图像库 PIL(一)

news2025/1/22 18:07:28

Python 提供了 PIL(python image library)图像库,来满足开发者处理图像的功能,该库提供了广泛的文件格式支持,包括常见的 JPEG、PNG、GIF 等,它提供了图像创建、图像显示、图像处理等功能。

基本概念

要学习 PIL 图像库的使用,我们必须先来了解一些关于图像的基本概念,包括深度(depth),通道(bands),模式(mode),坐标系统(coordinate system)等。

图像的深度

图像中像素点占得 bit 位数,就是图像的深度,比如:

二值图像:图像的像素点不是0就是1 (图像不是黑色就是白色),图像像素点占的位数就是1位,图像的深度就是1,也称作位图。

灰度图像:图像的像素点位于0-255之间(0代表全黑,255代表全白,在0-255之间插入了255个等级的灰度)。2^8=255,图像像素点占的位数就是8位,图像的深度是8。

依次类推,我们把计算机中存储单个像素点所用的 bit 位称为图像的深度。

图像的通道

每张图像都是有一个或者多个数据通道构成的,如  RGB 是基本的三原色(红色、绿色和蓝色),如果我们用8位代表一种颜色,那么每种颜色的最大值是255,这样,每个像素点的颜色值范围就是(0-255, 0-255, 0-255)。这样的图像的通道就是3。而灰度图像的通道数是1。

图像的模式

图像实际上是像素数据的矩形图,图像的模式定义了图像中像素的类型和深度,每种类型代表不同的深度,在 PIL 中我们称之为图像的模式。常见的模式有以下几种:

1:1位像素,表示黑和白,占8 bit ,在图像表示中称为位图。

L:表示黑白之间的灰度,占8 bit 像素。

P:8位像素,使用调色版映射。

RGB:真彩色,占用 3x8 位像素,其中 R 为红色,G 为绿色,B为蓝色,三原色叠加形成的色彩变化,如三通道都为0则代表黑色,都为255则代表白色。

RGBA:为带透明蒙版的真彩色,其中的 A 为 alpha 透明度,占用 4x8 位像素

其他的还有 CMYK、 YCbCr、I、F等不常用的模式,这里就不多做介绍了。

图像的坐标系

PIL 中图像的坐标是从左上角开始,向右下角延伸,以二元组 (x,y)的形式传递,x 轴从左到右,y 轴从上到下,即左上角的坐标为 (0, 0)。那么矩形用四元组表示就行,例如一个450 x 450 像素的矩形图像可以表示为 (0, 0, 450, 450)。

PIL 的安装

和其他库一样,PIL 的安装也很简单:

pip3 install pillow

PIL 图像模块的功能

打开图像

我们可以从本地目录中打开文件,也可以从文件流中打开图像。打开文件的方法为:

Image.open(file,mode)

读取图像文件,mode 只能是 ‘r’,所以我们也可以省略这个参数。

from PIL import Imagefrom io import BytesIOimport requests# 打开图像文件im = Image.open('cat.jpg')# 从文件流中打开图像r = requests.get('http://f.hiphotos.baidu.com/image/pic/item/b151f8198618367aa7f3cc7424738bd4b31ce525.jpg')im2 = Image.open(BytesIO(r.content))# 展示图像im.show()im2.show()# 翻转90度展示im.rotate(90).show()

我们首先打开本目录下的 cat.jpg 图像,接着从百度图片请求到一张图片,使用文件流的方式打开。使用 show 方法可以展示图像。我们也可以使用 rotate 方法来是图像翻转角度。运行程序,我们会看到弹出三张图片,一张是 cat.jpg 对应的图像,一张是百度图片中的图像,还有一种是将 cat.jpg 翻转90度后展示的图像。

创建图像

Image.new(mode,size,color)

我们可以使用给定的模式、大小和颜色来创建新图像。大小以(宽度,高度)的二元组形式给出,单位为像素;颜色以单波段图像的单个值和多波段图像的元组(每个波段的一个值)给出,可以使用颜色名如 ‘red’ ,也可以受用16进制 '#FF0000' 或者使用数字表示(255,0,0)。​​​​​​​

from PIL import Imageim = Image.new('RGB', (450, 450), (255, 0, 0))im1 = Image.new('RGB', (450, 450), 'red')im2 = Image.new('RGB', (450, 450), '#FF0000')im.show()im1.show()im2.show()

