>
        <tr>
            <td>西藏</td>
            <td>-5°</td>
            <td>6°</td>
            <td></td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>四川</td>
            <td>1°</td>
            <td>10°</td>
            <td></td>
            <td>东南风2</td>
        </tr>
        <tr>
            <td>重庆</td>
            <td>4°</td>
            <td>8°</td>
            <td>~多云</td>
            <td>东北风1</td>
        </tr>
        <tr>
            <td>山东</td>
            <td>-13°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>河南</td>
            <td>-6°</td>
            <td>3°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>江苏</td>
            <td>-3°</td>
            <td>1°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>安徽</td>
            <td>-5°</td>
            <td>1°</td>
            <td>~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>湖北</td>
            <td>-3°</td>
            <td>5°</td>
            <td>~多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>浙江</td>
            <td>0°</td>
            <td>3°</td>
            <td></td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>福建</td>
            <td>10°</td>
            <td>15°</td>
            <td>~小雨</td>
            <td>东北风1</td>
        </tr>
        <tr>
            <td>江西</td>
            <td>1°</td>
            <td>3°</td>
            <td>多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>湖南</td>
            <td>0°</td>
            <td>4°</td>
            <td>雨夹雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>贵州</td>
            <td>-1°</td>
            <td>2°</td>
            <td></td>
            <td>东北风3</td>
        </tr>
        <tr>
            <td>广西</td>
            <td>7°</td>
            <td>10°</td>
            <td></td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>海南</td>
            <td>12°</td>
            <td>15°</td>
            <td>小雨~</td>
            <td>东北风4</td>
        </tr>
        <tr>
            <td>上海</td>
            <td>0°</td>
            <td>5°</td>
            <td>小雨~</td>
            <td>西北风3</td>
        </tr>
        <tr>
            <td>广东</td>
            <td>7°</td>
            <td>11°</td>
            <td>~多云</td>
            <td>北风4</td>
        </tr>
        <tr>
            <td>云南</td>
            <td>5°</td>
            <td>18°</td>
            <td>多云</td>
            <td>西南风3</td>
        </tr>
        <tr>
            <td>台湾</td>
            <td>19°</td>
            <td>28°</td>
            <td>~小雨</td>
            <td>北风3</td>
        </tr>
    </tbody>
</table>
        </div>

    </div>

    <script>
    </script>
    <script>
        (function() {
            containers = document.getElementsByClassName("chart-container");
            if(containers.length > 0) {
                containers[0].style.display = "block";
            }
        })()

        function showChart(evt, chartID) {
            let containers = document.getElementsByClassName("chart-container");
            for (let i = 0; i < containers.length; i++) {
                containers[i].style.display = "none";
            }

            let tablinks = document.getElementsByClassName("tablinks");
            for (let i = 0; i < tablinks.length; i++) {
                tablinks[i].className = "tablinks";
            }

            document.getElementById(chartID).style.display = "block";
            evt.currentTarget.className += " active";
        }
    </script>
</body>
</html>

4. 成果展示

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1332816.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ansible的控制语句

本章内容主要介绍 playbook 中的控制语句 使用when判断语句block-rescue判断循环语句 一个play中可以包含多个task&#xff0c;如果不想所有的task全部执行&#xff0c;可以设置只有满足某个条件才执行这个task&#xff0c;不满足条件则不执行此task。本章主要讲解when 和 blo…

Linux安装及管理程序

一、Linux应用程序管理 1、应用程序与系统命令的关系 1.对比系统命令和应用程序的不同 位置&#xff1a; Linux中一切皆为文件 演示内部命令和外部命令 位置 应用程序位置 用途&#xff1a; 命令主要处理系统的基本操作&#xff08;复制&#xff0c;配置&#xff09; 应用程…

大模型工具_Langchain-Chatchat

https://github.com/chatchat-space/Langchain-Chatchat 原Langchain-ChatGLM 1 功能 整体功能&#xff0c;想解决什么问题 基于 Langchain 与 ChatGLM 等LLM模型&#xff0c;搭建一套针对中文场景与开源模型&#xff0c;界面友好、可离线运行的知识库问答解决方案。 当前解决…

米勒电容与米勒效应

米勒电容与米勒效应 米勒效应米勒效应的形成原理及分析米勒效应的危害和改进 米勒效应 Ciss CGE CGC 输入电容 Coss CGC CEC 输出电容 Crss CGC 米勒电容 下面我们以MOS中的米勒效应来展开说明&#xff1a; 米勒效应在MOS驱动中臭名昭著&#xff0c;它是由MOS管的米勒电容引发…

运行时和编译时使用的so库不同是否影响可执行文件执行

引子 近日遇到如下问题: 1.如果可执行文件依赖的so库在编译和执行阶段使用的名字一样&#xff0c;但是内容不一样&#xff0c;比如运行时相比于编译时在so库里增加了几个api定义&#xff0c;so库还可以正常使用吗&#xff1f; 2.如果可执行文件依赖的so库在编译和执行阶段使用的…

buuctf-Misc 题目解答分解94-96

94.[SUCTF 2019]Game 在源码包里面 有一个静态页面和一些样式表 在index,html 中看到了flag base32 解码 得到flag suctf{hAHaha_Fak3_F1ag} 但是显示不对 还有一张图片 进行数据提取发现base64 U2FsdGVkX1zHjSBeYPtWQVSwXzcVFZLu6Qm0To/KeuHg8vKAxFrVQ 解密后发现是Sal…

