【视觉SLAM入门】7.3.后端优化 基于KF/EKF和基于BA图优化的后端,推导及举例分析

news2024/11/17 1:51:15

"时间倾诉我的故事"

  • 1. 理论推导
  • 2. 主流解法
  • 3. 用EKF估计状态
    • 3.1. 基于EKF代表解法的感悟
  • 4. 用BA法估计状态
    • 4.1 构建最小二乘问题
    • 4.2 求解BA推导
    • 4.3 H的稀疏结构
    • 4.4 根据H稀疏性求解
    • 4.5 鲁棒核函数
    • 4.6 编程注意
  • 5.总结

引入:

  • 前端里程计能给出一个短时间内的轨迹和地图,时间长则不准确;
  • 为了得到长时间内最优轨迹和地图,构建一个规模更大的优化问题。在后端优化中,通常考虑更长时间内的状态估计问题。

1. 理论推导

还是摆出最经典的SLAM运动和观测方程
f ( x ) = { x k = f ( x k − 1 , u k ) + w k z k , j = h ( y j , x k ) + v k , j f(x)= \begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_{k,j} = h(y_j, x_k) + v_{k,j} \end{cases} f(x)={xk=f(xk1,uk)+wkzk,j=h(yj,xk)+vk,j
实际上要解决: 拥有某些运动数据 u u u 和观测数据 z z z 时,如何确定状态量 x x x y y y 的分布。

  • 解决如下:
    x k x_k xk k k k 时刻所有的未知量, x k ≜ { x k , y 1 , . . . , y m } x_k \triangleq \{x_k, y_1,...,y_m \} xk{xk,y1,...,ym}
    同时,令 k 时刻所有的观测值为 z k z_k zk
    代入上式,运动和观测方程以后如下:
    f ( x ) = { x k = f ( x k − 1 , u k ) + w k z k , j = h ( y j , x k ) + v k , j f(x)= \begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_{k,j} = h(y_j, x_k) + v_{k,j} \end{cases} f(x)={xk=f(xk1,uk)+wkzk,j=h(yj,xk)+vk,j

k k k 时刻,用 0 − k 0-k 0k 的数据估计现在的状态分布:

P ( x k ∣ x 0 , u 1 : k , z 1 : k )    ⇓ B a y e s 法则交换 z 和 x    P ( z k ∣ x k ) P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 )    ⇓ 按 x k − 1 时刻为条件概率展开    ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 )   d x k − 1 P(x_k|x_0, u_{1:k}, z_{1:k}) \\\;\\\Downarrow Bayes法则交换z和x \\\;\\ P(z_k|x_k)P(x_k|x_0, u_{1:k},z_{1:k-1}) \\\;\\\Downarrow 按x_{k-1}时刻为条件概率展开 \\\;\\ \int P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1})P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1})\, \text d x_{k-1} P(xkx0,u1:k,z1:k)Bayes法则交换zxP(zkxk)P(xkx0,u1:k,z1:k1)xk1时刻为条件概率展开P(xkxk1,x0,u1:k,z1:k1)P(xk1x0,u1:k,z1:k1)dxk1

2. 主流解法

上式 ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 )   d x k − 1 \int P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1})P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1})\, \text d x_{k-1} P(xkxk1,x0,u1:k,z1:k1)P(xk1x0,u1:k,z1:k1)dxk1

主流的有两种做法:

    1. 假设马尔科夫性,当前状态仅和上个时态有关,用EKF等滤波器方法做状态估计;前两讲讲到过
    1. 当前状态和之前所有状态都有关系,基于BA用非线性优化等优化框架做。

3. 用EKF估计状态

马尔科夫性成立后,当前状态仅和上个时态有关,上边左右式可分别简化为(右式中, u k u_k uk k − 1 k-1 k1 时刻的状态无关,拿掉!):
左边: P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k ∣ x k − 1 , u k )    右边: P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) 左边:\qquad P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1}) = P(x_k|x_{k-1}, u_k)\\\; \qquad右边:\qquad P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) = P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) 左边:P(xkxk1,x0,u1:k,z1:k1)=P(xkxk1,uk)右边:P(xk1x0,u1:k,z1:k1)=P(xk1x0,u1:k,z1:k1)

