FPGA GTX aurora 8b/10b编解码 PCIE 板对板视频传输,提供2套工程源码加QT上位机源码和技术支持

news2024/11/25 15:59:34

目录

  • 1、前言
    • 免责声明
  • 2、我这里已有的 GT 高速接口解决方案
  • 3、GTX 全网最细解读
    • GTX 基本结构
    • GTX 发送和接收处理流程
    • GTX 的参考时钟
    • GTX 发送接口
    • GTX 接收接口
    • GTX IP核调用和使用
  • 4、设计思路框架
    • 视频源选择
    • ADV7611解码芯片配置及采集
    • 动态彩条
    • 视频数据组包
    • GTX aurora 8b/10b
    • 数据对齐
    • 视频数据解包
    • 图像缓存
    • XDMA及其中断模式的使用
    • QT上位机及其源码
  • 5、第1套vivado工程详解
  • 6、第2套vivado工程详解
  • 7、上板调试验证
    • 光纤连接
    • 静态演示
  • 8、福利:工程代码的获取

1、前言

没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。

本文使用Xilinx的Kintex7 FPGA的GTX资源做板对板的视频传输实验,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用笔记本电脑模拟HDMI视频,ADV7611解码输入的HDMI为GRB后供FPGA使用;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用HDMI输入作为视频源;调用GTX IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用2块开发板硬件上的2个SFP光口实现数据的收发;本博客提供2套vivado工程源码,2套工程的不同点在于一套是GTX发送,另一套是GTX接收,然后解码后视频缓存至DDR3,调用XDMA读取视频,通过PCIE2.0总线将视频发送给电脑,电脑主机运行QT上位机程序实时采集并显示图像;本博客详细描述了FPGA GTX aurora 8b/10b编解码 PCIE 板对板视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

3、GTX 全网最细解读

关于GTX介绍最详细的肯定是Xilinx官方的《ug476_7Series_Transceivers》,我们以此来解读:
《ug476_7Series_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Kintex7 xc7k325tffg676-2;带有8路GTX资源,其中2路连接到了2个SFP光口,每通道的收发速度为 500 Mb/s 到 10.3125 Gb/s 之间。GTX收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTX 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTX 收发器在Kintex7 FPGA 芯片中的示意图:《ug476_7Series_Transceivers》第24页;
在这里插入图片描述
GTX 的具体内部逻辑框图如下所示,它由四个收发器通道 GTXE2_CHANNEL原语 和一个GTXE2_COMMON 原语组成。每路GTXE2_CHANNEL包含发送电路 TX 和接收电路 RX,GTXE2_CHANNEL的时钟可以来自于CPLL或者QPLL,可在IP配置界面里配置;《ug476_7Series_Transceivers》第25页;
在这里插入图片描述

每个 GTXE2_CHANNEL 的逻辑电路如下图所示:《ug476_7Series_Transceivers》第26页;
在这里插入图片描述
GTXE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTX 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTX 的参考时钟

GTX 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTX 模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 148.5Mhz 的 GTX 参考时钟连接到 MGTREFCLK0上,作为 GTX 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTXE2_COMMOM 的QPLL或CPLL中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTX 的参考时钟结构图如下:《ug476_7Series_Transceivers》第31页;
在这里插入图片描述

GTX 发送接口

《ug476_7Series_Transceivers》的第107到165页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTX例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述

用户只需要关心发送接口的时钟和数据即可,GTX例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTX 接收接口

《ug476_7Series_Transceivers》的第167到295页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTX例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心接收接口的时钟和数据即可,GTX例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTX IP核调用和使用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTX 的范围是0.5到10.3125G,由于我的项目是视频传输,所以在GTX 的速率范围内均可,本例程选择了5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTX 组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug476_7Series_Transceivers》,官方根据BANK不同将GTX资源分成了多组,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTX组和引脚是怎么对应的呢?《ug476_7Series_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

4、设计思路框架

本博客提供2套vivado工程源码,2组工程的不同点在于一套是GTX发送,另一套是GTX接收后PCIE发送电脑端;我这里有2个FPGA开发板,记作开发板1和开发板2,两个开发板上均有HDMI输入和HDMI输出接口,2套vivado工程源码如下极其设计架构如下:
在这里插入图片描述
第1套vivado工程源码:GTX作为发送端,FPGA开发板1采集视频,然后数据组包,通过GTX做8b/10b编码后,通过板载的SFP光口的TX端发送出去;视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用笔记本电脑模拟HDMI视频,ADV7611解码输入的HDMI为GRB后供FPGA使用;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用HDMI输入作为视频源;

第2套是GTX接收,然后解码后视频缓存至DDR3,调用XDMA读取视频,通过PCIE2.0总线将视频发送给电脑,电脑主机运行QT上位机程序实时采集并显示图像;

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,如果你的手里有摄像头,或者你的开发板有HDMI输入接口,则使用HDMI输入作为视频输入源,我这里用到的是笔记本模拟HDMI视频,ADV7611解码芯片解码HDMI;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,动态彩条是移动的画面,完全可以模拟视频;默认使用HDMI输入作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是动态彩条;
当(不注释) define COLOR_IN时,输入源视频是HDMI输入;