上面例子中我们分别通过三种形式创建了 RGB 模式的大小为 450x450 ,颜色为红色的图像,最终的图像效果是一样的。

转换格式

Image.save(file)

我们直接使用保存方法,修改保存的文件名就可以转换图像的格式。​​​​​​​

from PIL import Image# 加载 cat.jpgim = Image.open('cat.jpg', 'r')# 打印图片类型print(im.format)# 保存为 png 类型图片im.save('cat.png')# 加载新保存的 png 类型图片im2 = Image.open('cat.png', 'r')# 打印新保存图片类型print(im2.format)# 输出结果JPEGPNG

例子中我们先打开 cat.jpg 图像,然后新保存一张类型为 png 的图像,通过打印我们可以看到两者的格式。

创建缩略图

Image.thumbnail(size, resample=3)

修改当前图像制作成缩略图,该缩略图尺寸不大于给定的尺寸。这个方法会计算一个合适的缩略图尺寸,使其符合当前图像的宽高比,调用方法 draft() 配置文件读取器,最后改变图像的尺寸。

size 参数表示给定的最终缩略图大小。

resample 参数是过滤器,只能是 NEAREST、BILINEAR、BICUBIC 或者 ANTIALIAS 之一。如果省略该变量,则默认为 NEAREST。

注意:在当前PIL的版本中,滤波器 BILINEAR 和 BICUBIC 不能很好地适应缩略图产生。用户应该使 用ANTIALIAS,图像质量最好。如果处理速度比图像质量更重要,可以选用其他滤波器。这个方法在原图上进行修改。​​​​​​​

from PIL import Image# 加载图像im = Image.open('cat.png')# 展示图像im.show()# 图像尺寸size = 128, 128# 缩放图像im.thumbnail(size, Image.ANTIALIAS)# 展示图像im.show()

我们将一个 450x450 大小的图像缩放成了 128x128 大小的图像,程序运行的结果如下图:

图片

融合图像

Image.blend(image1, image2, alpha)

将图像 image1 和 图像 im2 根据 alpha 值进行融合,公式为:

out = image1 * (1.0 - alpha) + image2 * alpha

image1 和 image2 表示两个大小和模式相同的图像, alpha 是介于 0 和 1 之间的值。如果 alpha 为0,返回 image1 图像,如果 alpha 为1,返回 image2 图像。​​​​​​​

from PIL import Image# 蓝色图像image1 = Image.new('RGB', (128, 128), (0, 0, 255))# 红色图像image2=Image.new('RGB', (128, 128), (255, 0, 0))# 取中间值im = Image.blend(image1, image2, 0.5)image1.show()image2.show()# 显示紫色图像im.show()

我们将一张蓝色图像和一张红色图像进行融合,融合度为两张图像各0.5,最终得到一张紫色图像(因为红色叠加蓝色会调和成紫色)。显示图像如下图:

图片

像素点处理

Image.eval(image, *args)

根据传入的函数对图像每个像素点进行处理。第一个参数 image 为需要处理的图像对象,第二个参数是函数对象,有一个整数作为参数。

如果变量image所代表图像有多个通道,那么函数作用于每一个通道。注意:函数对每个像素点只处理一次,所以不能使用随机组件和其他生成器。​​​​​​​

from PIL import Imageim = Image.open('cat.jpg')im.show()# 将每个像素值翻倍(相当于亮度翻倍)evl1 = Image.eval(im, lambda x: x*2)evl1.show()# 将每个像素值减半(相当于亮度减半)evl2 = Image.eval(im, lambda x: x/2)evl2.show()

我们分别对图像进行像素值翻倍和减半处理,显示效果如下图:

图片

合成图像

Image.composite(image1, image2, mask)

使用给定的两张图像及 mask 图像作为透明度,创建出一张新的图像。变量 mask 图像的模式可以为“1”,“L” 或者 “RGBA”。所有图像必须有相同的尺寸。​​​​​​​

from PIL import Image# 打开 cat.pngimage1 = Image.open('cat.png')# 打开 flower.jpgimage2 = Image.open('flower.jpg')# 分离image1的通道r, g, b = image1.split()# 合成图像,获得 cat + flowerim = Image.composite(image1, image2, mask=b)image1.show()image2.show()im.show()

上面例子中我们将一张图像猫(cat.png)和一张图像花(flower.jpg),以图像猫的一个通道构成的蒙版进行合成,就像 PS 一样,我们最终得到猫+花的图像,结果如下图所示:

图片

通过单通道创建图像

Image.merge(mode,bands)

将一组单通道图像合并成多通道图像。参数 mode 为输出图像的模式,bands 为输出图像中每个通道的序列。​​​​​​​

from PIL import Imageim = Image.open('cat.png')# 将三个通道分开im_split = im.split()# 分别显示三个单通道图像im_split[0].show()im_split[1].show()im_split[2].show()# 将三个通道再次合并im2 = Image.merge('RGB', im_split)im2.show()# 打开第二张图像im3 = Image.open('flower.jpg')# 将第二张图像的三个通道分开im_split2 = im3.split()# 将第二张图像的第1个通道和第一张图像的第2、3通道合成一张图像rgbs = [im_split2[0], im_split[1], im_split[2]]im4 = Image.merge('RGB', rgbs)im4.show()

上面例子中,我们先将 cat.jpg 图像的三个通道分离成三张图像,效果如下图:

图片

然后我们又将 flower.jpg 图像的三个通道分离,最后分别取 flower.jpg 的 R 通道图像和 cat.jpg 的 G 和 B 通道图像合成一张新图像,最终的效果如下图:

图片

总结

本节为大家介绍了 Python pillow 库中图像有关的几个基本概念,以及 PIL 模块中处理图像的几个常见功能。掌握了这些功能后,我们可以打开、创建图像,也可以对图像做一些常见的如拆分、合成、融合等操作,这些都是图像处理的基础,需要大家好好理解和掌握。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/957858.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

app易用性测试报告 软件app测试

易用性测试 app易用性测试应遵从GB/T25000.10-2016、GB/T25000.51-2016中的有关成熟性、可用性、容错性、易恢复性等方面的可靠性要求。依据应用场景需要,可让用户较长时间连续运行或使用APP,不应出现崩溃、闪退、卡死、无响应、响应迟缓等问题。 根据…

浅谈城市轨道交通视频监控与AI视频智能分析解决方案

一、背景分析 地铁作为重要的公共场所交通枢纽,流动性非常高、人员大量聚集,轨道交通需要利用视频监控系统来实现全程、全方位的安全防范,这也是保证地铁行车组织和安全的重要手段。调度员和车站值班员通过系统监管列车运行、客流情况、变电…

Java设计模式:四、行为型模式-04:中介者模式

文章目录 一、定义:中介者模式二、模拟场景:中介者模式三、违背方案:中介者模式3.1 工程结构3.2 创建数据库3.3 JDBC工具类3.4 单元测试 四、改善代码:中介者模式4.1 工程结构4.2 中介者工程结构图4.3 资源和配置类4.3.1 XML配置对…

说说你了解的 CDC

分析&回答 什么是 CDC CDC,Change Data Capture,变更数据获取的简称,使用CDC我们可以从数据库中获取已提交的更改并将这些更改发送到下游,供下游使用。这些变更可以包括INSERT,DELETE,UPDATE等。用户可以在以下的场景下使用CDC: 使用f…

thinkphp6 入门(2)--视图、渲染html页面、赋值

修改模板引擎 config/view.php // 模板引擎类型使用Think type > php, 2. 新建一个控制器 本文app的名称为test&#xff0c;在其下新建一个控制器User app/test/controller/User.php 注意&#xff1a;需要引用think\facade\View来操作视图 <?phpnamespace app\te…

Docker从认识到实践再到底层原理(二-3)|LXC容器

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

使用TPDSS连接GaussDB数据库

TPDSS是GaussDB官方提供的数据库连接工具&#xff0c;可以在TPDSS查看GaussDB的建库建表语句&#xff0c;于GaussDB使用兼容性比较好&#xff0c;由于TPDSS查找比较麻烦&#xff0c;下面给出了下载链接地址&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1Lqcu3KriE47…

IF 82.9| 深度解析呼吸道微生物组与健康的关系

发表期刊&#xff1a;nature medicine 发表时间&#xff1a;2023 影响因子&#xff1a;82.9 DOI: 10.1038/s41591-023-02424-2 研究背景 接触环境污染&#xff0c;包括香烟烟雾、生物燃料以及空气和职业污染物&#xff0c;是对公众健康的主要威胁&#xff0c;会导致呼吸道症…

Unity编辑器扩展 | 编辑器扩展基础入门

前言 Unity编辑器扩展 | 编辑器扩展基础一、基本概念二、核心知识点 简述三、相关API 总结 前言 当谈到游戏开发工具&#xff0c;Unity编辑器是一个备受赞誉的平台。它为开发者提供了一个强大且灵活的环境&#xff0c;使他们能够创建令人惊叹的游戏和交互式体验。然而&#xf…

