day07 Elasticsearch搜索引擎3
1、数据聚合
聚合(aggregations)可以让我们极其方便的实现对文档数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能比数据库的sql要方便得多,而且查询速度非常快,可以实现实时搜索效果。
1.1、聚合的分类
聚合常见的有三类:
- 桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值进行分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯进行分组,例如一周为一组,或者一个月为一组、一个季度为一组等等
- 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求 max、min、avg、sum 等
- 管道(pipeline)聚合:以其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是 keyword、日期、数值、布尔类型,也就是聚合的字段一定是不能分词的
DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据进行分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
Bucket聚合语法
基本语法:
GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合
"brandAgg": { // 给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 希望获取的聚合结果数量
}
}
}
}
示例:
# 聚合功能
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为 _count
*,*并且按照 *_*count
降序排序。
我们可以指定 order
属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc" // 按照_count升序排列
},
"size": 20
}
}
}
}
示例:
# 聚合功能,自定义排序规则
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"_count": "asc"
}
}
}
}
}
限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合是对搜索结果做聚合,那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只需要添加 query
条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
示例:
# 聚合功能,限定聚合范围
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
Metric聚合语法
上面我们对酒店按照品牌进行分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的 min、max、avg 等值。
这就要用到 Metric 聚合了,例如 stats 聚合:就可以获取 min、max、avg 等结果
基本语法:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"score_stats": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算 min、max、avg 等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
示例:
# 嵌套聚合metric
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20,
"order": {
"scoreAgg.avg": "desc"
}
},
"aggs": {
"scoreAgg": {
"stats": {
"field": "score"
}
}
}
}
}
}
这次的 score_stats 聚合是在 brandAgg 的聚合内部嵌套的子聚合,因此我们需要在每个桶分别计算。
另外,我们还可以对聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
1.3、RestAPI实现聚合
API语法
聚合条件与 query 条件同级别,因此需要使用 request.source()
来指定聚合条件。
聚合条件的语法:
聚合的结果也和查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
示例:
@Test
void testAggregation() throws IOException {
// 1.创建Request对象
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1、设置size
request.source().size(0);
// 2.1、聚合
request.source().aggregation(AggregationBuilders
// 聚合的名称
.terms("brandAgg")
// 聚合的字段
.field("brand")
// 聚合的数量
.size(10)
);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析聚合结果
Aggregations aggregations = response.getAggregations();
// 4.1、根据聚合名称获取聚合结果
Terms brandTerms = aggregations.get("brandAgg");
// 4.2、获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 4.3、遍历每一个bucket
for (Terms.Bucket bucket : buckets) {
// 4.4、获取key
String key = bucket.getKeyAsString();
System.out.println("key = " + key);
}
}
业务需求
需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:
分析:
目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。
例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。
也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。
如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?
使用聚合功能,利用 Bucket 聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。
因为是对搜索结果进行聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。
查看浏览器可以发现,前端其实已经发出了这样的一个请求:
请求参数与搜索文档的参数完全一致。
返回值类型就是页面要展示的最终结果:
结果是一个Map结构:
- key是字符串,城市、星级、品牌、价格
- value是集合,例如多个城市的名称
业务实现
