论文阅读《Parameterized Cost Volume for Stereo Matching》

news2024/12/23 22:47:48

论文地址:https://openaccess.thecvf.com/content/ICCV2023/papers/Zeng_Parameterized_Cost_Volume_for_Stereo_Matching_ICCV_2023_paper.pdf
源码地址:https://github.com/jiaxiZeng/Parameterized-Cost-Volume-for-Stereo-Matching


概述

在这里插入图片描述
   现有的立体匹配方法针对大视差场景预测时时间和显存消耗成本大,限制了模型在现实世界的应用。先前的研究工作主要聚焦于使用局部信息的动态代价体进行迭代优化,此类方法虽可以节省内存,但由于缺乏全局视差视野而需要更多的迭代步数才能收敛到目标视差,如图1(a) 所示。为此,文中提出使用高斯分布来编码视差空间。而使用带有固定小方差的单高斯分布对视差空间编码时,每个像素的视差值都服从同一个参数相同的高斯分布,这样的分布对整个视差空间的观察视野有限,不能覆盖整个视差空间,当初始视差与目标视差距离过远时模型难以收敛到目标视差(或需要付出更多的时间成本)。而使用多元高斯分布来表示视差空间可以使得每个像素的视差值都服从一个由多个高斯分布组成的混合分布。这样的分布在视差空间中的视野是全局的,可以均匀地初始化在整个视差范围内。因此,使用多高斯分布可以在迭代开始的阶段迅速收敛。在视差局部调优阶段,多高斯分布的参数会变小,使得模型可以在局部视差空间进行更精细化的匹配。
  为此,文中提出一种参数化的代价体,该代价体使用多元高斯分布编码每个像素的视差空间(参数化为权重、均值、方差),并使用JS散度进行优化。文中提出了一个前馈微分模块来实现该优化过程,该过程包含四个步骤:(1)使用初始的均值与方差采样视差候选值。(2)使用采样的视差候选值计算匹配代价,并基于该代价与多层GRU预测一个优化步长(3)用预测的步长更新三个视差空间的参数,并将更新后的参数作为下个迭代阶段的初始值,同时用均值的加权平均(多元高斯分布的期望)作为当前迭代阶段的视差输出。此外,由于前馈优化在收敛阶段容易发生局部震荡,针对该问题,文中引入基于一个不确定性感知的细化模块来修正最后一次迭代的错误结果。该确定性由权重与方差计算而来,并作为视差结果置信度的度量。该置信度可以指导视差从高可靠性区域扩散传播到低可靠区域。在合成数据集与真实世界数据集上的实验结果表明,该方法可以实现实时推理与SOTA性能。


