到底什么是电子管(真空管)?

news2024/12/31 6:01:08

1883年,著名发明家托马斯·爱迪生(Thomas Edison)在一次实验中,观察到一种奇怪现象。

当时,他正在进行灯丝(碳丝)的寿命测试。在灯丝旁边,他放置了一根铜丝,但铜丝并没有接在任何电极上。也就是说,铜丝没有通电。

碳丝正常通电后,开始发光发热。过了一会,爱迪生断开电源。他无意中发现,铜丝上竟然也产生了电流。

a00b7b70f60a64853040e7094a6a0929.png

爱迪生没有办法解释出现这种现象的原因,但是,作为一个精明的“商人”,他想到的第一件事,就是给这个发现申请专利。他还将这种现象,命名为“爱迪生效应”

b57a1da045a520e4116b42f266bf3f6c.jpeg

爱迪生

现在我们知道,爱迪生效应的本质,是热电子发射。也就是说,灯丝被加热后,表面的电子变得活跃,“逃”了出去,结果被金属铜丝捕获,从而产生了电流。

爱迪生申请专利之后,并没有想到这个效应有什么用途,于是将其束之高阁。

1884年,爱迪生电光公司的技术顾问、英国物理学家约翰·安布罗斯·弗莱明(John Ambrose Fleming)访问美国,与爱迪生进行会面。爱迪生向弗莱明展示了自己发现的爱迪生效应,给弗莱明留下了深刻的印象。

96af07a7ca4c8e53407496d89662ac5a.jpeg

弗莱明

这个弗莱明,大家应该也比较熟悉。他是一个电学专家,也是一个电机工程师,我们中学经常使用的右手定则,就是他发明的。

除了传统电学之外,弗莱明其实还有一个强项,那就是无线电磁学。他年轻的时候,曾经师从麦克斯韦,专门学习无线电磁理论。麦克斯韦临终前上课,只有两个学生来听,其中一个,就是弗莱明。

弗莱明观摩了爱迪生效应的演示后,也没有想到这个效应到底能用来干啥。事实上,等到他真正用到它,已经是十几年后。

1896年,意大利人伽利尔摩·马可尼(Guglielmo Marconi)成功取得了世界上第一个无线电报系统专利,从而将人类带入无线通信时代。

1b609dc6e5458e080228e7545f8a0d00.png

马可尼

1899年,马可尼决定尝试横跨大西洋的远程无线电通信。为了完成这个壮举,他找来了弗莱明,和他签约,请他帮忙改进自己的无线电发射机和接收机。

弗莱明也确实没有辜负马可尼的期望,大幅改进了马可尼的设计,帮助实现了跨大西洋无线通信实验。(可惜,马可尼刻意对外隐瞒了弗莱明的贡献,还“忘记”了自己承诺要给弗莱明的500股股票奖励,把弗莱明气得半死。)

弗莱明在改进无线通信系统的时候,遇到了很多技术挑战。其中,最大的挑战,就是无线信号的接收。

简单来说,就是在接收端,如何检波信号放大信号,让信号能够被完美解读。

放大信号大家都懂,那什么是检波信号呢?

所谓信号检波,其实就是信号筛选。天线接收到的信号,是非常杂乱的,什么信号都有。我们真正需要的信号(指定频率的信号),需要从这些杂乱信号中“过滤”出来,这就是检波。

想要实现检波,单向导通性(单向导电)是关键。

大家都知道,无线电磁波是高频振荡,每秒高达几十万次的频率。无线电磁波产生的感应电流,也随着“正、负、正、负”不断变化,如果我们用这个电流去驱动耳机,一正一负就是零,耳机就没办法反应出信号。

采用单向导电性,正弦波的负半周就没有了,全部是正的,电流方向一致,把高频过滤掉之后,耳机就能够轻松体现出电流的变化。

2e34a3f671904ea645f3b90732504279.png

去掉负半周,电流方向变成一致的,容易解读

在这里,我要先给大家介绍一样东西——矿石检波器

1874年,德国科学家卡尔·布劳恩(Karl Ferdinand Braun)发现,有一些天然矿石(金属硫化物)具有电流单向导通的特性,可以用于整流(将交流电变成直流电)。


1894年,英属印度物理学家贾格迪什·钱德拉·博斯(Jagadish Chandra Bose)基于卡尔·布劳恩的发现,利用方铅矿(硫化铅)的单向导电性,制成了世界上第一个检波器——矿石检波器

68ef4b67f79b143bf9dfcdeeb10a5ede.jpeg

1900年,美国人格林里夫·惠特勒·皮卡德(Greenleaf Whittier Pickard),基于矿石检波器,成功制造了世界上第一个矿石收音机。这为后来无线电广播的迅速普及奠定了基础。

弗莱明在研究如何改进无线电接收机的时候,采用了矿石检波器。但是,他想起了之前的爱迪生效应,他想到——是不是可以基于爱迪生效应的电子流动,设计一个新型的检波器呢?