ADV7611解码芯片配置及采集

ADV7611解码芯片需要i2c配置才能使用,ADV7611解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

视频数据组包

由于视频需要在GTP中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
在这里插入图片描述
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTX发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTX组包时根据固定的指令进行数据发送,GTX解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
在这里插入图片描述
指令可以任意更改,但最低字节必须为bc;

GTX aurora 8b/10b

这个就是调用GTX做aurora 8b/10b协议的数据编解码,前面已经对GTX做了详细概述,这里不讲;代码位置如下:
在这里插入图片描述

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTX解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTX部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
在这里插入图片描述

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往

XDMA及其中断模式的使用

本设计使用Xilinx官方的XDMA方案搭建基于Xilinx系列FPGA的PCIE通信平台,使用XDMA的中断模式与QT上位机通讯,即QT上位机通过软件中断的方式实现与FPGA的数据交互;XDMA将从SFP接收到的视频从DDR3中读取出来,通过PCIE总线发送给电脑主机,电脑主机运行QT上位机软件,QT软件通过通断方式接收PCIE发来的图像数据并实时显示图像;

本设计的关键在于我们编写了一个 XDMA中断模块。该模块用来配合驱动处理中断,xdma_inter.v 提供了AXI-LITE 接口,上位机通过访问 user 空间地址读写 xdma_inter.v 的寄存器。该 模块 在 user_irq_req_i 输入的中断位,寄存中断位号,并且输出给 XDMA IP ,当上位机的驱动响应中断的时候,在中断里面写 xdma_inter.v 的寄存器,清除已经处理的中断。DMA中断模块代码位置如下:
在这里插入图片描述
XDMA配置为X8模式,5G线速率,如下:
在这里插入图片描述
关于基于XDMA的PCIE应用,请参考我的PCIE通信专栏,专栏地址:点击直接前往

QT上位机及其源码

QT上位机本方案使用 VS2015 + Qt 5.12.10 完成上位机开发软件环境搭建,QT程序调用XDMA官方API采用中断模式实现与FPGA的数据交互,本例程实现的是读写测速,提供QT上位机软件及其源码,路径如下:
在这里插入图片描述
QT源码部分截图如下:
在这里插入图片描述

5、第1套vivado工程详解

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg900-2;
开发环境:Vivado2022.2;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:开发板1的SFP光口的TX接口;
应用:GTX aurora 8b/10b编解码 PCIE 板对板视频传输;
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

6、第2套vivado工程详解

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg900-2;
开发环境:Vivado2022.2;
输入:开发板2的SFP光口的RX接口;
输出:PCIE 2.0 X8
应用:GTX aurora 8b/10b编解码 PCIE 板对板视频传输;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

7、上板调试验证

光纤连接

两块板子接法如下:
在这里插入图片描述
在这里插入图片描述

静态演示

下面以第1组vivado工程的两块板子为例展示输出效果:
当GTX运行5G线速率时输出如下:
在这里插入图片描述

8、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/970042.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于永磁同步发电机的风力发电系统连接到可控的三相整流器(Simulink)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

机器学习——主成分分析PCA

机器学习——主成分分析PCA 文章目录 前言一、原理1.1. PCA介绍1.2. 算法步骤 二、代码实现2.1. 基于numpy实现2.2. 使用sklearn实现2.3. 观察方差分布2.4. 指定方差百分比求分量数 三、优,缺点3.1. 优点3.2. 缺点 总结 前言 当面对一个特征值极多的数据集时&#…

【核磁共振成像】观共享重建

目录 一、K空间关键孔技术-数据采集二、BRISK技术三、TRICKS技术四、实时成像和滑动窗重建五、心电触发电影(CINE)采集六、分段心脏采集和观共享 一、K空间关键孔技术-数据采集 对于笛卡尔K空间,一个相位编码行有时称为一个K空间观。一般情况下,每帧图像…

电源模块的降额曲线

大家好,这里是大话硬件。 今天想写这篇文章来分享在前段时间了解的一个知识点——电源模块的降额曲线。 为什么要写这个呢?对于专门做电源的同学来说,肯定觉得很简单。但是对于一个非电源行业的人来说,曲线应该如何解读&#xff…

春秋云镜 CVE-2018-1273

春秋云镜 CVE-2018-1273 Spring-data-commons 远程命令执行漏洞 靶标介绍 Spring Data是一个用于简化数据库访问,并支持云服务的开源框架,Spring Data Commons是Spring Data下所有子项目共享的基础框架。Spring Data Commons 在2.0.5及以前版本中&…

leetcode 1859.将句子排序

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;将句子排序 代码&#xff1a; class Solution { public:string sortSentence(string s) {vector<string> record;record.resize(9);string curString;for (auto val : s) {if (isdigit(val)) {record[ val - 0 - …