在 cn.itcast.hotel.web
包下的 HotelController
中添加一个方法,遵循下面的要求:
- 请求方式:
POST
- 请求路径:
/hotel/filters
- 请求参数:
RequestParams
,与搜索文档的参数一致 - 返回值类型:
Map<String, List<String>>
代码:
@PostMapping("/filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params) {
return hotelService.filters(params);
}
这里调用了 IHotelService 中的 getFilters 方法,尚未实现。
在 cn.itcast.hotel.service.IHotelService
中定义新方法:
Map<String, List<String>> filters(RequestParams params);
在 cn.itcast.hotel.service.impl.HotelService
中实现该方法:
/**
* 查询城市、星级、品牌的聚合结果
*
* @param params
* @return 聚合结果,格式:{"城市": ["上海", "北京"], "品牌": ["如家", "希尔顿"]}
*/
@Override
public Map<String, List<String>> filters(RequestParams params) {
try {
// 1.创建Request对象
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1、query
buildBasicQuery(params, request);
// 2.2、设置size
request.source().size(0);
// 2.1、聚合
buildAggregation(request);
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析聚合结果
Map<String, List<String>> result = new HashMap<>();
Aggregations aggregations = response.getAggregations();
// 4.1、根据品牌名称,获取品牌结果
List<String> brandList = getAggByName(aggregations, "brandAgg");
result.put("品牌", brandList);
// 4.2、根据城市名称,获取城市结果
List<String> cityList = getAggByName(aggregations, "cityAgg");
result.put("城市", cityList);
// 4.3、根据星级名称,获取星级结果
List<String> starList = getAggByName(aggregations, "starAgg");
result.put("星级", starList);
return result;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private List<String> getAggByName(Aggregations aggregations, String aggName) {
// 1、根据聚合名称获取聚合结果
Terms brandTerms = aggregations.get(aggName);
// 2、获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
// 3、遍历每一个bucket
List<String> brandList = new ArrayList<>();
for (Terms.Bucket bucket : buckets) {
// 4、获取key
String key = bucket.getKeyAsString();
brandList.add(key);
}
return brandList;
}
private void buildAggregation(SearchRequest request) {
// 对品牌进行聚合
request.source().aggregation(AggregationBuilders
// 聚合的名称
.terms("brandAgg")
// 聚合的字段
.field("brand")
// 聚合的数量
.size(100));
// 对城市进行聚合
request.source().aggregation(AggregationBuilders
// 聚合的名称
.terms("cityAgg")
// 聚合的字段
.field("city")
// 聚合的数量
.size(100));
// 对星级进行聚合
request.source().aggregation(AggregationBuilders
// 聚合的名称
.terms("starAgg")
// 聚合的字段
.field("starName")
// 聚合的数量
.size(100));
}
private void buildBasicQuery(RequestParams params, SearchRequest request) {
// 1.构建BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// 关键字搜索
String key = params.getKey();
if (key == null || "".equals(key)) {
boolQuery.must(QueryBuilders.matchAllQuery());
} else {
boolQuery.must(QueryBuilders.matchQuery("all", key));
}
// 城市条件
if (params.getCity() != null && !params.getCity().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
}
// 品牌条件
if (params.getBrand() != null && !params.getBrand().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
}
// 星级条件
if (params.getStarName() != null && !params.getStarName().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
}
// 价格
if (params.getMinPrice() != null && params.getMaxPrice() != null) {
boolQuery.filter(QueryBuilders.rangeQuery("price").gte(params.getMinPrice()).lte(params.getMaxPrice()));
}
// 2.算分控制
FunctionScoreQueryBuilder functionScoreQuery =
// 构建 function_socre 查询
QueryBuilders.functionScoreQuery(
// 原始查询,相关性算分的查询
boolQuery,
// function socre的数组
new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