就这样,1904年,世界上第一只真空电子二极管,在弗莱明的手下诞生了。当时,这个二极管也叫做“弗莱明阀”。(真空管,vacuum tube,也就是电子管,有时候也叫“胆管”。)

8cb4fb5d7f4873a269bb75a349da6076.jpeg

弗莱明发明的二极管

弗莱明的二极管,结构其实非常简单,就是真空玻璃灯泡里,塞了两个极:一个阴极(Cathode),加热后可以发射电子;一个阳极(Anode),接收电子。

2f88c3d46e29242388b881b2580f2665.png

旁热式二极管

玻璃管里之所以要抽成真空,是为了防止发生气体电离,对正常的电子流动造成影响,破坏特性曲线。(抽成真空,还可以有效降低灯丝的氧化损耗。)

二极管的出现,解决了检波和整流需求。但是,它还有改进的空间。

1899年,马可尼应邀到美国做无线电通讯表演。他的表演,吸引了一个年轻人的关注。这个年轻人,就是刚刚获得博士学位的德福雷斯特(De Forest Lee)。

0f19c9a8ac1d368da462dd192146bc23.jpeg

德福雷斯特

德福雷斯特为马可尼的无线电感到着迷。于是,他投递简历,想要加入马可尼的公司。结果,遭到拒绝。

被拒绝之后,德福雷斯特没有放弃,而是继续研究无线电通信。他的目光,放在了弗莱明的二极管上。

1906年,德·福雷斯特在真空二极电子管里,巧妙地加了一个栅板(“栅极”),发明了真空三极电子管

144774cffac712afbd740cb3549aacef.jpeg

德·福雷斯特发明的三极管

栅板的主要作用,是控制电流。

d9b4b1d38726443fe6c1e5d89d5ff6a2.png

栅极上很小的电流变化,能引起阳极很大的电流变化,而且,变化波形与栅极电流完全一致。所以, 三极管有信号放大的作用

bd66b22dc3816df66d022bcaab5eda8b.gif

现在看来,真空三极管的发明,是电子工业领域的里程碑事件。

这个小小的元件,集检波、放大和振荡三种功能于一体,为电子技术的发展奠定了基础。

cc58e422d37333e4f84892578ad8307c.png

一开始的三极管是单栅,后来变成了两个板子夹在一起的双栅,再后来,干脆变成了整个包起来的围栅

901833d69add1c6c4e9fa3d593750266.jpeg

真空管

真空三极管是那一时期电子工业的心脏。基于它,我们才有了性能越来越强大的广播电台、收音机、留声机、电影、电台、雷达、无线电对讲等。

84646b98062dd901421f1f0f0378f985.jpeg

真空管收音机的内部构造(可以看到很多个真空管)

德·福雷斯特发明了三极管之后,很快陷入与弗莱明以及马可尼公司的专利官司。

双方互相起诉,弗莱明认为德·福雷斯特侵犯了自己的二极管专利,而德·福雷斯特则认为自己的改进很大,足以形成新的专利。官司打了很久,最终,双方达成和解,相互授权对方生产二极管(三极管)。

三极管诞生后,因为能放大信号,所以受到了美国通信巨头AT&T公司的关注。

当时,AT&T公司打算建造一条连接美国东西海岸的跨大陆电话线,急需解决信号放大问题。在没有三极管之前,放大信号只能用中继器,但是中继器的效果不好,且成本较高。

三极管的出现,给AT&T公司带来了新的选项。

1913年7月,经过一番讨价还价,AT&T公司以39万美元的价格,买下了德·福雷斯特的三极管专利。

再后来,AT&T认识到电子管这类基础研究对于产业发展的重要作用,于1925年正式成立了“贝尔电话实验室公司”。这个公司,就是后来大名鼎鼎的贝尔实验室。

ee3b6b29d2237010a9dd22a4b17b8dac.png

1912—1920年,美国西电公司(Western Electric,简称WE)研制出具有实用性的球形电子三极管,发烧友称之为“洋葱头”电子管。

1924年,美国RCA公司(Radio Corporation of America)研制出效率较高的三极真空电子管。这种古典管在第一次世界大战中得到广泛应用。

1919年,德国的肖特基提出在栅极和正极间加一个帘栅极的想法。这个想法被英国的朗德在1926年实现。这就是后来的四极管。再后来,荷兰的霍尔斯特和泰莱根又发明了五极管。