模型架构

在这里插入图片描述

Parameterized Cost Volume

公式化:不妨使用 C ( x ) = c x d C(x)=c_{x}^{d} C(x)=cxd 表示代价体,传统的方法是密集地从一个离散的视差分布 { 0 , 1 , … , D − 1 } \{0, 1, …, D − 1\} {0,1,,D1}中枚举所有可能的视差候选 d d d,,这样会消耗大量的内存和计算资源。相比之下,动态代价体积的方法只从一个初始化的视差 d ∈ N d ~ d\in N_{\tilde{d}} dNd~中采样视差候选 d d d,其中 N N N表示邻域的大小,这样可以减少内存和计算的开销,但是需要多次迭代来逼近真实的视差。在本文中,作者使用一个参数化的代价体(多元高斯分布)来编码视差空间:
C ( x , θ ) = { c x d ( θ ) } , d ( θ ) ∼ ∑ i = 1 i = M α i N ( μ i , σ i 2 ) . (1) \begin{aligned} C(x,\theta)& =\{c_{x}^{d(\theta)}\}, \\ d(\theta)& \sim\sum_{i=1}^{i=M}\alpha_i\mathcal{N}(\mu_i,\sigma_i^2). \end{aligned}\tag{1} C(x,θ)d(θ)={cxd(θ)},i=1i=MαiN(μi,σi2).(1)
其中, θ = { α i , μ i , σ i } i = 1 M \theta=\{\alpha_i,\mu_i,\sigma_i\}_{i=1}^M θ={αi,μi,σi}i=1M 为多元高斯分布的参数,包括权重参数 α = { α i } i = 1 M \alpha=\{\alpha_{i}\}_{i=1}^{M} α={αi}i=1M, 均值 μ = { μ i } i = 1 M \mu=\{\mu_{i}\}_{i=1}^{M} μ={μi}i=1M 与标准差(文中用标准差来替代方差) σ = { σ i } i = 1 M \sigma=\{\sigma_{i}\}_{i=1}^{M} σ={σi}i=1M M M M 为高斯分布的数量。 ∼ \sim 表示从分布中采样,且有 ∑ i = 1 M α i = 1 \sum_{i=1}^{M}\alpha_{i}=1 i=1Mαi=1。通过从多个高斯分布中系数采样可以保持动态代价体的高效性,且通过在整个视差范围中均匀初始化多个高斯分布可以获得一个全局视差视野,有利于模型快速收敛到目标视差。
优化:为了高效地对高斯分布参数进行学习,将真实视差定义为一个目标高斯分布 N ( μ g t , σ g t ) \mathcal{N}(\mu_{gt},\sigma_{gt}) N(μgt,σgt) 并基于JS散度训练使得多元高斯分布的参数逼近于目标分布,其中 μ g t \mu_{gt} μgt 为目标视差值, σ g t \sigma_{gt} σgt 为预定义的参数,模型的优化目标可以表示为:
m i n   1 2 ( F ( N g t ∣ ∣ ∑ i = 1 i = M α i N i ) + F ( ∑ i = 1 i = M α i N i ∣ ∣ N g t ) ) , s . t .   ∑ i = 1 i = M α i = 1 , (2) \begin{gathered}min~\frac12(F(\mathcal{N}_{gt}||\sum_{i=1}^{i=M}\alpha_i\mathcal{N}_i)+F(\sum_{i=1}^{i=M}\alpha_i\mathcal{N}_i||\mathcal{N}_{gt})),\\s.t.~\sum_{i=1}^{i=M}\alpha_i=1,\end{gathered}\tag{2} min 21(F(Ngt∣∣i=1i=MαiNi)+F(i=1i=MαiNi∣∣Ngt)),s.t. i=1i=Mαi=1,(2)
其中 F ( P ∣ ∣ Q ) = ∑ d ∈ D P ( d ) l o g P ( d ) Q ( d ) F(P||Q)=\sum_{d\in\mathcal{D}}P(d)log\frac{P(d)}{Q(d)} F(P∣∣Q)=dDP(d)logQ(d)P(d) 为KL 散度。 N i \mathcal{N}_i Ni N ( μ i , σ i 2 ) \mathcal{N}(\mu_{i},\sigma_{i}^{2}) N(μi,σi2) 的缩写,然后将有约束的优化问题写成对应的拉格朗日函数:
L = 1 2 ( F ( N g t ∣ ∣ ∑ i = 1 i = M α i N i ) + F ( ∑ i = 1 i = M α i N i ∣ ∣ N g t ) ) + λ ( ∑ i = 1 i = M α i − 1 ) , (3) \begin{aligned}L&=\frac12(F(\mathcal{N}_{gt}||\sum_{i=1}^{i=M}\alpha_i\mathcal{N}_i)+F(\sum_{i=1}^{i=M}\alpha_i\mathcal{N}_i||\mathcal{N}_{gt}))\\&+\lambda(\sum_{i=1}^{i=M}\alpha_i-1),\end{aligned}\tag{3} L=21(F(Ngt∣∣i=1i=MαiNi)+F(i=1i=MαiNi∣∣Ngt))+λ(i=1i=Mαi1),(3)
其中 λ \lambda λ 表示拉格朗日乘数。求解这个等式之前,先引入两个必要的公理。
  公理1 给定两个高斯分布 N p \mathcal{N}_{p} Np N q \mathcal{N}_{q} Nq, 其KL散度 F ( N p ∣ ∣ N q ) F(\mathcal{N}_p||\mathcal{N}_q) F(Np∣∣Nq)为:
F ( N p ∣ ∣ N q ) = l o g σ q σ p + σ p 2 + ( μ p − μ q ) 2 2 σ q 2 − 1 2 . (4) F(\mathcal{N}_p||\mathcal{N}_q)=log\frac{\sigma_q}{\sigma_p}+\frac{\sigma_p^2+(\mu_p-\mu_q)^2}{2\sigma_q^2}-\frac12.\tag{4} F(Np∣∣Nq)=logσpσq+2σq2σp2+(μpμq)221.(4)