  • 由前边的两节知识,可知上式中我们只需维护一个状态量即可,不断迭代更新即可。假设它满足高斯分布,只需要考虑维护状态量的均值和协方差即可。
  • 另记: x ^ \hat x x^ 表示先验, x ˉ \bar x xˉ 表示后验

根据高斯分布性质可得EKF中的预测环节:
P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) = N ( A k x ˉ k − 1 + u k ,        A k P ^ k − 1 A k T + R ) = 记为 N ( x ˉ k , P ˉ k ) P(x_k|x_0,u_{1:k}, z_{1:k-1}) = N(A_k\bar x_{k-1}+u_k, \;\;\;A_k\hat P_{k-1}A_k^T+R) = 记为\quad N(\bar x_k, \bar P_k) P(xkx0,u1:k,z1:k1)=N(Akxˉk1+uk,AkP^k1AkT+R)=记为N(xˉk,Pˉk)

如此,就可以带入我们的EKF中进行使用。

3.1. 基于EKF代表解法的感悟

运算快,资源低;
局限:

    1. 马尔科夫性质—无法解决类似回环等当前状态与很久之前数据有关的问题
    1. x k x_k xk 在当前时刻的一次线性化,计算出后验概率,是假设该点的线性化在后验概率处还是有效的,实际上不然。只有小范围成立,在远处的地方并不能近似,这是EKF的 非线性误差
  • 2.1 而在非线性优化方法中,在每迭代一次,状态发生改变后就会做一阶或者二阶近似,重新做泰勒展开,适用范围更加广泛,状态变化大时候也适用。
    1. EKF SLAM不可适用于大场景,landmark多的时候,均值和方差是很大的。

4. 用BA法估计状态

BA(Bundle Adjustment):源于三维重建,在这里的意义是 通过不断调整相机的姿态和特征点的位置,使从每一个特征点反射出来的几束光线都收束到相机中心,类似求解只有观测方程的SLAM问题。

4.1 构建最小二乘问题

针对此问题,观测方程:

z = h ( ξ , p ) z = h(\xi, p) z=h(ξ,p)

ξ \xi ξ 是位姿(李代数表示) , p p p 是路标(特征点的位置), 观测误差如下:
e = z − h ( ξ , p ) e = z - h(\xi, p) e=zh(ξ,p)

代价函数(Cost Function)如下:

1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ e i j ∣ ∣ 2 = 1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ z i j − h ( ξ i , p j ) ∣ ∣ 2 \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||e_{ij}||^2 = \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij}-h(\xi_{i},p_j)||^2 21i=1mj=1n∣∣eij2=21i=1mj=1n∣∣zijh(ξi,pj)2

  • 其中 z ( i , j ) z(i,j) z(i,j) 表示在位姿 ξ i \xi_i ξi 处观察路标 p j p_j pj 产生的数据。当该式最小时,我们的估计位姿 ξ i \xi_i ξi 和 路标 p j p_j pj 最接近真实值。

为了便于理解这里的 h h h ,举在相机中的例子:

  • 这里 h h h 表示将世界坐标下的点 p [ x , y , z ] p[x,y,z] p[x,y,z] 转到像素坐标(也就是程序可读图片的点位置的坐标)下的点 u , v u,v u,v :如下
    在这里插入图片描述

这就是一个观测方程 h h h 的一种具体参数化的过程。

4.2 求解BA推导

再看要求解的非线性最小二乘问题( h h h 非线性显然 ):

1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ z i j − h ( ξ i , p j ) ∣ ∣ 2 \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij}-h(\xi_{i},p_j)||^2 21i=1mj=1n∣∣zijh(ξi,pj)2

首先定义要优化的变量:

x = [ ξ 1 , . . . , ξ m , p 1 , . . . , p n ] T x = [\xi_1, ..., \xi_m,p_1, ..., p_n]^T x=[ξ1,...,ξm,p1,...,pn]T

