异常检测方法总结

news2025/1/22 9:17:17

在数据挖掘中,异常检测(英语:anomaly detection)对不匹配预期模式或数据集中其他项目的项目、事件或观测值的识别。 通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。

1. 异常检测的分类

目前比较公认的分类方式是分为三种:

  • 单点异常(Global Outliers):也可以称为全局异常,即某个点与全局大多数点都不一样,那么这个点构成了单点异常。例如,和三只小黄人相比,海绵宝宝的混入就可以算作是单点异常。

  • 上下文异常(Contextual Outliers):这类异常多为时间序列数据中的异常,即某个时间点的表现与前后时间段内存在较大的差异,那么该异常为一个上下文异常点。例如,在某个温带城市夏天的气温时序数据中,其中有一天温度为10℃,而前后的气温都在25-35℃的范围,那么这一天的气温就可以说是一个上下文异常。
  • 集体异常(Collective Outliers):这类异常是由多个对象组合构成的,即单独看某个个体可能并不存在异常,但这些个体同时出现,则构成了一种异常。集体异常可能存在多种组成方式,可能是由若干个单点组成的,也可能由几个序列组成。想象这样一个场景,某小区某天有一户人家搬家了,这是一件很正常的事,但如果同一天有10户同时搬家了,那就构成了集体异常,显然这不是一个正常小区会时常发生的事情。

2. 在异常检测中经常遇到哪些困难?

  • 在大多数实际的场景中,数据本身是没有标签的,也存在一些数据集有标签,但标签的可信度非常低,导致放入模型后效果很差,这就导致我们无法直接使用一些成熟的有监督学习方法。
  • 常常存在噪音和异常点混杂在一起的情况,难以区分。
  • 在一些欺诈检测的场景中,多种诈骗数据都混在一起,很难区分不同类型的诈骗,因为我们也不了解每种诈骗的具体定义。

由于没有准确的标签,也没有对具体诈骗类型的理解,就导致我们陷入鸡生蛋 or 蛋生鸡的循环之中。要解决这种情况,目前比较常用的手段是,将无监督学习方法和专家经验相结合,基于无监督学习得到检测结果,并让领域专家基于检测结果给出反馈,以便于我们及时调整模型,反复进行迭代,最终得到一个越来越准确的模型。

到这里,我们都发现了,很多风控场景中最重要的一环就是:专家经验。

3. 异常检测算法的分类

异常检测涉及的场景非常丰富,那么异常检测算法可以从哪些角度进行分类呢?一般可以从以下四个角度作区分:

  • 时序相关 VS 时序独立
  • 全局检测 VS 局部检测
  • 输出形式:标签 VS 异常分数
  • 根据不同的模型特征

3.1. 时序相关 VS 时序独立

首先可以根据该场景的异常是否与时间维度相关。在时序相关问题中,我们假设异常的发生与时间的变化相关,比如一个人平时的信用卡消费约为每月5000元,但11月的消费达到了10000元,那这种异常的出现就明显与时间维度相关,可能是因为”万恶“的双十一。

而在时序独立问题中,我们假设时间的变化对异常是否发生是无影响的,在后续的分析建模中,也就不会代入时间维度。

3.2. 全局检测 VS 局部检测

在全局检测方法中,针对每个点进行检测时,是以其余全部点作为参考对象的,其基本假设是正常点的分布很集中,而异常点分布在离集中区域较远的地方。这类方法的缺点是,在针对每个点进行检测时,其他的异常点也在参考集内,这可能会导致结果可能存在一定偏差。

而局部检测方法仅以部分点组成的子集作为参考对象,基于的假设是,正常点中可能存在多种不同的模式,与这些模式均不同的少数点为异常点。该类方法在使用过程中的缺点是,参考子集的选取比较困难。

3.3. 输出形式:标签 VS 异常分数

这种分类方式是根据模型的输出形式,即直接输出标签还是异常分数。输出标签的方法比较简单直观,可以直接根据模型输出的结果判断每个点是否为异常点。

使用可以输出异常得分的模型,我们可以进一步看哪些点的异常程度更高,也可以根据需要设定阈值,比如设定百分比,找出异常程度排在前10%的异常点。

3.4. 根据不同的模型特征

最后,还可以根据模型本身的特点进行分类,大致可以分为以下几种:

  • 统计检验方法
  • 基于深度的方法
  • 基于偏差的方法
  • 基于距离的方法
  • 基于密度的方法
  • 深度学习方法

如今用于异常检测的算法已经非常多了,但万变不离其宗,无论优化到什么程度,它们都是由一些原始的模型和思想衍生出来的。下面来回顾一下这些最原始的模型思想。

4. 基于分布的方法

4.1. 3sigma

基于正态分布,3sigma准则认为超过3sigma的数据为异常点。

图1: 3sigma
def three_sigma(s):
    mu, std = np.mean(s), np.std(s)
    lower, upper = mu-3*std, mu+3*std
    return lower, upper

4.2. Z-score

Z-score为标准分数,测量数据点和平均值的距离,若A与平均值相差2个标准差,Z-score为2。当把Z-score=3作为阈值去剔除异常点时,便相当于3sigma。

def z_score(s):
  z_score = (s - np.mean(s)) / np.std(s)
  return z_score

4.3. boxplot

箱线图时基于四分位距(IQR)找异常点的。

图2: boxplot
def boxplot(s):
    q1, q3 = s.quantile(.25), s.quantile(.75)
    iqr = q3 - q1
    lower, upper = q1 - 1.5*iqr, q3 + 1.5*iqr
    return lower, upper

4.4. Grubbs假设检验

Grubbs’Test为一种假设检验的方法,常被用来检验服从正态分布的单变量数据集(univariate data set)Y中的单个异常值。若有异常值,则其必为数据集中的最大值或最小值。原假设与备择假设如下:

  • H0: 数据集中没有异常值

  • H1: 数据集中有一个异常值

使用Grubbs测试需要总体是正态分布的。算法流程:

  • 样本从小到大排序
  • 求样本的mean和dev
  • 计算min/max与mean的差距,更大的那个为可疑值
  • 求可疑值的z-score (standard score),如果大于Grubbs临界值,那么就是outlier

Grubbs临界值可以查表得到,它由两个值决定:检出水平α(越严格越小),样本数量n,排除outlier,对剩余序列循环做 1-4 步骤 [1]。详细计算样例可以参考。

from outliers import smirnov_grubbs as grubbs
print(grubbs.test([8, 9, 10, 1, 9], alpha=0.05))
print(grubbs.min_test_outliers([8, 9, 10, 1, 9], alpha=0.05))
print(grubbs.max_test_outliers([8, 9, 10, 1, 9], alpha=0.05))
print(grubbs.max_test_indices([8, 9, 10, 50, 9], alpha=0.05))

局限:

  • 只能检测单维度数据
  • 无法精确的输出正常区间
  • 它的判断机制是“逐一剔除”,所以每个异常值都要单独计算整个步骤,数据量大吃不消。
  • 需假定数据服从正态分布或近正态分布

5. 基于距离的方法

KNN

依次计算每个样本点与它最近的K个样本的平均距离,再利用计算的距离与阈值进行比较,如果大于阈值,则认为是异常点。优点是不需要假设数据的分布,缺点是仅可以找出全局异常点,无法找到局部异常点。

from pyod.models.knn import KNN

# 初始化检测器clf
clf = KNN( method='mean', n_neighbors=3, )
clf.fit(X_train)
# 返回训练数据上的分类标签 (0: 正常值, 1: 异常值)
y_train_pred = clf.labels_
# 返回训练数据上的异常值 (分值越大越异常)
y_train_scores = clf.decision_scores_

6. 基于密度的方法

6.1. Local Outlier Factor (LOF)

LOF是基于密度的经典算法(Breuning et. al. 2000),通过给每个数据点都分配一个依赖于邻域密度的离群因子 LOF,进而判断该数据点是否为离群点。它的好处在于可以量化每个数据点的异常程度(outlierness)。

图3:LOF异常检测

数据点p的局部相对密度(局部异常因子)为点p邻域内点的平均局部可达密度跟数据点p的局部可达密度的比值, 即:

 