  公理2 给定两个多元高斯分布 ∑ i = 1 i = M α i p N i p , Q = ∑ i = 1 i = M α i q N i q \sum_{i=1}^{i=M}\alpha_{i}^{p}\mathcal{N}_{i}^{p}, \quad Q =\sum_{i=1}^{i=M}\alpha_{i}^{q}\mathcal{N}_{i}^{q} i=1i=MαipNip,Q=i=1i=MαiqNiq,其KL散度的紧凑上界为:
F ( P ∣ ∣ Q ) ≤ ∑ i = 1 i = M F ( α i p ∣ ∣ α i q ) + ∑ i = 1 i = M α i p F ( N i p ∣ ∣ N i q ) . (5) F(P||Q)\leq\sum_{i=1}^{i=M}F(\alpha_i^p||\alpha_i^q)+\sum_{i=1}^{i=M}\alpha_i^pF(\mathcal{N}_i^p||\mathcal{N}_i^q).\tag{5} F(P∣∣Q)i=1i=MF(αip∣∣αiq)+i=1i=MαipF(Nip∣∣Niq).(5)
  基于公理2,可以得到公式3中的上界:
L ≤ 1 2 ( ∑ i = 1 i = M F ( 1 M ∣ ∣ α i ) + ∑ i = 1 i = M 1 M F ( N g t ∣ ∣ N i ) + ∑ i = 1 i = M F ( α i ∣ ∣ 1 M ) + ∑ i = 1 i = M α i F ( N i ∣ ∣ N g t ) ) + λ ( ∑ i = 1 i = M α i − 1 ) , (6) \begin{aligned} L\leq \frac12(\sum_{i=1}^{i=M}F(\frac1M||\alpha_i)+\sum_{i=1}^{i=M}\frac1MF(\mathcal{N}_{gt}||\mathcal{N}_i) \\ +\sum_{i=1}^{i=M}F(\alpha_i||\frac{1}{M})+\sum_{i=1}^{i=M}\alpha_iF(\mathcal{N}_i||\mathcal{N}_{gt})) \\ +\lambda(\sum_{i=1}^{\boldsymbol{i}=M}\alpha_i-1), \end{aligned}\tag{6} L21(i=1i=MF(M1∣∣αi)+i=1i=MM1F(Ngt∣∣Ni)+i=1i=MF(αi∣∣M1)+i=1i=MαiF(Ni∣∣Ngt))+λ(i=1i=Mαi1),(6)
根据公式4,优化 L L L的上界时候,参数 α i , μ i , σ i \alpha_i,\mu_i,\sigma_i αi,μi,σi的梯度可以表示为:
∂ σ i = 1 2 ( σ i 2 − σ g t 2 − Δ 2 M σ i 3 − α i σ i + α i σ i σ g t 2 ) , ∂ μ i = − Δ 2 ( 1 M σ i 2 + α i σ g t 2 ) , ∂ α i = β i + λ , β i = 1 2 ( − 1 M α i + l o g σ g t M α i σ i + σ i 2 + Δ 2 2 σ g t 2 + 1 2 ) , λ = − 1 M ∑ i = 1 i = M β i , Δ = μ g t − μ i . (7) \begin{aligned} \partial\sigma_{i}& =\frac12(\frac{\sigma_i^2-\sigma_{gt}^2-\Delta^2}{M\sigma_i^3}-\frac{\alpha_i}{\sigma_i}+\frac{\alpha_i\sigma_i}{\sigma_{gt}^2}), \\ \partial\mu_{i}& =-\frac\Delta2(\frac1{M\sigma_i^2}+\frac{\alpha_i}{\sigma_{gt}^2}), \\ \partial\alpha_{i}& =\beta_i+\lambda, \\ \beta_{i}& =\frac12(-\frac1{M\alpha_i}+log\frac{\sigma_{gt}M\alpha_i}{\sigma_i}+\frac{\sigma_i^2+\Delta^2}{2\sigma_{gt}^2}+\frac12), \\ \lambda& =-\frac1M\sum_{i=1}^{i=M}\beta_i, \\ \Delta & =\mu_{gt}-\mu_i. \end{aligned}\tag{7} σiμiαiβiλΔ=21(Mσi3σi2σgt2Δ2σiαi+σgt2αiσi),=2Δ(Mσi21+σgt2αi),=βi+λ,=21(Mαi1+logσiσgtMαi+2σgt2σi2+Δ2+21),=M1i=1i=Mβi,=μgtμi.(7)
因为在推理过程中目标视差 μ g t \mu_{gt} μgt 未知,为此使用类似RAFT的神经网络的方式来不断预测视差参差值,从而逼近目标视差值,因此在 t t t阶段的参数可以表示为:
σ i t + 1 = σ i t − ∂ σ i t , μ i t + 1 = μ i t − ∂ μ i t , α i t + 1 = α i t − ∂ α i t . (8) \begin{aligned}\sigma_i^{t+1}&=\sigma_i^t-\partial\sigma_i^t,\\\mu_i^{t+1}&=\mu_i^t-\partial\mu_i^t,\\\alpha_i^{t+1}&=\alpha_i^t-\partial\alpha_i^t.\end{aligned}\tag{8} σit+1μit+1αit+1=σitσit,=μitμit,=αitαit.(8)
  基于动态代价体积的方法在每次迭代时,预测一个步长,用来调整上一次迭代的视差结果,使其更接近真实的视差。这些方法相当于用一个固定方差的单高斯分布来近似视差空间,其中方差的值由真实视差的方差决定。由于单高斯分布的视角有限,这些方法难以在大视差范围内捕捉到全局的信息,因此需要多次迭代才能收敛到真实视差。相比之下,文中所提出的方法用多个高斯分布来表示视差空间,每个高斯分布都有自己的权重,均值和方差,这些参数可以在优化过程中动态更新。这样做的好处是,多高斯分布可以在初始时提供一个全局的视角,覆盖整个视差空间,然后在迭代过程中逐渐收敛到真实视差,实现从粗到细的匹配。此外,多高斯分布之间还可以进行信息交互,加速优化过程,提高收敛速度和准确度。

