1.函数、函数的傅里叶级数展开、傅里叶级数的和函数之间的关系
1.1 傅里叶级数中的系数公式推导
我们先来推导一下傅里叶级数中的系数公式,其实笔者已经写过一篇相关笔记,详见:为什么要把一个函数分解成三角函数?(傅利叶级数)
f
(
x
)
∼
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
π
x
l
+
b
n
sin
n
π
x
l
)
(
x
∈
R
)
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
π
x
l
+
b
n
sin
n
π
x
l
)
(
−
l
<
x
<
l
)
a
0
=
1
l
∫
−
l
l
f
(
x
)
d
x
=
2
l
∫
0
l
f
(
x
)
d
x
a
n
=
1
l
∫
−
l
l
f
(
x
)
cos
n
π
x
l
d
x
=
2
l
∫
0
l
f
(
x
)
cos
n
π
x
l
d
x
b
n
=
1
l
∫
−
l
l
f
(
x
)
sin
n
π
x
l
d
x
=
2
l
∫
0
l
f
(
x
)
sin
n
π
x
l
d
x
f(x)\sim \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})(x\in \boldsymbol{R})\\ ~\\ f(x)= \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l})(-l\lt x\lt l)\\ ~\\ a_0=\frac{1}{l}\int_{-l}^{l}f(x)dx=\frac{2}{l}\int_{0}^{l}f(x)dx\\ ~\\ a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l}dx=\frac{2}{l}\int_{0}^{l}f(x)\cos\frac{n\pi x}{l}dx\\ ~\\ b_n=\frac{1}{l}\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l}dx=\frac{2}{l}\int_{0}^{l}f(x)\sin\frac{n\pi x}{l}dx
f(x)∼2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(x∈R) f(x)=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(−l<x<l) a0=l1∫−llf(x)dx=l2∫0lf(x)dx an=l1∫−llf(x)coslnπxdx=l2∫0lf(x)coslnπxdx bn=l1∫−llf(x)sinlnπxdx=l2∫0lf(x)sinlnπxdx
如果上述公式中
l
=
π
l=\pi
l=π
f
(
x
)
∼
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
(
x
∈
R
)
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
(
−
π
<
x
<
π
)
a
0
=
1
π
∫
−
π
π
f
(
x
)
d
x
=
2
π
∫
0
π
f
(
x
)
d
x
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
n
x
d
x
=
2
π
∫
0
π
f
(
x
)
cos
n
x
d
x
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
n
x
d
x
=
2
π
∫
0
π
f
(
x
)
sin
n
x
d
x
f(x)\sim \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)(x\in \boldsymbol{R})\\ ~\\ f(x)= \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)(-\pi\lt x\lt \pi)\\ ~\\ a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx=\frac{2}{\pi}\int_{0}^{\pi}f(x)dx\\ ~\\ a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nxdx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\cos nxdx\\ ~\\ b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nxdx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\sin nxdx
f(x)∼2a0+n=1∑∞(ancosnx+bnsinnx)(x∈R) f(x)=2a0+n=1∑∞(ancosnx+bnsinnx)(−π<x<π) a0=π1∫−ππf(x)dx=π2∫0πf(x)dx an=π1∫−ππf(x)cosnxdx=π2∫0πf(x)cosnxdx bn=π1∫−ππf(x)sinnxdx=π2∫0πf(x)sinnxdx
1.2将函数展开为傅里叶级数
2008年数一
将函数
f
(
x
)
=
1
−
x
2
(
0
≤
x
≤
π
)
f(x)=1-x^2(0\leq x\leq \pi)
f(x)=1−x2(0≤x≤π) 展开成余弦形式的傅里叶级数,并求级数
∑
n
=
1
∞
(
−
1
)