// 其中的一个function socre元素
new FunctionScoreQueryBuilder.FilterFunctionBuilder(
// 过滤条件
QueryBuilders.termQuery("isAD", true),
// 算分函数
ScoreFunctionBuilders.weightFactorFunction(10))});
// 3.放入source
request.source().query(functionScoreQuery);
}
2、自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。
因为需要根据拼音字母来推断,因此要用到拼音分词功能。
2.1、拼音分词器
要实现根据字母自动做补全,就必须对文档按照拼音进行分词。在 GitHub 上恰好有 elasticsearch 的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin
安装方式与IK分词器一样,分为三步:
1、解压
2、上传到虚拟机中,elasticsearch的 plugin 目录
/var/lib/docker/volumes/es-plugins/_data
3、重启 elasticsearch
4、测试
POST /_analyze
{
"text": ["如家酒店还不错"],
"analyzer": "pinyin"
}
2.2、自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,所以需要对拼音分词器做个性化定制,形成自定义分词器。
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在 tokenizer 之前对文本进行处理。例如删除字符、替换字符
- tokenizer:将文本按照一定的规则切割成词条(term)。例如 keyword,就是不分词;还有 ik_smart
- tokenizer filter:将 tokenizer 输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
我们可以在创建索引库时,通过 settings 来配置自定义的analyzer(分词器):
PUT /test // 创建一个test索引库
{
"settings": {
"analysis": {
"analyzer": { // 自定义分词器
"my_analyzer": { // 分词器名称
"tokenizer": "ik_max_word",
"filter": "py"
}
},
"filter": { // 自定义tokenizer filter
"py": { // 过滤器名称
"type": "pinyin", // 过滤器类型,这里是pinyin
"keep_full_pinyin": false, // 取消单个字的拼音,例如:刘德华 -> [liu,de,hua]
"keep_joined_full_pinyin": true, // 加上全拼功能,例如:刘德华 -> [liudehua]
"keep_original": true, // 保留中文
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
}
}
示例:
# 自定义拼音分词器
PUT /test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer"
}
}
}
}
测试:
POST /test/_analyze
{
"text": ["如家酒店还不错"],
"analyzer": "my_analyzer"
}
注意:为了避免搜索到同音字,搜索时不要使用拼音分词器
拼音分词器适合在创建倒排索引的时候使用,但不能在搜索的时候使用。
# 插入数据
POST /test/_doc/1
{
"id": 1,
"name": "狮子"
}
POST /test/_doc/2
{
"id": 2,
"name": "虱子"
}
# 搜索关键字
GET /test/_search
{
"query": {
"match": {
"name": "掉入狮子笼咋办"
}
}
}
因此字段在创建倒排索引时应该用 my_analyzer
分词器;字段在搜索时应该使用 ik_smart
分词器
# 删除test索引库
DELETE /test
# 自定义分词器
PUT /test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer",
"search_analyzer": "ik_smart"
}
}
}
}
再次测试:
2.3、自动补全查询
elasticsearch 提供了 Completion Suggester 查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高自动补全查询的效率,对于文档中字段的类型有一些约束:
- 参与补全查询的字段必须是
completion
类型。 - 字段的内容一般是用来补全的多个词条形成的数组。
比如,一个这样的索引库:
# 自动补全的索引库
PUT test2
{
"mappings": {
"properties": {
"title":{
"type": "completion"
}
}
}
}
然后插入下面的数据:
# 示例数据
POST test2/_doc
{
"title": ["Sony", "WH-1000XM3"]
}
POST test2/_doc
{
"title": ["SK-II", "PITERA"]
}
POST test2/_doc
{
"title": ["Nintendo", "switch"]
}
查询语法如下:
// 自动补全查询
GET /test/_search
{
"suggest": {
"title_suggest": { // 给查询起一个名称
"text": "s", // 用户输入的关键字
"completion": { // 自动补全的类型
"field": "title", // 补全查询的字段
"skip_duplicates": true, // 跳过重复的
"size": 10 // 获取前10条结果
}
}
}
}
示例:
# 自动补全查询
GET /test2/_search
{
"suggest": {
"titleSuggest": {
"text": "s",
"completion": {
"field": "title",
"skip_duplicates": true,
"size": 10
}
}
}
}
2.4、实现酒店搜索框自动补全
现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。
另外,我们需要添加一个字段,用来做自动补全,将 brand、suggestion、city 等都放进去,作为自动补全的提示。
因此,总结一下,我们需要做的事情包括:
1、修改hotel索引库结构,设置自定义拼音分词器
2、修改索引库的 name、all 字段,使用自定义分词器
3、索引库添加一个新字段 suggestion,类型为 completion 类型,使用自定义的分词器
4、给HotelDoc类添加suggestion字段,内容包含brand、business
5、重新导入数据到hotel库
修改酒店映射结构
# 删除酒店索引库
DELETE /hotel
# 酒店索引库
PUT /hotel
{
"settings": {
"analysis": {
"analyzer": {
"text_anlyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