到了20世纪40年代,计算机技术研究进入高潮。人们发现,电子管的单向导通特性,可以用于设计一些逻辑电路(例如与门电路、或门电路)。于是,他们开始将电子管引入计算机领域。

1946年,宾夕法尼亚大学的工程师埃克特和物理学家毛希利等人,共同研制出了真正意义上的第一台通用型电子计算机——埃尼阿克(ENIAC)

2110ac1b9d13f6f3a47ccf556dd19694.png

大家应该都知道埃尼阿克。这台钢铁巨兽,使用了18000多只电子管,重130多吨,占地面积170多平方米,每秒钟可作5000多次加法运算。之前的计算机需要2小时完成的计算任务,ENIAC只需要3秒钟,在当时堪称奇迹。

上世纪40-50年代,电子管的发展达到了高潮。但是,随着技术的进步,人们发现,电子管已经无法满足产品设计的需求。

一方面,电子管容易破损,故障率高,另一方面,电子管需要加热使用,很多能量都浪费在发热上,也带来了极高的功耗。

所以,人们开始思考——是否有更好的方式,可以实现电路的检波、整流和信号放大呢?

且看下期——《到底什么是晶体管》。

649ed65b387c89e8afeae276782fba98.jpeg

参考文献:

1、Leo的微电子学习笔记,黎翱白Leobai,B站;

2、从上海发迹的中国收音机百年史,戴辉;

3、从电子管到晶体管,解码科技史,央视;

4、真空二极管的工作原理,IC先生;

5、第一块晶体管背后的故事,中科大胡不归;

39fa4a938fa5e7453a8945cdb1ecce80.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/127940.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WebRTC系列-视频VideoBroadcaster与视频流

文章目录 1. VideoBroadcaster 添加sink2. VideoBroadcaster 视频数据分发OnFrame方法在前面的文章视频的采集流程中,视频数据采集完成后到编码器之前,如果需要渲染处理那里需要两路视频,WebRTC是实现了一个视频分发器VideoBroadcaster;用来分发采集的视频帧; 这篇文章主要…

Nginx网页配置工具nginxWebUI

今天应该是我们公司 2022 年最后一天上班了,给自己做个简单的年度总结吧: 1月:做核酸 2月:做核酸 3月:做核酸,半个月左右居家办公 4月:做核酸,静态管理 5月:做核酸&…

贪吃蛇基础·框架版(简单)开头有原码

更新不易,麻烦多多点赞,欢迎你的提问,感谢你的转发, 最后的最后,关注我,关注我,关注我,你会看到更多有趣的博客哦!!! 喵喵喵,你对我…

XStream < 1.4.20 栈缓冲区溢出漏洞

漏洞描述 XStream 是一个轻量级的、简单易用的开源Java类库,它主要用于将对象序列化成XML(JSON)或反序列化为对象。 在1.4.20之前的版本中存在栈缓冲区溢出漏洞,从而导致通过操纵已处理的输入流来造成拒绝服务。 在使用集合和映…

一文掌握FastDeploy Serving服务化部署(打造线上证件照制作系统,含完整代码)

目录一、概述1.1 服务化部署1.2 FastDeploy简介二、搭建线上证件照制作系统2.1 准备环境2.1.1 安装Docker2.1.2 安装NVIDIA Container Toolkit2.1.3 获取FastDeploy Serving镜像2.2 部署模型2.2.1 准备模型仓库2.2.2 编写配置文件config.pbtxt2.2.3 服务启动2.3.4 测试访问2.3 …

盒子模型、CSS 中选择器优先级以及权重计算、px、em 和 rem 的区别

CSS 的盒模型? 盒子模型(Box Modle)可以用来对元素进行布局,包括内边距,边框,外边距,和实际 内容这几个部分 盒子模型分为两种 第一种是 W3C 标准的盒子模型(标准盒模型)…

微软 Outlook 如何修改邮件列表中的字体或字号

因为电脑的操作系统是默认英文的,默认的字体实在是太难看了。 解决方案 我们是可以对字体进行修改的。 例如修改成下面的方案。 选择视图 首先,先选定顶部的视图。 然后在当前的视图下,选择视图设置。 随后在弹出的窗口中,选择…

一劳永逸解决latex 80%bug

Latex编辑器也用过很多了,这种问题出现,一般就是}没对应啥的,但是这次检查了半天,就是找不到问题。 最后有一个快捷的解决方案,就是overleafhttps://www.overleaf.com/project/6347bab20a4c120392547ff3 写文章五六年…

美颜sdk是如何美化皮肤的?