Feed-forward Differential Module

  如图3所示,该模块首先从当前的多高斯分布中采样视差候选值。然后,根据这些视差候选值计算匹配代价,并利用多层GRU 来预测优化步骤。最后,优化步骤用于计算参数的梯度并更新参数。
Multiple Gaussian Sampling:文中选择从当前的多高斯分布中采样视差候选值,每个高斯分布独立采样。具体来说,对于第 i i i个高斯分布,候选值在 [ µ i − 3 σ i , µ i + 3 σ i ] [µ_i − 3σ_i , µ_i + 3σ_i ] [µi3σi,µi+3σi]的范围内均匀采样。
Optimization Step Prediction:根据视差候选值通过相关性来计算匹配代价。首先,不同高斯分布的代价被几个权值共享的2D卷积层独立编码。编码后的代价以及均值 µ µ µ与方差 σ σ σ和权重 α α α,被拼接作为输入送入多层GRUs,通过一个双层卷积来预测优化步骤 ∆ ∆
Parameters Update: 使用梯度下降算法来更新多元高斯分布的参数。由于公式7中的梯度数值不稳定,在更新前对梯度进行裁剪。然后用裁剪后的梯度来更新参数,如公式8所示。为了限制更新后的 α α α在0和1之间,对 α α α进行裁剪和归一化,如下所示:
α ^ i t + 1 = min ⁡ ( max ⁡ ( α i t + 1 , 0 ) , 1 ) ∑ i min ⁡ ( max ⁡ ( α i t + 1 , 0 ) , 1 ) . (9) \hat{\alpha}_i^{t+1}=\frac{\min(\max(\alpha_i^{t+1},0),1)}{\sum_i\min(\max(\alpha_i^{t+1},0),1)}.\tag{9} α^it+1=imin(max(αit+1,0),1)min(max(αit+1,0),1).(9)
  更新后的参数用于下一轮的迭代,根据多元高斯分布的期望来预测视差值:
μ ˉ t + 1 = ∑ i = 1 M α ^ i t + 1 μ i t + 1 . (10) \bar{\mu}^{t+1}=\sum_{i=1}^M\hat{\alpha}_i^{t+1}\mu_i^{t+1}.\tag{10} μˉt+1=i=1Mα^it+1μit+1.(10)

