【红黑树】

news2024/10/2 8:44:40

红黑树

  • 红黑树的概念
  • 红黑树的性质
  • 红黑树结点的定义
  • 红黑树的插入
  • 红黑树的验证
  • 红黑树的查找
  • 红黑树与AVL树的比较

红黑树的概念

红黑树是一种二叉搜索树,但在每个结点上增加了一个存储位用于表示结点的颜色,这个颜色可以是红色的,也可以是黑色的,因此我们称之为红黑树。

红黑树通过对任何一条从根到叶子的路径上各个结点着色方式的限制,确保没有一条路径会比其他路径长出两倍,因此红黑树是近似平衡的。

在这里插入图片描述

红黑树的性质

红黑树有以下五点性质:

  1. 每个结点不是红色就是黑色。
  2. 根结点是黑色的
  3. 如果一个结点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶子结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指定是空结点)。

红黑树如何确保从根到叶子的最长可能路径不会超过最短可能路径的两倍?

根据红黑树的性质3可以得出,红黑树当中不会出现连续的红色结点,而根据性质4又可以得出,从某一结点到其后代叶子结点的所有路径上包含的黑色结点的数目是相同的。

我们假设在红黑树中,从根到叶子的所有路径上包含的黑色结点的个数都是N个,那么最短路径就是全部由黑色结点构成的路径,即长度为N。

而最长可能路径就是由一黑一红结点构成的路径,该路径当中黑色结点与红色结点的数目相同,即长度为2N。

因此,红黑树从根到叶子的最长可能路径不会超过最短可能路径的两倍。

红黑树结点的定义

我们这里直接实现KV模型的红黑树,为了方便后序的旋转操作,将红黑树的结点定义为三叉链结构,除此之外还新加入了一个成员变量,用于表示结点的颜色。

template<class K, class V>
struct RBTreeNode
{
	//三叉链
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	//存储的键值对
	pair<K, V> _kv;

	//结点的颜色
	int _col; //红/黑

	//构造函数
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

在这里我们可以使用枚举来定义结点的颜色,这样可以增加代码的可读性和可维护性,并且便于后序的调试操作。

//枚举定义结点的颜色
enum Colour
{
	RED,
	BLACK
};

为什么构造结点时,默认将结点的颜色设置为红色?

当我们向红黑树插入结点时,若我们插入的是黑色结点,那么插入路径上黑色结点的数目就比其他路径上黑色结点的数目多了一个,即破坏了红黑树的性质4,此时我们就需要对红黑树进行调整。

若我们插入红黑树的结点是红色的,此时如果其父结点也是红色的,那么表明出现了连续的红色结点,即破坏了红黑树的性质3,此时我们需要对红黑树进行调整;但如果其父结点是黑色的,那我们就无需对红黑树进行调整,插入后仍满足红黑树的要求。

总结一下:

  • 插入黑色结点,一定破坏红黑树的性质4,必须对红黑树进行调整。
  • 插入红色结点,可能破坏红黑树的性质3,可能对红黑树进行调整。

权衡利弊后,我们在构造结点进行插入时,默认将结点的颜色设置为红色。

红黑树的插入

红黑树插入结点的逻辑分为三步:

  1. 按二叉搜索树的插入方法,找到待插入位置。
  2. 将待插入结点插入到树中。
  3. 若插入结点的父结点是红色的,则需要对红黑树进行调整。

其中前两步与二叉搜索树插入结点时的逻辑相同,红黑树的关键在于第三步对红黑树的调整。

红黑树在插入结点后是如何调整的?

实际上,在插入结点后并不是一定会对红黑树进行调整,若插入结点的父结点是黑色的,那么我们就不用对红黑树进行调整,因为本次结点的插入并没有破坏红黑树的五点性质。

只有当插入结点的父结点是红色时才需要对红黑树进行调整,因为我们默认插入的结点就是红色的,如果插入结点的父结点也是红色的,那么此时就出现了连续的红色结点,因此需要对红黑树进行调整。