},
"completion_analyzer": {
"tokenizer": "keyword",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"id":{
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "text_anlyzer",
"search_analyzer": "ik_smart",
"copy_to": "all"
},
"address":{
"type": "keyword",
"index": false
},
"price":{
"type": "integer"
},
"score":{
"type": "integer"
},
"brand":{
"type": "keyword",
"copy_to": "all"
},
"city":{
"type": "keyword"
},
"starName":{
"type": "keyword"
},
"business":{
"type": "keyword",
"copy_to": "all"
},
"location":{
"type": "geo_point"
},
"pic":{
"type": "keyword",
"index": false
},
"all":{
"type": "text",
"analyzer": "text_anlyzer",
"search_analyzer": "ik_smart"
},
"suggestion":{
"type": "completion",
"analyzer": "completion_analyzer"
}
}
}
}
注意:text_anlyzer 是用于全文检索的,需要进行分词(ik_max_word
);而 completion_analyzer 是用于自动补全的,不需要进行分词(keyword
)
这里看下 name、all 字段,"analyzer": "text_anlyzer"
表示在创建倒排索引时用 text_anlyzer
,"search_analyzer": "ik_smart"
表示在搜索时用 ik_smart
。
再看看 suggestion ,这个字段是用来做自动补全的,它的类型是 completion
,用的分词器是 completion_analyzer
,也就是不分词直接转成拼音。
修改HotelDoc实体
HotelDoc 中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。
因此我们在 HotelDoc 中添加一个 suggestion 字段,类型为List<String>
,然后将 brand、city、business 等信息放到里面。
@Data
@NoArgsConstructor
public class HotelDoc {
private Long id;
private String name;
private String address;
private Integer price;
private Integer score;
// 品牌
private String brand;
private String city;
private String starName;
// 酒店所在的商圈
private String business;
private String location;
private String pic;
// 排序时的距离值
private Object distance;
// 广告标记
private boolean isAD;
// 自动补全的数组
private List<String> suggestion;
// 注意这两个get和set方法需要手动加上,不然自动生成的方法名是没有带get的,会导致广告图片无法正常显示
public boolean getisAD() {
return isAD;
}
public void setisAD(boolean AD) {
isAD = AD;
}
public HotelDoc(Hotel hotel) {
this.id = hotel.getId();
this.name = hotel.getName();
this.address = hotel.getAddress();
this.price = hotel.getPrice();
this.score = hotel.getScore();
this.brand = hotel.getBrand();
this.city = hotel.getCity();
this.starName = hotel.getStarName();
this.business = hotel.getBusiness();
this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
this.pic = hotel.getPic();
// 自动补全字段的处理
if (this.business.contains("/")) {
// business有多个值,需要切割
String[] arr = this.business.split("/");
this.suggestion = new ArrayList<>();
// 添加品牌
this.suggestion.add(this.brand);
// 添加商圈
Collections.addAll(this.suggestion, arr);
} else {
this.suggestion = Arrays.asList(this.brand, this.business);
}
}
}
重新导入数据到es中
重新执行之前编写的导入数据功能:
/**
* 批量新增文档
*
* @throws IOException
*/
@Test
void testBulkRequest() throws IOException {
// 查询所有的酒店数据
List<Hotel> list = hotelService.list();
// 1.创建Request对象
BulkRequest request = new BulkRequest();
// 2.准备参数,添加多个新增的Request
for (Hotel hotel : list) {
// 2.1 转换为文档类型HotelDoc
HotelDoc hotelDoc = new HotelDoc(hotel);
// 2.2 转json
String json = JSON.toJSONString(hotelDoc);
// 2.3 添加请求
request.add(new IndexRequest("hotel").id(hotel.getId().toString()).source(json, XContentType.JSON));
}
// 3.发送请求
client.bulk(request, RequestOptions.DEFAULT);
}
可以看到新的酒店数据中包含了suggestion:
测试自动补全功能
GET /hotel/_search
{
"suggest": {
"suggestions": {
"text": "h",
"completion": {
"field": "suggestion",
"skip_duplicates": true,
"size": 10
}
}
}
}
RestAPI实现自动补全
请求参数构造的API:
自动补全的结果比较特殊,解析的代码如下:
实现搜索框自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起 ajax 请求:
返回值是补全词条的集合,类型为 List<String>
1、在 cn.itcast.hotel.web
包下的 HotelController
中添加新接口,接收新的请求:
@GetMapping("/suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
return hotelService.getSuggestions(prefix);
}
2、在 cn.itcast.hotel.service
包下的 IhotelService
中添加方法:
List<String> getSuggestions(String prefix);
3、在 cn.itcast.hotel.service.impl.HotelService
中实现该方法:
@Override
public List<String> getSuggestions(String prefix) {
try {
// 1.创建Request对象
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
request.source().suggest(new SuggestBuilder()
// 添加一个补全查询的名称
.addSuggestion("suggestions",
// 自动补全的字段名字
SuggestBuilders.completionSuggestion("suggestion")
// 自动补全的前缀
.prefix(prefix)
// 跳过重复的
.skipDuplicates(true)
// 最多显示10条数据
.size(10)));
// 3.发起请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应结果
Suggest suggest = response.getSuggest();
// 4.1、根据补全查询的名称,获取补全结果
CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
// 4.2、获取options
List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
// 4.3、遍历options
List<String> list = new ArrayList<>(options.size());
for (CompletionSuggestion.Entry.Option option : options) {
// 4.4、获取一个option中的text字段,也就是补全的词条
String text = option.getText().toString();
list.add(text);
}
return list;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
4、测试:
3、数据同步(面试重点)
elasticsearch 中的酒店数据来自于 mysql 数据库,因此 mysql 数据发生改变时,elasticsearch 也必须跟着改变,这就是 elasticsearch 和 mysql 之间的数据同步
问题。
3.1、思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
方案一:同步调用
流程如下:
- hotel-demo 对外提供接口,用来修改 elasticsearch 中的数据
- 酒店管理服务在完成数据库操作后,直接调用 hotel-demo 提供的接口
优缺点:
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方案二:异步通知
流程如下:
- hotel-admin 对 mysql 数据库的数据完成增、删、改后,发送 MQ 消息
- hotel-demo 监听 MQ,接收到消息后完成对 elasticsearch 数据的修改
优缺点:
- 优点:低耦合,实现难度一般
- 缺点:依赖 mq 的可靠性
方案三:监听binlog
流程如下:
- 给 mysql 开启 binlog 功能
- mysql 完成增、删、改操作都会记录在 binlog 中
- hotel-demo 基于 canal 监听 binlog 变化,实时更新 elasticsearch 中的内容
优缺点:
- 优点:完全解除服务间的耦合
- 缺点:开启 binlog 会增加数据库负担、实现复杂度高
3.2、实现数据同步
我们以异步通知为例,使用 MQ 消息中间件
思路
利用课前资料提供的 hotel-admin 项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对 elasticsearch 中的数据也要完成相同操作。
步骤:
- 导入课前资料提供的 hotel-admin 项目,启动并测试酒店数据的 CRUD
- 声明 exchange、queue、RoutingKey
- 在 hotel-admin 中的增、删、改业务中完成消息发送
- 在 hotel-demo 中完成消息监听,并更新 elasticsearch 中的数据
- 启动并测试数据同步功能
导入demo
导入课前资料提供的 hotel-admin 项目:
运行后,访问 http://localhost:8099
声明交换机和队列
MQ结构如图:
1、引入依赖
在 hotel-admin、hotel-demo 中引入 rabbitmq 的依赖:
<!-- amqp依赖 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
2、配置 rabbitmq
在 hotel-admin、hotel-demo 中的 application.yaml 中配置 rabbitmq
spring:
rabbitmq:
host: rabbitmq服务器ip地址
port: 5672
username: admin
password: 283619
virtual-host: /
3、声明队列和交换机名称
在 hotel-admin 和 hotel-demo 中的 cn.itcast.hotel.constatnts
包下新建一个类 MqConstants
:
/**
* 声明队列和交换机的名称
*
* @author xiexu
* @create 2022-11-17 10:12
*/
public class MqConstants {
/**
* 交换机
*/
public final static String HOTEL_EXCHANGE = "hotel.topic";
/**
* 监听新增或修改的队列
*/
public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
/**
* 监听删除的队列
*/
public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
/**
* 新增或修改的RoutingKey
*/
public final static String HOTEL_INSERT_KEY = "hotel.insert";
/**
* 删除的RoutingKey
*/
public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
4、声明队列和交换机
在 hotel-demo 中定义配置类,声明队列、交换机:
/**
* 声明队列和交换机
*
* @author xiexu
* @create 2022-11-17 10:17
*/
@Configuration
public class MqConfig {