Uncertainty-aware Refinement Module

  为了避免在收敛阶段优化过程中的局部震荡问题,文中引入一个不确定感知精细化模块用于提高视差细节区域的结果。首先将权重 α α α,方差 σ σ σ和均值 µ µ µ输入一系列卷积层,后接一个sigmoid函数,来估计一个不确定性图 U U U。然后将不确定性图和视差图以及左图特征拼接起来,通过卷积层来预测一个残差图 R R R,其中每一层除了最后一层都使用了leaky-relu函数。最后用不确定性图 U U U来指导残差图 R R R和视差图 µ ˉ \bar{µ} µˉ的融合,如下所示:
μ ^ = μ ˉ + R ⋅ U . (11) \hat{\mu}=\bar{\mu}+R\cdot U.\tag{11} μ^=μˉ+RU.(11)


损失函数

   为了让预测的高斯分布能逼近目标视差分布,使用 L 1 L1 L1损失在每个阶段约束生成的分布的均值:
L m t = ∑ i = 1 M ∥ μ i t − μ g t ∥ 1 , (12) \mathcal{L}_m^t=\sum_{i=1}^M\|\mu_i^t-\mu_{gt}\|_1,\tag{12} Lmt=i=1Mμitμgt1,(12)
  使用 L 1 L1 L1 损失约束最后阶段的视差输出与标签视差:
L d t = ∥ μ ˉ t − μ g t ∥ 1 . (13) \mathcal{L}_d^t=\|\bar{\mu}^t-\mu_{gt}\|_1.\tag{13} Ldt=μˉtμgt1.(13)
  同样使用 L 1 L1 L1 损失约束精细化后的视差图:
L r = ∥ μ ^ − μ g t ∥ 1 . (14) \mathcal{L}_r=\|\hat{\mu}-\mu_{gt}\|_1.\tag{14} Lr=μ^μgt1.(14)
&esmp; 总的损失函数为:
L = ∑ t = 1 T γ t ( L m t + L d t ) + λ L r , (15) \mathcal{L}=\sum_{t=1}^T\gamma^t(\mathcal{L}_m^t+\mathcal{L}_d^t)+\lambda\mathcal{L}_r,\tag{15} L=t=1Tγt(Lmt+Ldt)+λLr,(15)


实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1310820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

c# 字段和属性(get、set、init)

目录 基本概念: 个人理解: 访问器的默认写法: set与init无法共存: init: 必须在类的实例化时给字段赋值的情况(require属性): 基本概念: “字段”就是类内成员变量,一般为了隐藏数据&…

超详细教程:使用React实现动态轮播图

前言 轮播组件是常见的一种方式,用来展示图像、信息或者是广告。我们可以使用React来创建一个轮播组件,并且利用其中的State和effect Hook来创建一款动态的、可以自动播放的轮播组件。 效果 轮播组件会展示一个平铺的图片列表。在图片列表下方是一组小…

java定位系统源码,UWB技术的无线定位系统源码

UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术。UWB最优的应用环境是室内或者相对密闭的空间,有着厘米级的定位精度,不仅可以非常精准地进行位置跟踪,还可以快速地进行数据传输。 智…

基于亚马逊云科技新功能:Amazon SageMaker Canvas无代码机器学习—以构建货物的交付状态检测模型实战为例深度剖析以突显其特性

授权说明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在亚马逊云科技开发者社区、 知乎、自媒体平台、第三方开发者媒体等亚马逊云科技官方渠道。 目录 🚀一. Amazon SageMaker 🔎1.1 新功能发布:A…

消息通知(Notification)/用户触达系统设计

近年来,通知功能已经成为许多应用程序中突出的特性。构建一个能每天发送数百万通知的可扩展系统绝非易事。这正是为什么我觉得有必要记录我在这方面踩坑之路。也叫用户触达系统。 完成这项任务要求对通知生态系统有深刻的理解,否则需求很容易变得模糊和…

系列十五、Redis面试题集锦

一、Redis面试题集锦 1.1、Redis到底是单线程还是多线程 Redis6.0版本之前的单线程指的是其网络IO和键值对读写是由一个线程完成的; Redis6.0引入的多线程指的是网络请求过程采用了多线程,而键值对读写命令仍然是单线程的,所以多线程环境下&…