因为插入结点的父结点是红色的,说明父结点不是根结点(根结点是黑色的),因此插入结点的祖父结点(父结点的父结点)就一定存在。

红黑树调整时具体应该如何调整,主要是看插入结点的叔叔(插入结点的父结点的兄弟结点),根据插入结点叔叔的不同,可将红黑树的调整分为三种情况。

情况一:插入结点的叔叔存在,且叔叔的颜色是红色。

此时为了避免出现连续的红色结点,我们可以将父结点变黑,但为了保持每条路径黑色结点的数目不变,因此我们还需要将祖父结点变红,再将叔叔变黑。这样一来既保持了每条路径黑色结点的数目不变,也解决了连续红色结点的问题。

在这里插入图片描述
但调整还没有结束,因为此时祖父结点变成了红色,如果祖父结点是根结点,那我们直接再将祖父结点变成黑色即可,此时相当于每条路径黑色结点的数目都增加了一个。

但如果祖父结点不是根结点的话,我们就需要将祖父结点当作新插入的结点,再判断其父结点是否为红色,若其父结点也是红色,那么又需要根据其叔叔的不同,进而进行不同的调整操作。

因此,情况一的抽象图表示如下
在这里插入图片描述
注意: 叔叔存在且为红时,cur结点是parent的左孩子还是右孩子,调整方法都是一样的。

情况二:插入结点的叔叔存在,且叔叔的颜色是黑色。

这种情况一定是在情况一继续往上调整的过程中出现的,即这种情况下的cur结点一定不是新插入的结点,而是上一次情况一调整过程中的祖父结点,如下图:
在这里插入图片描述
我们将路径中祖父结点之上黑色结点的数目设为x,将叔叔结点之下黑色结点的数目设为y,则在插入结点前,图示两条路径黑色结点的数目分别为x+1 和 x+2+y,很明显x+2+y 是一定大于 x+1的,因此在插入结点前就不满足红黑树的要求了,所以说叔叔结点存在且为黑这种情况,一定是由情况一往上调整过程中才会出现的一种情况。

需要注意:

  1. 从根结点一直走到空位置就算一条路径,而不是从根结点走到左右结点均为空的叶子结点时才算一条路径。
  2. 情况二和情况三均需要进行旋转处理,旋转处理后无需继续往上进行调整,所以说情况二一定是由情况一往上调整的过程中出现的。

出现叔叔存在且为黑时,单纯使用变色已经无法处理了,这时我们需要进行旋转处理。若祖孙三代的关系是直线(cur、parent、grandfather这三个结点为一条直线),则我们需要先进行单旋操作,再进行颜色调整,颜色调整后这棵被旋转子树的根结点是黑色的,因此无需继续往上进行处理。

抽象图表示如下:
在这里插入图片描述
说明一下: 当直线关系为,parent是grandfather的右孩子,cur是parent的右孩子时,就需要先进行左单旋操作,再进行颜色调整。

若祖孙三代的关系是折现(cur、parent、grandfather这三个结点为一条折现),则我们需要先进行双旋操作,再进行颜色调整,颜色调整后这棵被旋转子树的根是黑色的,因此无需继续往上进行处理。

抽象图表示如下
在这里插入图片描述
说明一下: 当折现关系为,parent是grandfather的右孩子,cur是parent的左孩子时,就需要先进行右左双旋操作,再进行颜色调整。

情况三:插入结点的叔叔不存在。

在这种情况下的cur结点一定是新插入的结点,而不可能是由情况一变化而来的,因为叔叔不存在说明在parent的下面不可能再挂黑色结点了,如下图:
在这里插入图片描述
如果插入前parent下面再挂黑色结点,就会导致图中两条路径黑色结点的数目不相同,而parent是红色的,因此parent下面自然也不能挂红色结点,所以说这种情况下的cur结点一定是新插入的结点。

和情况二一样,若祖孙三代的关系是直线(cur、parent、grandfather这三个结点为一条直线),则我们需要先进行单旋操作,再进行颜色调整,颜色调整后这棵被旋转子树的根结点是黑色的,因此无需继续往上进行处理。

在这里插入图片描述
说明一下: 当直线关系为,parent是grandfather的右孩子,cur是parent的右孩子时,就需要先进行左单旋操作,再进行颜色调整。