/**
* 声明一个交换机
*
* @return
*/
@Bean
public TopicExchange topicExchange() {
return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
}
/**
* 声明新增或修改的队列
*
* @return
*/
@Bean
public Queue insertQueue() {
return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
}
/**
* 声明删除的队列
*
* @return
*/
@Bean
public Queue deleteQueue() {
return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
}
/**
* 声明新增队列与交换机的绑定关系
*
* @return
*/
@Bean
public Binding insertQueueBinding() {
return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
}
/**
* 声明删除队列与交换机的绑定关系
*
* @return
*/
@Bean
public Binding deleteQueueBinding() {
return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
}
}
发送MQ消息
在 hotel-admin 中的增、删、改业务中分别发送MQ消息:
@RestController
@RequestMapping("/hotel")
public class HotelController {
@Autowired
private IHotelService hotelService;
@Autowired
private RabbitTemplate rabbitTemplate;
@GetMapping("/{id}")
public Hotel queryById(@PathVariable("id") Long id) {
return hotelService.getById(id);
}
@GetMapping("/list")
public PageResult hotelList(@RequestParam(value = "page", defaultValue = "1") Integer page, @RequestParam(value = "size", defaultValue = "1") Integer size) {
Page<Hotel> result = hotelService.page(new Page<>(page, size));
return new PageResult(result.getTotal(), result.getRecords());
}
/**
* 新增
*
* @param hotel
*/
@PostMapping
public void saveHotel(@RequestBody Hotel hotel) {
// 新增酒店
hotelService.save(hotel);
/**
* 发送MQ消息
* 第一个参数:交换机
* 第二个参数:RoutinKey
* 第三个参数:为了节省资源,只发送酒店id,消费者拿到后通过id查询mysql数据库,就能获取到插入的酒店数据了
*/
rabbitTemplate.convertAndSend(HotelMqConstants.EXCHANGE_NAME, HotelMqConstants.INSERT_KEY, hotel.getId());
}
/**
* 更新
*
* @param hotel
*/
@PutMapping()
public void updateById(@RequestBody Hotel hotel) {
if (hotel.getId() == null) {
throw new InvalidParameterException("id不能为空");
}
hotelService.updateById(hotel);
/**
* 发送MQ消息
* 第一个参数:交换机
* 第二个参数:RoutinKey
* 第三个参数:为了节省资源,只发送酒店id,消费者拿到后通过id查询mysql数据库,就能获取到插入的酒店数据了
*/
rabbitTemplate.convertAndSend(HotelMqConstants.EXCHANGE_NAME, HotelMqConstants.INSERT_KEY, hotel.getId());
}
/**
* 删除
*
* @param id
*/
@DeleteMapping("/{id}")
public void deleteById(@PathVariable("id") Long id) {
hotelService.removeById(id);
/**
* 发送MQ消息
* 第一个参数:交换机
* 第二个参数:RoutinKey
* 第三个参数:酒店id
*/
rabbitTemplate.convertAndSend(HotelMqConstants.EXCHANGE_NAME, HotelMqConstants.DELETE_KEY, id);
}
}
接收MQ消息
hotel-demo接收到MQ消息要做的事情包括:
- 新增消息:根据传递的 hotel 的 id 查询 hotel 信息,然后新增一条数据到es索引库
- 删除消息:根据传递的 hotel 的 id 删除索引库中的一条数据
操作
1、首先在 hotel-demo 的 cn.itcast.hotel.service
包下的 IHotelService
中添加新增、删除的业务
void insertById(Long id);
void deleteById(Long id);
2、给 hotel-demo 中的 cn.itcast.hotel.service.impl
包下的 HotelService 中实现业务:
@Override
public void insertById(Long id) {
try {
// 1.根据id查询酒店数据
Hotel hotel = getById(id);
// 2.转换为HotelDoc文档类型
HotelDoc hotelDoc = new HotelDoc(hotel);
// 3.转换成JSON格式
String json = JSON.toJSONString(hotelDoc);
// 1.创建Request对象
IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
// 2.准备JSON文档
request.source(json, XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
@Override
public void deleteById(Long id) {
try {
// 1.创建Request对象
DeleteRequest request = new DeleteRequest("hotel", id.toString());
// 2.发送请求
client.delete(request, RequestOptions.DEFAULT);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
3、编写监听器
在 hotel-demo 中的 cn.itcast.hotel.mq
包下新增一个类:
/**
* @author xiexu