n
−
1
n
2
\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2}
n=1∑∞n2(−1)n−1的和
由于展开成余弦形式的傅里叶级数,故不含正弦级数且
b
n
=
0
b_n=0
bn=0
f
(
x
)
∼
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
x
(
x
∈
R
)
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
x
(
−
π
≤
x
≤
π
)
a
0
=
1
π
∫
−
π
π
1
−
x
2
d
x
=
2
π
∫
0
π
1
−
x
2
d
x
=
2
(
1
−
π
2
3
)
a
n
=
1
π
∫
−
π
π
(
1
−
x
2
)
cos
n
x
d
x
=
2
π
∫
0
π
(
1
−
x
2
)
cos
n
x
d
x
=
(
−
1
)
n
+
1
⋅
4
n
2
f(x)\sim \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos nx(x\in \boldsymbol{R})\\ ~\\ f(x)= \frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos nx(-\pi\leq x\leq \pi)\\ ~\\ a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}1-x^2dx=\frac{2}{\pi}\int_{0}^{\pi}1-x^2dx=2(1-\frac{\pi^2}{3})\\ ~\\ a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}(1-x^2)\cos nxdx=\frac{2}{\pi}\int_{0}^{\pi}(1-x^2)\cos nxdx=\frac{(-1)^{n+1}\cdot4}{n^2}
f(x)∼2a0+n=1∑∞ancosnx(x∈R) f(x)=2a0+n=1∑∞ancosnx(−π≤x≤π) a0=π1∫−ππ1−x2dx=π2∫0π1−x2dx=2(1−3π2) an=π1∫−ππ(1−x2)cosnxdx=π2∫0π(1−x2)cosnxdx=n2(−1)n+1⋅4
f
(
x
)
=
1
−
π
2
3
+
∑
n
=
1
∞
(
−
1
)
n
+
1
⋅
4
n
2
cos
n
x
(
−
π
≤
x
≤
π
)
f
(
0
)
=
1
−
π
2
3
+
4
∑
n
=
1
∞
(
−
1
)
n
+
1
n
2
(
−
π
≤
x
≤
π
)
f
(
0
)
=
1
−
0
2
=
1
1
=
1
−
π
2
3
+
4
∑
n
=
1
∞
(
−
1
)
n
+
1
n
2
(
−
π
≤
x
≤
π
)
∑
n
=
1
∞
(
−
1
)
n
+
1
n
2
=
π
2
12
f(x)= 1-\frac{\pi^2}{3}+\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot4}{n^2}\cos nx(-\pi\leq x\leq \pi)\\ ~\\ f(0)=1-\frac{\pi^2}{3}+4\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}(-\pi\leq x\leq \pi)\\ ~\\ f(0)=1-0^2=1\\ ~\\ 1=1-\frac{\pi^2}{3}+4\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}(-\pi\leq x\leq \pi)\\ ~\\ \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2}=\frac{\pi^2}{12}
f(x)=1−3π2+n=1∑∞n2(−1)n+1⋅4cosnx(−π≤x≤π) f(0)=1−3π2+4n=1∑∞n2(−1)n+1(−π≤x≤π) f(0)=1−02=1 1=1−3π2+4n=1∑∞n2(−1)n+1(−π≤x≤π) n=1∑∞n2(−1)n+1=12π2
1.3 函数、函数的傅里叶级数展开、傅里叶级数的和函数之间的关系的分析
作图过程如下:
函数
f
(
x
)
=
1
−
x
2
(
0
≤
x
≤
π
)
f(x)=1-x^2(0\leq x\leq \pi)
f(x)=1−x2(0≤x≤π)
余弦级数中的部分余弦波
a
n
cos
n
x
a_n\cos nx
ancosnx
此图中
n
n
n只从1取到5,共5个余弦波
各个余弦波(绿色)叠加后形成余弦级数(橙色)
∑
n
=
1
∞
a
n
cos
n
x
\sum\limits_{n=1}^{\infty}a_n\cos nx
n=1∑∞ancosnx
余弦级数加
a
0
/
2
a_0/2
a0/2 的图像(蓝色)
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
x
\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos nx
2a0+n=1∑∞ancosnx
函数
f
(
x
)
f(x)
f(x)(红色)及将其展开成余弦形式的傅里叶级数的图像(蓝色)
上图中红色为函数、蓝色为函数的傅里叶级数展开、函数与函数的傅里叶级数展开重合部分为和函数,超过收敛域的部分函数与傅里叶级数的和函数不再相等
当n从1取得30时,傅里叶级数的和函数基本与函数完全吻合!!
作图过程总览
|
|
|
|