AutoML
自动化机器学习AutoML 是机器学习中一个相对较新的领域,它主要将机器学习中所有耗时过程自动化,如数据预处理、最佳算法选择、超参数调整等,这样可节约大量时间在建立机器学习模型过程中。
自动机器学习 AutoML: 对于 ,令 表示特征向量, 表示对应的目标值。给定训练数据集 和从与之具有相同数据分布中得出的测试数据集 的特征向量 ,以及资源预算 和损失度量 ,AutoML 问题是自动生成测试集的预测值 ,而 给出了 AutoML 问题的解 的损失值。
AutoML,是为数据集发现数据转换、模型和模型配置的最佳性能管道的过程。
AutoML 通常涉及使用复杂的优化算法(例如贝叶斯优化)来有效地导航可能模型和模型配置的空间,并快速发现对给定预测建模任务最有效的方法。它允许非专家机器学习从业者快速轻松地发现对于给