Linux内核基础知识

1.arm设备的启动过程 x86、Interl windows 启动过程: 电源 ---- >BIOS----->windows内核 --->文件系统(C盘、D盘) ---->应用程序启动嵌入式产品: 树莓派、mini2440、manopi、海思、RK(瑞芯微)等启动过程: 电源-->bootloader (引导操作系统启动) -->linux内…

【人工智能】—_一阶逻辑、量词的推理规则、一般化分离规则、合一、前向_反向链接算法、归结算法

文章目录 量词的推理规则全称量词实例化存在量词实例化 简化到命题逻辑推理Generalized Modus Ponens&#xff08;一般化分离规则&#xff09;举例 合一Forward chaining 前向链接算法示例 Backward chaining algorithm 反向链接算法一般FOL的FC/BC的完整性 归结算法归结推理规…

CEF内核和高级爬虫知识

(转)关于MFC中如何使用CEF内核&#xff08;CEF初解析&#xff09; Python GUI: cefpython3的简单分析和应用 cefpython3&#xff1a;一款强大的Python库 开始大多数抓取尝试可以从几乎一行代码开始&#xff1a; fun main() PulsarContexts.createSession().scrapeOutPages(&q…

PMP中常用英文术语

常用术语&#xff08;五&#xff09; Project 项目 为完成一个唯一的产品或服务的一种一次性努力。 Project Charter 项目许可证 由高级管理部门提供的一个文档&#xff0c;它给项目经理特权把组织的资源应用到项目工作中。 Project Communication Management 项目沟通管理 项目…

3D视觉测量:面对面的对称度 点对(附源码)

文章目录 0. 测试效果1. 基本内容2. 3D视觉测量对称度测量思路3. 代码实现4. 参考文章目录:3D视觉测量目录微信:dhlddxB站: Non-Stop_目标:通过3D视觉方法计算面对面的对称度0. 测试效果 数据说明:此测试点云是通过UG建模,Meshlab降采样得到,数据比较理想,仅作为测试使用…

Blazor前后端框架Known-V1.2.14

V1.2.14 Known是基于C#和Blazor开发的前后端分离快速开发框架&#xff0c;开箱即用&#xff0c;跨平台&#xff0c;一处代码&#xff0c;多处运行。 Gitee&#xff1a; https://gitee.com/known/KnownGithub&#xff1a;https://github.com/known/Known 概述 基于C#和Blazo…

ASIC-WORLD Verilog(16)综合

写在前面 在自己准备写一些简单的verilog教程之前&#xff0c;参考了许多资料----Asic-World网站的这套verilog教程即是其一。这套教程写得极好&#xff0c;奈何没有中文&#xff0c;在下只好斗胆翻译过来&#xff08;加点自己的理解&#xff09;分享给大家。 这是网站原文&…

HTML基础代码

以下是HTML基础代码&#xff1a; <!DOCTYPE html> <html> <head><title>网页标题</title> </head> <body><h1>这是一级标题</h1><p>这是一个段落。</p><img src"图片路径" alt"图片描述…

PNG图片压缩原理

png&#xff1f;&#xff1f;png的图片我们每天都在用&#xff0c;可是png到底是什么&#xff0c;它的压缩原理是什么&#xff1f; 很好&#xff0c;接下来我将会给大家一一阐述。 什么是PNG PNG的全称叫便携式网络图型&#xff08;Portable Network Graphics&#xff09;是…

一文讲清楚redis的线程池jedis

背景 在shigen实习的时候&#xff0c;遇到了日志系统的性能优化问题&#xff0c;当时的优化点就是&#xff1a;使用redis的线程池&#xff0c;实现并发状态下的性能优化。但是找了很多的技术方案&#xff0c;发现redis的线程池配置起来比较麻烦。正巧&#xff0c;这个周末shig…

arthas常用命令,排查cpu和内存场景

常用命令 命令&#xff1a;dashboard 查看jvm总体信息&#xff0c;包括线程&#xff0c;内存和运行环境 命令&#xff1a;monitor monitor -c 5 com.liubike.ta.controller.service.ApiService newString "param[1]2"每5秒统计一次监控方法被调用的次数 命令&…

numpy矩阵求MSE

MSE loss #官方示例 from sklearn.metrics import mean_squared_error y_true [[0.5, 1],[-1, 1],[7, -6]] y_pred [[0, 2],[-1, 2],[8, -5]] mean_squared_error(y_true, y_pred) #0.708验证 import numpy as np A np.array(y_true) B np.array(y_pred)mse (np.square…

【图解RabbitMQ-1】图解消息队列是什么玩意儿?它的应用场景有哪些?

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;CSDN实力新星&#xff0c;后端开发两年经验&#xff0c;曾担任甲方技术代表&#xff0c;业余独自创办智源恩创网络科技工作室。会点点Java相关技术栈、帆软报表、低代码平台快速开…

NeoVim 安装

一、NeoVim 是什么&#xff1f; hyperextensible Vim-based text editor 译&#xff1a;基于超可扩展Vim的文本编辑器 二、如何安装NeoVim 1.brew 安装 注&#xff1a;brew 是 MacOS 上的包管理工具&#xff0c;即该命令一般情况下只适用于 Mac 电脑 brew install neovim如果…