* @create 2022-11-17 10:37
*/
@Component
public class HotelListener {
@Autowired
private IHotelService hotelService;
/**
* 监听酒店新增或修改的业务
*
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE) // 监听的队列名称
public void listenHotelInsertOrUpdate(Long id) {
hotelService.insertById(id);
}
/**
* 监听酒店删除的业务
*
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE) // 监听的队列名称
public void listenHotelDelete(Long id) {
hotelService.deleteById(id);
}
}
4、elasticsearch集群
单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。
- 海量数据存储问题:将索引库从逻辑上拆分成 N 个分片(shard),存储到多个节点
- 单点故障问题:将分片数据在不同节点备份(replica)
ES集群相关概念:
- 集群(cluster):一组拥有共同的 cluster name 的 节点。
- 节点(node) :集群中的一个 Elasticearch 实例
- 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
解决问题:数据量太大,单点存储量有限的问题。
此处,我们把数据分成3片:shard0、shard1、shard2
- 主分片(Primary shard):相对于副本分片的定义。
- 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据进行分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样就可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
4.1、部署ES集群
我们会在单机上利用 Docker 容器运行多个 Elasticsearch 实例来模拟集群。
可以直接使用 docker-compose
来完成,不过这要求你的 Linux 服务器至少有 4G ****以上的内存空间。
1、首先编写一个 docker-compose 文件,内容如下:
version: '2.2'
services:
es01:
image: elasticsearch:7.12.1 # 镜像
container_name: es01 # 容器名称
environment: # 环境变量
- node.name=es01 # 节点名称
- cluster.name=es-docker-cluster # 集群名称
- discovery.seed_hosts=es02,es03 # 集群内其他节点的ip地址,因为docker容器内互联,所以直接写容器名称就可以了
- cluster.initial_master_nodes=es01,es02,es03 # 初始化的主节点,表示这三台es节点可以参与选举
- "ES_JAVA_OPTS=-Xms512m -Xmx512m" # JVM堆内存大小
volumes: # 数据卷
- data01:/usr/share/elasticsearch/data
ports: # 端口映射
- 9200:9200
networks:
- elastic
es02:
image: elasticsearch:7.12.1
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data02:/usr/share/elasticsearch/data
ports: # 端口映射
- 9201:9200
networks:
- elastic
es03:
image: elasticsearch:7.12.1
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data03:/usr/share/elasticsearch/data
ports: # 端口映射
- 9202:9200
networks:
- elastic
volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local
networks:
elastic:
driver: bridge
示例:
version: '2.2'
services:
es01:
image: elasticsearch:7.12.1
container_name: es01
environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data01:/usr/share/elasticsearch/data
ports:
- 9200:9200
networks:
- elastic
es02:
image: elasticsearch:7.12.1
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data02:/usr/share/elasticsearch/data
ports:
- 9201:9200
networks:
- elastic
es03:
image: elasticsearch:7.12.1
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
volumes:
- data03:/usr/share/elasticsearch/data
ports:
- 9202:9200
networks:
- elastic
volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local
networks:
elastic:
driver: bridge
2、es运行需要修改 Linux 系统权限,修改 /etc/sysctl.conf
文件
vi /etc/sysctl.conf
3、添加下面的内容:
vm.max_map_count=262144
4、然后执行命令,让配置生效
sysctl -p
5、通过 docker-compose 启动集群:
docker-compose up -d
6、查看每个es节点的日志
docker logs -f es01
docker logs -f es02
docker logs -f es03
4.2、集群状态监控
kibana 可以监控 es 集群状态,不过新版本需要依赖 es 的 x-pack 功能,配置比较复杂。
这里推荐使用 cerebro 来监控 es 集群状态,官方网站:https://github.com/lmenezes/cerebro
下载后解压打开 bin 目录下的 cerebro
访问 http://localhost:9000 即可进入管理界面
绿色的线条代表es集群处于健康状态
4.3、创建索引库
利用 kibana的DevTools创建索引库
在 DevTools 中输入指令:
PUT /itcast
{
"settings": {
"number_of_shards": 3, // 分片数量
"number_of_replicas": 1 // 给每个分片添加的副本数量
},
"mappings": {
"properties": {
// mapping映射定义 ...