MITO-ID®线粒体膜电位检测试剂盒

线粒体膜电位(Mitochondrial Membrane Potential,MMP)是判定细胞健康程度、线粒体膜通透性和细胞凋亡的一个重要指标,MMP的丧失通常与细胞凋亡的早期阶段有关。评估线粒体功能状态的基于细胞的检测方法正在成为阐明线粒体活动在药物诱导毒性、…

记录Oracle Exadata X8M-2 存储服务器告警灯亮的处理过程(/SYS/MB/P0PCIE7)

文章目录 概要调查流程处理方式: 概要 现场服务器告警灯亮,其他服务器正常,磁盘灯正常,所以从整体来看应是内部部件抛出的异常问题,需要登录机器确认: 调查流程 通过ILOM web界面查看服务器状态进行信息…

Java代码实现简易版王者荣耀

一.主窗口类 package com.sxt;import com.sxt.beast.Beast;import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import java.io.File; import java.util.Arra…

拓展 Amazon S3 技术边界:Amazon S3 Express One Zone 的创新之路

授权说明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 自 Amazon S3 服务推出以来,一直是全球各行各业数百万客…

Linux基本开发工具

编译器和自动化构建工具 一、编译器——gcc、g1. 安装 gcc/g2. 使用3. 链接库4. 拓展命令:od/file/ldd/readelf 二、自动化构建项目——make、makefile1. 介绍2. 使用例子touch——change file timestampsstat——display file or file system status修改时间 .PHON…

SpringBoot2—开发实用篇1

目录 热部署 手动启动热部署 自动启动热部署 热部署范围配置 关闭热部署 配置高级 测试 热部署 什么是热部署?简单说就是你程序改了,现在要重新启动服务器,嫌麻烦?不用重启,服务器会自己悄悄的把更新后的程序给…

大模型时代-怎么正确的开发和使用AI模型

一、背景 大模型的概念已经经过了一年的发酵,大家也渐渐的冷静下来了。一开始大家很兴奋,感觉新的时代要来了,然后就是疯狂,再就是都各自找各自公司的东西怎么与大模型沾点边,要不然今年玩不下去了,就要落伍…

数据结构和算法 - 数组

1、数组 1.1 简介 什么是数组? 他优缺点是什么?具体应用有哪些? 「数组 array」是一种基于顺序存储的线性数据结构,其将相同类型的元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」。 如图&…

生产问题排查思路

生产上有用户反映,登录之后页面信息加载不出来,请求响应时间慢等。 下图为生产上一个请求在网关上面的流程: 因为我们生产上,有一张异常信息记录表,第一时间查询了上面是否有最近的异常记录。发现了一点,是…

vue整个页面可以拖拽导入文件

效果图 原理与源码 我们这里的思路是用ant组件库的upload组件,就是如下这个 用这个包裹住所有页面,你可以是包裹住App.vue,或者是你的homepage。但是这个涉及到一个问题,就是我们现在确实是可以拖拽导进来文件了,但是…

【Stm32-F407】Keil uVision5 下新建工程

①双击鼠标左键打开Keil uVision5,选择 Project 下的 New uVision Project ; ②在期望的文件夹下创建一个工程,并按如下要求操作; ③添加文件类型,按如下要求操作 ④如有需要可添加相关启动文件在工程文件夹下并添加到…

WEB 3D技术 以vue3+vite环境为例 讲解vue项目中使用three

上文 WEB 3D 技术,通过node环境创建一个three案例 中 我们打造了自己的第一个Web 3D界面 那么 今天 我们就来结合vue来开发我们的3D界面 这里 我们先创建一个文件夹 作为文件目录 千万不要放C盘 我们 依旧是在终端执行命令 npm init vitelatest输入一下项目名称 …

[GWCTF 2019]我有一个数据库1

提示 信息收集phpmyadmin的版本漏洞 这里看起来不像是加密应该是编码错误 这里访问robots.txt 直接把phpinfo.php放出来了 这里能看到它所有的信息 这里并没有能找到可控点 用dirsearch扫了一遍 ####注意扫描buuctf的题需要控制扫描速度,每一秒只能扫10个多一个都…

vue2 echarts不同角色多个类型数据的柱状图

前端代码&#xff1a; 先按照echarts插件。在页面里引用 import * as echarts from "echarts";设置div <div style"width:100%;height:250px;margin-top: 4px;" id"addressChart"></div>方法: addressEcharts() {const option {g…