若祖孙三代的关系是折现(cur、parent、grandfather这三个结点为一条折现),则我们需要先进行双旋操作,再进行颜色调整,颜色调整后这棵被旋转子树的根是黑色的,因此无需继续往上进行处理。
在这里插入图片描述
说明一下: 当折现关系为,parent是grandfather的右孩子,cur是parent的左孩子时,就需要先进行右左双旋操作,再进行颜色调整。

//插入函数
pair<Node*, bool> Insert(const pair<K, V>& kv)
{
	if (_root == nullptr) //若红黑树为空树,则插入结点直接作为根结点
	{
		_root = new Node(kv);
		_root->_col = BLACK; //根结点必须是黑色
		return make_pair(_root, true); //插入成功
	}
	//1、按二叉搜索树的插入方法,找到待插入位置
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (kv.first < cur->_kv.first) //待插入结点的key值小于当前结点的key值
		{
			//往该结点的左子树走
			parent = cur;
			cur = cur->_left;
		}
		else if (kv.first > cur->_kv.first) //待插入结点的key值大于当前结点的key值
		{
			//往该结点的右子树走
			parent = cur;
			cur = cur->_right;
		}
		else //待插入结点的key值等于当前结点的key值
		{
			return make_pair(cur, false); //插入失败
		}
	}

	//2、将待插入结点插入到树中
	cur = new Node(kv); //根据所给值构造一个结点
	Node* newnode = cur; //记录新插入的结点(便于后序返回)
	if (kv.first < parent->_kv.first) //新结点的key值小于parent的key值
	{
		//插入到parent的左边
		parent->_left = cur;
		cur->_parent = parent;
	}
	else //新结点的key值大于parent的key值
	{
		//插入到parent的右边
		parent->_right = cur;
		cur->_parent = parent;
	}

	//3、若插入结点的父结点是红色的,则需要对红黑树进行调整
	while (parent&&parent->_col == RED)
	{
		Node* grandfather = parent->_parent; //parent是红色,则其父结点一定存在
		if (parent == grandfather->_left) //parent是grandfather的左孩子
		{
			Node* uncle = grandfather->_right; //uncle是grandfather的右孩子
			if (uncle&&uncle->_col == RED) //情况1:uncle存在且为红
			{
				//颜色调整
				parent->_col = uncle->_col = BLACK;
				grandfather->_col = RED;

				//继续往上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else //情况2+情况3:uncle不存在 + uncle存在且为黑
			{
				if (cur == parent->_left)
				{
					RotateR(grandfather); //右单旋

					//颜色调整
					grandfather->_col = RED;
					parent->_col = BLACK;
				}
				else //cur == parent->_right
				{
					RotateLR(grandfather); //左右双旋

					//颜色调整
					grandfather->_col = RED;
					cur->_col = BLACK;
				}
				break; //子树旋转后,该子树的根变成了黑色,无需继续往上进行处理
			}
		}
		else //parent是grandfather的右孩子
		{
			Node* uncle = grandfather->_left; //uncle是grandfather的左孩子
			if (uncle&&uncle->_col == RED) //情况1:uncle存在且为红
			{
				//颜色调整
				uncle->_col = parent->_col = BLACK;
				grandfather->_col = RED;

				//继续往上处理
				cur = grandfather;
				parent = cur->_parent;
			}
			else //情况2+情况3:uncle不存在 + uncle存在且为黑
			{
				if (cur == parent->_left)
				{
					RotateRL(grandfather); //右左双旋

					//颜色调整
					cur->_col = BLACK;
					grandfather->_col = RED;
				}
				else //cur == parent->_right
				{
					RotateL(grandfather); //左单旋

					//颜色调整
					grandfather->_col = RED;
					parent->_col = BLACK;
				}
				break; //子树旋转后,该子树的根变成了黑色,无需继续往上进行处理
			}
		}
	}
	_root->_col = BLACK; //根结点的颜色为黑色(可能被情况一变成了红色,需要变回黑色)
	return make_pair(newnode, true); //插入成功
}

//左单旋
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	Node* parentParent = parent->_parent;

	//建立subRL与parent之间的联系
	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	//建立parent与subR之间的联系
	subR->_left = parent;
	parent->_parent = subR;

	//建立subR与parentParent之间的联系
	if (parentParent == nullptr)
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else
	{
		if (parent == parentParent->_left)
		{
			parentParent->_left = subR;
		}
		else
		{
			parentParent->_right = subR;
		}
		subR->_parent = parentParent;
	}
}