}
}
}
利用 cerebro 创建索引库
填写索引库信息:
回到首页,即可查看索引库分片效果:
4.4、集群职责划分
elasticsearch 中集群节点有不同的职责划分:
默认情况下,集群中的任何一个节点都同时具备上述四种角色。
真实的集群一定要将集群职责进行分离:
- master 节点:对 CPU 要求高,但是对内存要求低
- data 节点:对 CPU 和内存要求都高
- coordinating 节点:对网络带宽、CPU 要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署,避免业务之间的互相干扰。
elasticsearch 中的每个节点角色都有自己不同的职责,因此建议集群部署时,每个节点都有独立的角色
一个典型的 es 集群职责划分如图:
LB指的是负载均衡器。
4.5、ES集群脑裂问题
默认情况下,每个节点都是 master eligible 节点(主节点),因此一旦 master 节点宕机,其它候选节点会选举一个成为主节点。当主节点与其他节点发生网络故障时,可能发生脑裂问题。
例如在一个集群中,因为网络故障导致主节点与其它节点失联:
此时,node2 和 node3 认为 node1 宕机,就会重新选主:
当 node3 当选后,集群继续对外提供服务,node2 和 node3 自成集群,node1自成集群,两个集群数据不同步,出现数据差异。
当网络恢复后,因为集群中有两个 master 节点,集群状态的不一致,出现脑裂的情况:
为了避免发生脑裂问题,要求选票超过 (eligible节点数量 + 1)/ 2
才能当选为主,因此 eligible 节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes
,在 es7.0 以后,已经成为默认配置,因此一般不会发生脑裂问题。
例如:3个节点形成的集群,选票必须超过 (3 + 1)/ 2
,也就是2票。node3得到 node2 和 node3 的选票,当选为主。而 node1 只有自己 1 票,没有当选。集群中依然只有1个主节点,没有出现脑裂问题。
总结
master eligible节点的作用是什么?
- 参与集群选主
- 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求
data节点的作用是什么?
- 数据的CRUD
coordinator节点的作用是什么?
- 路由请求到其它节点
- 合并查询到的结果,返回给用户
4.6、集群分布式存储
当新增文档时,应该保存到不同的分片,保证数据均衡,那么 coordinating node 如何确定数据该存储到哪个分片呢?
分布式存储测试
插入三条数据:
测试可以看到,三条数据分别在不同的分片:
结果:
分布式存储原理
elasticsearch 会通过 hash 算法来计算文档应该存储到哪个分片上:
coordinating node 根据 id 做 hash 运算,得到的结果对分片数量取余,余数就是对应要存储的分片
说明:
_routing
默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量就不能修改!
新增文档的流程如下:
深蓝色表示主分片,浅蓝色表示分片副本
- 新增一个 id=1 的文档
- 对 id 做 hash 运算,假如得到的结果是 2,则应该存储到 shard-2
- shard-2 的主分片在 node3 节点,将数据路由到 node3 节点,由 node3 进行保存文档
- 同步给 shard-2 的副本分片(R-2),在 node2 节点
- 返回结果给 coordinating-node 节点(node1)
4.7、集群分布式查询
elasticsearch 的查询分成两个阶段:
- scatter phase:分散阶段,coordinating node 会把请求分发到每一个分片
- gather phase:聚集阶段,coordinating node 汇总 data node 的搜索结果,并处理为最终结果集返回给用户
4.8、集群故障转移
集群的 master 节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。
例如一个集群结构如图,三个节点都是健康的。
现在 node1 是主节点,其它两个节点是从节点。突然,node1发生了故障:
宕机后的第一件事,需要重新选主,例如选中了node2:
node2成为主节点后,会检测集群监控状态,发现 P-1 没有副本分片,P-0 没有主分片。因此需要将 node1 上的数据迁移到 node2、node3,确保任何一个分片都至少有两份(一个主分片,一个副本分片):
总结:
- 主节点(master)宕机后,候选主节点(EligibleMaster)选举为新的主节点。
- 主节点(master)监控分片、节点状态,将故障节点上的分片转移到正常节点,确保数据安全。