YOLO 目标检测模型已应用于无数应用,从监控系统到自动驾驶车辆。但是,当在 KerasCV 框架下将 YOLOv8 的这种能力配对时会发生什么呢?最近,KerasCV 将著名的 YOLOv8 检测模型集成到其库中。在本文中,我们将探讨如何使用自定义数据集微调 YOLOv8。在此过程中,我们还将涵盖以下几点。
- 在交通灯检测数据集上微调 YOLOv8。
- 对验证图像运行推理。
- 分析结果。
图 1. 用于交通灯检测的 KerasCV YOLOv8 输出。
交通灯检测数据集
我们将使用交通灯检测数据集训练 KerasCV YOLOv8 模型。Thinklab 的小型交通灯数据集 (S2TLD)。笔记本内的下载链接提供了图像和注释的集合。
该数据集包含4564 个图像,注释以 XML 格式呈现。以下图像清楚地描绘了收集图像的不同场景。