//右单旋
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	Node* parentParent = parent->_parent;

	//建立subLR与parent之间的联系
	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;

	//建立parent与subL之间的联系
	subL->_right = parent;
	parent->_parent = subL;

	//建立subL与parentParent之间的联系
	if (parentParent == nullptr)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else
	{
		if (parent == parentParent->_left)
		{
			parentParent->_left = subL;
		}
		else
		{
			parentParent->_right = subL;
		}
		subL->_parent = parentParent;
	}
}

//左右双旋
void RotateLR(Node* parent)
{
	RotateL(parent->_left);
	RotateR(parent);
}

//右左双旋
void RotateRL(Node* parent)
{
	RotateR(parent->_right);
	RotateL(parent);
}

注意: 在红黑树调整后,需要将根结点的颜色变为黑色,因为红黑树的根结点可能在情况一的调整过程中被变成了红色。

红黑树的验证

红黑树也是一种特殊的二叉搜索树,因此我们可以先获取二叉树的中序遍历序列,来判断该二叉树是否满足二叉搜索树的性质。

//中序遍历
void Inorder()
{
	_Inorder(_root);
}
//中序遍历子函数
void _Inorder(Node* root)
{
	if (root == nullptr)
		return;
	_Inorder(root->_left);
	cout << root->_kv.first << " ";
	_Inorder(root->_right);
}

但中序有序只能证明是二叉搜索树,要证明二叉树是红黑树还需验证该二叉树是否满足红黑树的性质。

//判断是否为红黑树
bool ISRBTree()
{
	if (_root == nullptr) //空树是红黑树
	{
		return true;
	}
	if (_root->_col == RED)
	{
		cout << "error:根结点为红色" << endl;
		return false;
	}
	
	//找最左路径作为黑色结点数目的参考值
	Node* cur = _root;
	int BlackCount = 0;
	while (cur)
	{
		if (cur->_col == BLACK)
			BlackCount++;
		cur = cur->_left;
	}

	int count = 0;
	return _ISRBTree(_root, count, BlackCount);
}
//判断是否为红黑树的子函数
bool _ISRBTree(Node* root, int count, int BlackCount)
{
	if (root == nullptr) //该路径已经走完了
	{
		if (count != BlackCount)
		{
			cout << "error:黑色结点的数目不相等" << endl;
			return false;
		}
		return true;
	}

	if (root->_col == RED&&root->_parent->_col == RED)
	{
		cout << "error:存在连续的红色结点" << endl;
		return false;
	}
	if (root->_col == BLACK)
	{
		count++;
	}
	return _ISRBTree(root->_left, count, BlackCount) && _ISRBTree(root->_right, count, BlackCount);
}

红黑树的查找

红黑树的查找函数与二叉搜索树的查找方式一模一样,逻辑如下:

  1. 若树为空树,则查找失败,返回nullptr。
  2. 若key值小于当前结点的值,则应该在该结点的左子树当中进行查找。
  3. 若key值大于当前结点的值,则应该在该结点的右子树当中进行查找。
  4. 若key值等于当前结点的值,则查找成功,返回对应结点。

代码如下:

//查找函数
Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (key < cur->_kv.first) //key值小于该结点的值
		{
			cur = cur->_left; //在该结点的左子树当中查找
		}
		else if (key > cur->_kv.first) //key值大于该结点的值
		{
			cur = cur->_right; //在该结点的右子树当中查找
		}
		else //找到了目标结点
		{
			return cur; //返回该结点
		}
	}
	return nullptr; //查找失败
}

红黑树与AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删查改的时间复杂度都是O ( l o g N ) O(logN)O(logN),但红黑树和AVL树控制二叉树平衡的方式不同:

  • AVL树是通过控制左右高度差不超过1来实现二叉树平衡的,实现的是二叉树的严格平衡。
  • 红黑树是通过控制结点的颜色,从而使得红黑树当中最长可能路径不超过最短可能路径的2倍,实现的是近似平衡。

相对于AVL树来说,红黑树降低了插入结点时需要进行的旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,实际运用时也大多用的是红黑树。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/127953.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

主存储器扩展技术(计组)