当下,互联网娱乐飞速发展,一些社交拍摄的平台逐渐爆火,例如短视频和直播类平台,此类平台基本都需要真人出镜,因此大家或多或少都有些“颜值焦虑”,平台方也正是因为这个原因,开始为大家接入美颜…

Mathorcup数学建模竞赛第五届-【妈妈杯】D题:图像去噪中几类稀疏变换的矩阵表示(附特等奖获奖论文和matlab代码实现)

赛题描述 假设一幅二维灰度图像 X 受到加性噪声的干扰:Y=X+N , Y 为观察到的噪声图像, N 为噪声。通过对于图像 Y 进行稀疏表示可以达到去除噪声的目的。任务: 2. 利用 Cameraman 图像中的一个小图像块(见图 1 )进行验证。 3. 分析稀疏系数矩阵,比较四种方法…

写作历时一个月,长达8000字的年终总结——[2022年终总结]不要怕,请勇敢的向前走

个人博客:武师叔 ❤️ 做一个有趣而不甘平庸的人!!❤️ 哈喽哈喽,好久不见,我的老朋友最近还好吗 距离上次7.21凌晨1:06完稿的【年中总结】,下半年也匆匆过去啦~ 其实总的来说,下半年过得并不…

医药流通企业如何安全访问医药ERP?无需公网IP和改变现有IT架构

随着目前医药流通行业竞争的加剧,市场供应日趋饱和,传统的粗放式管理缺陷逐渐暴露,导致从事医药行业企业的利润不同程度的下滑,想要满足医药行业客户的个性化需求,为适应企业未来发展,医药流通行业越来越多…

2022 IoTDB Summit:Apache IoTDB PMC 张金瑞《为物联网场景优化的时序数据库共识协议》...

12 月 3 日、4日,2022 Apache IoTDB 物联网生态大会在线上圆满落幕。大会上发布 Apache IoTDB 的分布式 1.0 版本,并分享 Apache IoTDB 实现的数据管理技术与物联网场景实践案例,深入探讨了 Apache IoTDB 与物联网企业如何共建活跃生态&#…

再学C语言19:循环控制语句——关系运算符

关系表达式&#xff08;relational expression&#xff09;&#xff1a;进行比较的判断表达式 关系运算符&#xff08;relational operator&#xff09;&#xff1a;关系表达式中出现的运算符 一、关系运算符 关系运算符运算符含义<小于<小于或等于等于>大于或等于&…

第二十一讲:神州路由器RIP路由的配置

设备 端口 IP 子网掩码 网关 Router-A F0/0 192.168.1.1 255.255.255.0 无 F0/3 192.168.10.1 255.255.255.0 无 Router-B F0/0 192.168.1.2 255.255.255.0 无 F0/3 192.168.20.1 255.255.255.0 无 PC1 192.168.10.2 255.255.255.0 192.168.10.1 PC…

超店有数丨tiktok必备选品和带货技巧!小白秒变大神!

有一些刚刚入门的小白缺乏跨境电商选品灵感&#xff0c;苦于不知道从哪里挖掘爆款产品&#xff0c;不知如何发现热门商家。如果你也面临着这些困扰&#xff0c;可以试试超店有数&#xff0c;它是专业的第三方数据服务平台&#xff0c;能够帮助商家发现热门种草视频、进行小店数…

【C++、数据结构】二叉搜索树 模拟实现

文章目录&#x1f4d6; 前言1. 二叉搜索树2. 二叉搜索树的模拟实现2.1 结点的声明2.2 基本的几个成员函数非递归版本&#xff08;1&#xff09;查找&#xff1a;&#xff08;2&#xff09;插入&#xff1a;&#xff08;4&#xff09;删除&#xff1a;&#xff08;重点&#xff…

你阳了吗?可以接种最新加强针疫苗了!

今天不聊技术&#xff0c;唠唠嗑。刚才得知室友全部阳了&#xff0c;不知道我还能撑到多会&#x1f926;‍♂️当前时间&#xff0c;距离全国抗疫政策转向已有一个月时间&#xff0c;大家都不可避免的直面新冠病毒。奥密克戎的传播能力果然很强&#xff0c;短短半个月时间从周围…

Docker- 7.2、跨主机网络-overlay

Docker提供了overlay driver&#xff0c;使用户可以创建基于VxLan的overlay网络。VxLAN可将二层数据封装到UDP进行传输&#xff0c;VxLAN提供与VLAN相同的以太网二层服务&#xff0c;但拥有更强的扩展性和灵活性。Docker overlay网络需要一个key-value数据库用于保存网络状态信…

嵌入式C语言设计模式 --- 工厂方法模式

1 - 什么是工厂方法模式? 前一篇文章讲述了在使用简单工厂模式的时候,有一个明显的缺陷,就是我们添加一款新的LCD控制器的时候,需要修改工厂类的构造函数(因为只有一家工厂),在switch-case里面新增一个条件项,违背了面向对象设计的“开闭原则”。 为了解决这个问题,可…