编译原理--词法分析C++

一、实验项目要求 1.实验目的 通过设计编制调试一个具体的词法分析程序&#xff0c;加深对词法分析原理的理解。并掌握在对程序设计语言源程序进行扫描过程中将其分解为各类单词的词法分析方法。 编制一个读单词过程&#xff0c;从输入的源程序中&#xff0c;识别出各个具有…

XUbuntu22.04之跨平台容器格式工具:MKVToolNix(二百零三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

29.Java程序设计-基于Springboot的幼儿园管理系统的设计与实现

1. 引言 背景介绍&#xff1a;幼儿园管理系统的必要性和重要性。研究目的&#xff1a;设计一个基于Spring Boot的系统以优化幼儿园管理流程。论文结构概览。 2. 需求分析 用户需求&#xff1a;不同用户&#xff08;管理员、老师、家长&#xff09;的需求分析。功能需求&…

多次触发FastJson漏洞的AutoType机制,你了解吗?

一个反序列化问题 在一次日志巡检过程中&#xff0c;发现线上业务出现报错。线上业务场景是&#xff1a;调用三方restful接口&#xff0c;根据接口返回json字符串内容&#xff0c;进行反序列化处理&#xff0c;业务中使用的json处理工具是FastJson(v1.2.71)。 报错是使用fast…

【Linux系统编程二十三】:(信号2)--信号的保存

【Linux系统编程二十三】&#xff1a;信号的保存 一.信号的保存1.阻塞信号2.sigset_t类型(位图)3.block表4.handler表5.pending表 二.实验验证三.信号的其他概念 一.信号的保存 信号发送本质上是操作系统发送信号&#xff0c;而进程PCB内部有一个位图用来表示是否接收到信号。…

T-Dongle-S3开发笔记——创建工程

创建Hello world工程 打开命令面板 方法1&#xff1a;查看->命令面板 方法2&#xff1a;按F1 选择ESP-IDF:展示示例项目 创建helloworld 选择串口 选择芯片 至此可以编译下载运行了 运行后打印的信息显示flash只有2M。但是板子上电flash是W25Q32 4MB的吗 16M-bit

高级RGA(二):父文档检索器

在我之前写的<<使用langchain与你自己的数据对话>>系列博客中&#xff0c;我们介绍了利用大型语言模型LLM来检索文档时的过程和步骤&#xff0c;如下图所示&#xff1a; 我们在检索文档之前&#xff0c;通常需要对文档进行切割&#xff0c;然后将其存入向量数据库如…

用友时空KSOA UploadImage任意文件上传漏洞

漏洞描述 用友时空 KSOA 是根据流通企业前沿的IT需求推出的统的IT基础架构&#xff0c;它可以让流通企业各个时期建立的 IT 系统之间彼此轻松对话。由于用友时空设备开放了文件上传功能&#xff0c;但未鉴权且上传的文件类型、大小、格式、路径等方面进行严格的限制和过滤&…

企业知识库在跨地域团队协作中的价值

随着全球化进程的不断加速&#xff0c;越来越多的企业开始面临跨地域协作的挑战。在这种背景下&#xff0c;企业知识库作为一种重要的知识管理工具&#xff0c;对于提高团队协作效率、促进知识共享与创新具有不可替代的价值。接下来就说一下知识库在跨地域团队协作中的重要性及…

JVM简单学习

jvm与字节码 jvm只需关注字节码文件 jvm由哪些部分构成 1.类加载子系统&#xff0c;将磁盘中的字节码文件加载到方法区的内存空间中 类加载器分两种&#xff1a;引导类加载器是jvm底层中用C和C语言写的 各个默认的类加载器的不同区别在于 各自默认负责要加载的类的目录不一…

web前端游戏项目-辨色大比拼【附源码】

web前端游戏项目-辨色大比拼【附源码】 《辨色大比拼》是一个旨在测试和提升玩家颜色识别能力的在线游戏。在游戏中&#xff0c;玩家将通过辨识颜色来解谜并推进游戏进程。辨色大比拼也是一个寓教于乐的游戏&#xff0c;它不仅提供了一个有趣的辨色挑战&#xff0c;还能帮助玩…

通过 Higress Wasm 插件 3 倍性能实现 Spring-cloud-gateway 功能

作者&#xff1a;韦鑫&#xff0c;Higress Committer&#xff0c;来自南京航空航天大学分布式系统实验室 导读&#xff1a;本文将和大家一同回顾 Spring Cloud Gateway 是如何满足 HTTP 请求/响应转换需求场景的&#xff0c;并为大家介绍在这种场景下使用 Higress 云原生网关的…

【Linux】Linux常见指令解析上

目录 1. 前言2. ls指令3. pwd指令4. cd指令3.1 cd常见快捷指令 4. touch指令5. mkdir指令6. rmdir指令 && rm指令 &#xff08;重要&#xff09;6.1 rmdir指令6.2 rm指令 7. man指令 1. 前言 这篇文章我们将详细介绍一下Linux下常见的基本指令。 2. ls指令 语法: ls [选…

掌握函数式组件:迈向现代化前端开发的关键步骤(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…