用已有的存储器芯片构造一个需要的存储空间。 位扩展–扩展字长 构成内存的存储器芯片的字长小于内存单元要求的字长时–需要进行位扩展。实例&#xff1a; 位扩展的连线特点&#xff1a; 将每片的地址线、控制线并联&#xff0c;数据线分别引出。 效果&#xff1a; 存…

JavaSE笔记——函数式编程(流)

文章目录前言一、从外部迭代到内部迭代二、实现机制三、常用的流操作1.collect(toList())2.map3.filter4.flatMap5.max和min6.reduce四、多次调用流操作五、高阶函数总结前言 流是一系列与特定存储机制无关的元素——实际上&#xff0c;流并没有 “存储” 之说。利用流&#x…

如何用python打造新年氛围组?【内含html源码赠送】

嗨害大家好鸭&#xff01;我是小熊猫~ 离正式过新年还有24天~ 这次给大家整一个花活~ 就是每时每秒都提醒离新年还有多久 我这里还有一些中国结的python代码&#xff0c; 大家可以文末名片自行领取鸭~ 倒计时 效果展示 有什么python相关报错解答自己不会的、或者源码资料/…

操作系统——计算机系统概述

操作系统——计算机系统概述一、操作系统的概念1、定义2、功能和目标二 、操作系统特征1、并发性2、共享性3、虚拟性4、异步性三、操作系统的发展1、手工操作阶段2、批处理阶段——单道批处理系统2、批处理阶段——多道批处理系统3、实时操作系统四、运行机制和体系结构1、运行…

EnvironmentAware 接口的使用

文章目录1、EnvironmentAware 接口作用2、实际应用3、代码演示1&#xff09;基本配置准备2&#xff09;增加属性配置文件 application.properties3&#xff09;增加配置类实现 EnvironmentAware 接口4、编写 main 方法的类 SpringTest.java5、运行 main 方法查看结果1、Environ…

Java之线程状态

目录一、简介二、线程状态1、新建状态&#xff08;New&#xff09;2、运行状态&#xff08;Runnable&#xff09;3、阻塞状态&#xff08;Blocked/Waiting/TimeWaiting&#xff09;&#xff08;1&#xff09;被阻塞状态&#xff08;Blocked&#xff09;&#xff08;2&#xff0…

新新新~Revit插件【建模助手】7大模块介绍

年底了&#xff0c;大家是不是都在喝茶、聊天、等跨年&#xff1b;而我&#xff0c;建模助手&#xff0c;则在——总结、规划、PPT。 不盘不知道&#xff0c;一盘可吓了我一大跳&#xff01;没想到咱们在过去一年居然建设了这么多丰功伟绩&#xff1a; 说点标志性的&#xff…

到底什么是电子管(真空管)?

1883年&#xff0c;著名发明家托马斯爱迪生&#xff08;Thomas Edison&#xff09;在一次实验中&#xff0c;观察到一种奇怪现象。当时&#xff0c;他正在进行灯丝&#xff08;碳丝&#xff09;的寿命测试。在灯丝旁边&#xff0c;他放置了一根铜丝&#xff0c;但铜丝并没有接在…

WebRTC系列-视频VideoBroadcaster与视频流

文章目录 1. VideoBroadcaster 添加sink2. VideoBroadcaster 视频数据分发OnFrame方法在前面的文章视频的采集流程中,视频数据采集完成后到编码器之前,如果需要渲染处理那里需要两路视频,WebRTC是实现了一个视频分发器VideoBroadcaster;用来分发采集的视频帧; 这篇文章主要…

Nginx网页配置工具nginxWebUI

今天应该是我们公司 2022 年最后一天上班了&#xff0c;给自己做个简单的年度总结吧&#xff1a; 1月&#xff1a;做核酸 2月&#xff1a;做核酸 3月&#xff1a;做核酸&#xff0c;半个月左右居家办公 4月&#xff1a;做核酸&#xff0c;静态管理 5月&#xff1a;做核酸&…

贪吃蛇基础·框架版(简单)开头有原码

更新不易&#xff0c;麻烦多多点赞&#xff0c;欢迎你的提问&#xff0c;感谢你的转发&#xff0c; 最后的最后&#xff0c;关注我&#xff0c;关注我&#xff0c;关注我&#xff0c;你会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我…