使用 Laf 一周内上线美术狮 AI 绘画小程序

“美术狮 AI 绘画”&#xff08;以下简称“美术狮”&#xff09;&#xff0c;是我们小团队的一次尝试&#xff0c;定位是人人都可以上手的&#xff0c;充满创意的&#xff0c;理解中文和中国文化的图片生成工具。 在完善图像模型和论证核心问题之后&#xff0c;我们开始构建 MV…

es6的新特性有哪些

ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript的一个重要版本&#xff0c;引入了许多新的语法和功能。以下是ES6的一些主要特性&#xff1a; 块级作用域&#xff08;Block Scope&#xff09;&#xff1a;引入了let和const关键字&#xff0c;可以在块级作用域中声明变…

算法通关村第十二关——不简单的字符串转换问题

前言 字符串是我们在日常开发中最常处理的数据&#xff0c;虽然它本身不是一种数据结构&#xff0c;但是由于其可以包含所有信息&#xff0c;所以通常作为数据的一种形式出现&#xff0c;由于不同语言创建和管理字符串的方式也各有差异&#xff0c;因此针对不同语言特征又产生…

自助式数据分析平台:JVS智能BI功能介绍(一)数据源

一、数据源配置 数据源概述 数据源是JVS-智能BI支持多种数据形态的基础&#xff0c;核心的目标是将不同的数据来源通过统一接入&#xff0c;实现将不同的数据实现统一的数据加工、数据应用。目前JVS-智能BI主要支持3种形态的数据&#xff1a;数据库、API、离线文件。 ​界面介…

C#,《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码

1 文本格式 /// <summary> /// 阶乘的非递归算法 /// </summary> /// <param name"a"></param> /// <returns></returns> private int Factorial_Original(int a) { int r 1; for (int i a; i > 1; i--) { …

M2DGR数据集各相机话题名与外参名的对应关系

M2DGR数据集除了视觉惯性器件、天向相机&#xff0c;还有6个安装在同一平面、参数一致的鱼眼相机。 本文对这6个相机的安装位置、外参、topic话题进行区分。 安装图&#xff1a; 6个鱼眼相机 fish-eye camera装载在同一层。 外参情况 fish-eye camera在calibration_results…

如何使用FormKit构建Vue.Js表单

表单是现代网页开发的重要组成部分&#xff0c;创建表单通常是一项耗时且繁琐的任务。这就是FormKit的用武之地&#xff1b;它是一个功能强大的现代表单构建库&#xff0c;旨在帮助开发人员轻松高效地创建表单。 在本文中&#xff0c;我们将探讨使用FormKit的好处&#xff0c;并…

PostgreSQL问题记录:column “...“ does not exist

在PostgreSQL中&#xff0c;不论是在pgAdmin中&#xff0c;还是在命令行控制台里面&#xff0c;在SQL语句中表示属性值的总会遇到ERROR: column “…” does not exist这样的错误&#xff0c;比如下面的语句&#xff1a; 解决方案&#xff1a;将 “txt2txt” 的双引号改成单引…

前端三大Css处理器之Less

Less是Css预处理器之一&#xff0c;分别有Sass、Less、Stylus这三个。 Lesshttps://lesscss.org/ Less是用JavaScript编写的&#xff0c;事实上&#xff0c;Less是一个JavaScript库&#xff0c;他通过混合、变量、嵌套和规则设置循环扩展了原生普通Css的功能。Less的少数…

安捷伦Agilent E8362C网络分析仪

产品概述 Agilent E8362C网络分析仪提供通用网络分析&#xff0c;带有可选软件和/或硬件&#xff0c;可根据您的应用进行定制&#xff0c;如多端口、脉冲射频等。 Agilent E8362C网络分析仪的显示窗口数量不限&#xff0c;可以调整大小和重新排列&#xff0c;每个窗口最多有24…

乐理-笔记

乐理笔记整理 1、前言2、认识钢琴键盘及音名3、升降号、还原号4、如何区分同一音名的不同键&#xff1f;5、各类音符时值的关系6、歌曲拍号7、拍号的强弱规律8、歌曲速度&#xff08;BPM&#xff09;9、附点音符10、三连音12、唱名与简谱数字13、自然大调&#xff08;白键&…