注意:虽然一个误差项针对的是单个位姿和路标点,但是在整体BA中,必须将优化变量定义为所有待优化的变量。


根据前文:求解非线性问题,要给一个小增量和增量方向,最终要求的也是这个 Δ x \Delta x Δx,这里给增量以后的代价函数为:

1 2 ∣ ∣ f ( x + Δ x ) ∣ ∣ 2 ≈ 1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ e i j + F i j Δ ξ i + E i j Δ p j ∣ ∣ 2 \frac{1}{2}||f(x+\Delta x)||^2 \approx \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||e_{ij}+F_{ij}\Delta \xi_i + E_{ij}\Delta p_j||^2 21∣∣f(x+Δx)221i=1mj=1n∣∣eij+FijΔξi+EijΔpj2

其中 F i j F_{ij} Fij 表示代价函数对相机姿态的偏导数, E i j E_{ij} Eij 表示对路标点位置的偏导数。

将相机位姿,和空间点变量分别放在一起:上式如下:

x c = [ ξ 1 , ξ 2 , . . . , ξ m ] T ∈ R 6 m , x p = [ p 1 , p 2 , . . . , p m ] T ∈ R 3 n    ⇓    1 2 ∣ ∣ f ( x + Δ x ) ∣ ∣ 2 = 1 2 ∣ ∣ e + F Δ x c + E Δ x p ∣ ∣ 2 x_c = [\xi_1, \xi_2, ..., \xi_m]^T \in \R^{6m}, \qquad x_p = [p_1, p_2, ..., p_m]^T \in \R^{3n} \\\;\Downarrow\\\;\\ \frac{1}{2}||f(x+\Delta x)||^2 = \frac{1}{2} ||e + F\Delta x_c + E \Delta x_p||^2 xc=[ξ1,ξ2,...,ξm]TR6mxp=[p1,p2,...,pm]TR3n21∣∣f(x+Δx)2=21∣∣e+FΔxc+EΔxp2

根据前边的非线性优化,最终我们要面临

H Δ x = g H \Delta x = g HΔx=g

而求解它要用的雅克比矩阵可以根据位姿和路标分别定义为:

J = [ F E ] J = [F \quad E] J=[FE]

则:
H = J T J = [ F T F F T E E T F E T E ] H = J^TJ= \begin{bmatrix} F^TF & F^TE \\ E^TF & E^TE \end{bmatrix} H=JTJ=[FTFETFFTEETE]

点越多,就代表这个H的维度越大,计算复杂,资源占得多,接下来分析如何观察这个 H H H 的特点。

4.3 H的稀疏结构

根据前边,我们知道 H = J T J H = J^TJ H=JTJ, H H H的研究放在 J J J 上,对于J,考虑一个 e i j e_{ij} eij 它的表述如下:

在这里插入图片描述
几何意义就是:它只涉及第 i 个矩阵和第 j 个路标,其余都为0,描述的是 ξ i \xi_i ξi看到 p j p_j pj 这件事,且前边的是位姿导数(6维),后边的是路标(三维)。

  • 举例说明

假设有2个相机,6个路标。可视化它们的关系如下(可以观测到,则底下用实线连接):

在这里插入图片描述根据上边,把 C 1 C_1 C1 观察到 P 1 P_1 P1 的雅克比直观出来,则如下,因为 C 1 C_1 C1 六维:

在这里插入图片描述
这个时候,将所有 J i j J_{ij} Jij 和 它们相乘之后的 H H H 同样直观展示:

在这里插入图片描述
我们发现:H对应邻接矩阵,可以知道 假如 C i C_i Ci 可以观察到 P j P_j Pj ,那么 H i j H_{ij} Hij 则是有值的,否则是为0.如下:

在这里插入图片描述

4.4 根据H稀疏性求解

根据以上H性质,可以将H分块为:其中 B B B 纯位姿, C C C对角线纯路标,B非对角非零表示共视关系:
H = [ B E E T C ] H = \begin{bmatrix} B & E \\ E^T & C \end{bmatrix} H=[BETEC]

这个时候就可以求解 H Δ x = g H \Delta x = g HΔx=g 这个方程:

[ B E E T C ] [ Δ x c Δ x p ] = [ v w ] \begin{bmatrix} B & E \\ E^T & C \end{bmatrix} \begin{bmatrix}\Delta x_c \\ \Delta x_p\end{bmatrix} = \begin{bmatrix} v \\w \end{bmatrix} [BETEC][ΔxcΔxp]=[vw]

此时通过Schur消元(也叫边缘化)—就是先求一个比如 Δ x c \Delta x_c Δxc 然后再反代回去求 Δ x p \Delta x_p Δxp 的方法去求解。

4.5 鲁棒核函数

  • 说明问题:我们采用的是误差项的二范数平方和,如果出现误匹配,单个项的误差就很大,此时优化算法会均摊误差去调整其他正确的数据。
  • 问题原因:误差很大时,二范数增长过快(平方嘛)
  • 解决:鲁棒核函数–把二范数度量换成增长较低,同时保证光滑(求导要求)的表述,因为它使得整个优化结果更为鲁棒,所以又叫它鲁棒核函数(Robust Kernel)。

列举一个常见的鲁棒核函数,Huber核:

f ( x ) = { 1 2 e 2 i f ∣ e ∣ ≤ δ , δ ( ∣ e ∣ − 1 2 δ ) o t h e r w i s e . f(x)= \begin{cases} \frac{1}{2}e^2 \qquad\qquad\qquad if|e| \le \delta, \\ \delta(|e| - \frac{1}{2} \delta)\qquad\quad otherwise . \end{cases} f(x)={21e2ifeδ,δ(e21δ)otherwise.
它的图像如下:

在这里插入图片描述
此外还有Cauchy核,Tukey核等。

4.6 编程注意

在使用G2O求解时,所有点云都要进行Schur,因为定义的Matrix维度仅仅是相机姿态参数的维度,要确保它不包含其他路标维度,不然报错。

5.总结

  • 假设马尔科夫,EKF代表的滤波器模型
  • 考虑所有状态,构成最小二乘问题,只有观测时又称BA。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1012264.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Rn视图生成图片并保存到相册

该功能依赖两个组件 完整代码 yarn add react-native-view-shot // 视图生成图片 yarn add expo-media-library // 保存图片import { useState, useRef } from react import ViewShot from "react-native-view-shot" import { View, Text, Button, Image, StyleSh…

【程序猿包邮送书:第五期】考研408书籍数学书籍大放送,多本书籍任君挑选

🌹欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 爱书不爱输的程序猿:送书第五期 🚩🚩🚩点击直达福利前言01 《数据结构与算法分析》书籍介绍作者简介目录 02 《计算机网…

【docker-compose 跨节点部署 kafka-kraft SASL用户加密集群】全网最新!

一、概述 文本主要讲解使用Docker-compose在三个节点上部署Kafka3.5.1(现阶段最新版本)-kraft模式,加密使用了用户名密码加密的SASL_PLAINTEXTPLAIN方式。SSL加密在我的docker-compose.yml文件基础上微调一下就好。所有的配置都通过环境变量注入,仅将加…

超详细springcloud sentinel教程~

基础 介绍 Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 基本概念 资源 资源是 Sent…

灰度变换原理//test later

灰度变换原理 图像灰度变换变换原理:通过变换函数T将原图像像素灰度值r映射为灰度值s: 2、灰度反转 2.1原理 灰度反转:将图像亮暗对调,可以增强图像中暗色区域细节 ��(�)�−1−…

无版权素材集合

一、无版权视频素材 1.pixabay 网址: https://pixabay.com/zh/videos/ 特点:没错,还是这个网站,除了图片,还有大量免费正版高清无水印视频素材,无需注册即可直接下载,支文搜索。你可以在任何地方使用 pixabay 的免费…

深度干货:制造进销存国内现状如何?2023年五大制造进销存最新盘点!