XStream < 1.4.20 栈缓冲区溢出漏洞

漏洞描述 XStream 是一个轻量级的、简单易用的开源Java类库&#xff0c;它主要用于将对象序列化成XML&#xff08;JSON&#xff09;或反序列化为对象。 在1.4.20之前的版本中存在栈缓冲区溢出漏洞&#xff0c;从而导致通过操纵已处理的输入流来造成拒绝服务。 在使用集合和映…

一文掌握FastDeploy Serving服务化部署(打造线上证件照制作系统,含完整代码)

目录一、概述1.1 服务化部署1.2 FastDeploy简介二、搭建线上证件照制作系统2.1 准备环境2.1.1 安装Docker2.1.2 安装NVIDIA Container Toolkit2.1.3 获取FastDeploy Serving镜像2.2 部署模型2.2.1 准备模型仓库2.2.2 编写配置文件config.pbtxt2.2.3 服务启动2.3.4 测试访问2.3 …

盒子模型、CSS 中选择器优先级以及权重计算、px、em 和 rem 的区别

CSS 的盒模型&#xff1f; 盒子模型&#xff08;Box Modle&#xff09;可以用来对元素进行布局&#xff0c;包括内边距&#xff0c;边框&#xff0c;外边距&#xff0c;和实际 内容这几个部分 盒子模型分为两种 第一种是 W3C 标准的盒子模型&#xff08;标准盒模型&#xff09;…

微软 Outlook 如何修改邮件列表中的字体或字号

因为电脑的操作系统是默认英文的&#xff0c;默认的字体实在是太难看了。 解决方案 我们是可以对字体进行修改的。 例如修改成下面的方案。 选择视图 首先&#xff0c;先选定顶部的视图。 然后在当前的视图下&#xff0c;选择视图设置。 随后在弹出的窗口中&#xff0c;选择…

一劳永逸解决latex 80%bug

Latex编辑器也用过很多了&#xff0c;这种问题出现&#xff0c;一般就是}没对应啥的&#xff0c;但是这次检查了半天&#xff0c;就是找不到问题。 最后有一个快捷的解决方案&#xff0c;就是overleafhttps://www.overleaf.com/project/6347bab20a4c120392547ff3 写文章五六年…

美颜sdk是如何美化皮肤的?

当下&#xff0c;互联网娱乐飞速发展&#xff0c;一些社交拍摄的平台逐渐爆火&#xff0c;例如短视频和直播类平台&#xff0c;此类平台基本都需要真人出镜&#xff0c;因此大家或多或少都有些“颜值焦虑”&#xff0c;平台方也正是因为这个原因&#xff0c;开始为大家接入美颜…

Mathorcup数学建模竞赛第五届-【妈妈杯】D题:图像去噪中几类稀疏变换的矩阵表示(附特等奖获奖论文和matlab代码实现)

赛题描述 假设一幅二维灰度图像 X 受到加性噪声的干扰:Y=X+N , Y 为观察到的噪声图像, N 为噪声。通过对于图像 Y 进行稀疏表示可以达到去除噪声的目的。任务: 2. 利用 Cameraman 图像中的一个小图像块(见图 1 )进行验证。 3. 分析稀疏系数矩阵,比较四种方法…

写作历时一个月,长达8000字的年终总结——[2022年终总结]不要怕,请勇敢的向前走

个人博客&#xff1a;武师叔 ❤️ 做一个有趣而不甘平庸的人&#xff01;&#xff01;❤️ 哈喽哈喽&#xff0c;好久不见&#xff0c;我的老朋友最近还好吗 距离上次7.21凌晨1:06完稿的【年中总结】&#xff0c;下半年也匆匆过去啦~ 其实总的来说&#xff0c;下半年过得并不…

医药流通企业如何安全访问医药ERP?无需公网IP和改变现有IT架构

随着目前医药流通行业竞争的加剧&#xff0c;市场供应日趋饱和&#xff0c;传统的粗放式管理缺陷逐渐暴露&#xff0c;导致从事医药行业企业的利润不同程度的下滑&#xff0c;想要满足医药行业客户的个性化需求&#xff0c;为适应企业未来发展&#xff0c;医药流通行业越来越多…