制造进销存是什么?制造进销存的发展如何?制造进销存的优势在哪里?制造进销存都能为企业提供什么?本文将带大家深入浅出的聊聊制造进销存,全面剖析制造进销存的前世今生,并且为大家提供2023年十大制造进销存…

WebGL 视图矩阵、模型视图矩阵

目录 立方体由三角形构成 视点和视线 视点、观察目标点和上方向 视点: 观察目标点: 上方向: 在WebGL中,观察者的默认状态应该是这样的: 视图矩阵程序(LookAtTriangles.js) 实际上&…

红巨星粒子插件 Red Giant Trapcode Suite for mac 2024

Red Giant Trapcode Suite是一款用于在After Effects中模拟和建模3D粒子和效果的软件,由Red Giant Software公司开发。 该软件包包含11种不同的工具,可以帮助用户模拟火、水、烟、雪等粒子效果,以及创建有机视觉效果和3D元素。它还支持在AE与…

机器学习(15)---代价函数、损失函数和目标函数详解

文章目录 一、各自定义二、各自详解三、代价函数和损失函数区别四、例题理解 一、各自定义 1. 代价函数:代价函数(Cost Function)是定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均。它用于衡量模型在…

langchain主要模块(五):Agent以及Wandb

langchain2之Agent以及Wandb langchain1.概念2.主要模块模型输入/输出 (Model I/O)数据连接 (Data connection)链式组装 (Chains)代理 (Agents)内存 (Memory)回调 (Callbacks) 3.AgentAction Agent:Plan-and-Execute-Agent:搜索工具 4.wandb1.注册2.安装…

第七版教材下的PMP考试有多难?

难度没有上升多少的,毕竟新考纲已经考过几轮考试了,如果报了培训班,那是没多大难度,如果自学,也只是难在理解第七版教材,会比第六版难以理解很多,而且第六版的知识也仍然有用,只是相…

Python基础学习笔记1(AI Studio)

地址:飞桨AI Studio星河社区-人工智能学习与实训社区 课程地址:飞桨AI Studio星河社区-人工智能学习与实训社区 课程地址:飞桨AI Studio星河社区-人工智能学习与实训社区 课程地址:飞桨AI Studio星河社区-人工智能学习与实训…

FE_Vue学习笔记 - 数据代理

Vue中的数据代理是一种机制,通过它,Vue实例(vm)可以代理其数据对象(data)中的属性操作。这种代理的原理主要是通过Object.defineProperty()方法,将data对象的每个属性都添加到vm对象上&#xff…

2023年8月京东洗衣机行业品牌销售排行榜(京东数据挖掘)

鲸参谋监测的京东平台8月份洗衣机市场销售数据已出炉! 根据鲸参谋平台的数据显示,8月份,京东平台上洗衣机的销量共计117万,环比增长约5%,同比下降约8%;销售额为18亿,环比下降约2%,同…

使用SimpleDateFormat类的示例文档

以下是Java中使用SimpleDateFormat类的示例文档: 示例 import java.text.DateFormat; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date;public class Main {public static void main(String[] args) {String dateStr…

遥感数据与作物模型同化应用:PROSAIL模型、DSSAT模型、参数敏感性分析、数据同化算法、模型耦合、精度验证等主要环节

查看原文>>>遥感数据与作物模型同化实践技术应用 基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及…

【C++】哈希表的实现

哈希是什么理解哈希哈希所用的容器计算key值方法哈希的插入和查找解决哈希冲突闭散列也叫开放寻址法开散列 哈希闭散列实现闭散列结构闭散列结构插入闭散列查找闭散列删除 哈希开散列实现(链表式)开散列结构开散列结构插入开散列结构查找开散列结构删除 …

事件循环,还在微任务宏任务?过时了,快看看新版浏览器事件循环event loop(message loop)

浏览器的进程模型 进程:程序运⾏需要有它⾃⼰专属的内存空间,可以把这块内存空间简单的理解为进程。每个应⽤⾄少有⼀个进程,进程之间相互独⽴,即使要通信,也需要双⽅同意。 线程:有了进程,就…

【机器学习习题】估计一个模型在未见过的数据上的性能

您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。这个不等式是由Hoeffding不等式和Union Bound组合而成的。在这个不等式中,我们有以下符号: - P[|E_i…