数据点P的局部可达密度=P最近邻的平均可达距离的倒数。距离越大,密度越小。 

点P到点O的第k可达距离=max(点O的k近邻距离,点P到点O的距离)。 

点O的k近邻距离=第k个最近的点跟点O之间的距离。

整体来说,LOF算法流程如下:

  • 对于每个数据点,计算它与其他所有点的距离,并按从近到远排序;

  • 对于每个数据点,找到它的K-Nearest-Neighbor,计算LOF得分。

from sklearn.neighbors import LocalOutlierFactor as LOF

X = [[-1.1], [0.2], [100.1], [0.3]]
clf = LOF(n_neighbors=2)
res = clf.fit_predict(X)
print(res)
print(clf.negative_outlier_factor_)

6.2. Connectivity-Based Outlier Factor (COF)

COF是LOF的变种,相比于LOF,COF可以处理低密度下的异常值,COF的局部密度是基于平均链式距离计算得到。在一开始的时候我们一样会先计算出每个点的k-nearest neighbor。而接下来我们会计算每个点的Set based nearest Path,如下图:

图5:Set based nearest Path

假使我们今天我们的k=5,所以F的neighbor为B、C、D、E、G。而对于F离他最近的点为E,所以SBN Path的第一个元素是F、第二个是E。离E最近的点为D所以第三个元素为D,接下来离D最近的点为C和G,所以第四和五个元素为C和G,最后离C最近的点为B,第六个元素为B。所以整个流程下来,F的SBN Path为{F, E, D, C, G, C, B}。而对于SBN Path所对应的距离e={e1, e2, e3,…,ek},依照上面的例子e={3,2,1,1,1}。

所以我们可以说假使我们想计算p点的SBN Path,我们只要直接计算p点和其neighbor所有点所构成的graph的minimum spanning tree,之后我们再以p点为起点执行shortest path算法,就可以得到我们的SBN Path。

而接下来我们有了SBN Path我们就会接着计算,p点的链式距离:

有了ac_distance后,我们就可以计算COF: 

 

from pyod.models.cof import COF
cof = COF(contamination = 0.06,  ## 异常值所占的比例
          n_neighbors = 20,      ## 近邻数量
        )
cof_label = cof.fit_predict(iris.values) # 鸢尾花数据
print("检测出的异常值数量为:",np.sum(cof_label == 1))

6.3. Stochastic Outlier Selection (SOS)

将特征矩阵(feature martrix)或者相异度矩阵(dissimilarity matrix)输入给SOS算法,会返回一个异常概率值向量(每个点对应一个)。SOS的思想是:当一个点和其它所有点的关联度(affinity)都很小的时候,它就是一个异常点。

图6:SOS计算流程

SOS的流程:

  • 计算相异度矩阵D;
  • 计算关联度矩阵A;
  • 计算关联概率矩阵B;
  • 算出异常概率向量。

相异度矩阵D是各样本两两之间的度量距离, 比如欧式距离或汉明距离等。关联度矩阵反映的是 度量距离方差, 如图7, 点x_5的密度最大, 方差最小; x_6的密度最小, 方差最大。而关联概率矩阵B

(binding probability matrix)就是把关联矩阵(affinity matrix)按行归一化得到的, 如图8所示。

图7:关联度矩阵中密度可视化
图8:关联概率矩阵

得到了binding probability matrix,每个点的异常概率值就用如下的公式计算,当一个点和其它所有点的关联度(affinity)都很小的时候,它就是一个异常点。

 

import pandas as pd
from sksos import SOS
iris = pd.read_csv("http://bit.ly/iris-csv")
X = iris.drop("Name", axis=1).values
detector = SOS()
iris["score"] = detector.predict(X)
iris.sort_values("score", ascending=False).head(10)

7. 基于聚类的方法

DBSCAN算法(Density-Based Spatial Clustering of Applications with Noise)的输入和输出如下,对于无法形成聚类簇的孤立点,即为异常点(噪声点)。

  • 输入:数据集,邻域半径Eps,邻域中数据对象数目阈值MinPts;

  • 输出:密度联通簇。

图9:DBSCAN

处理流程如下:

  • 从数据集中任意选取一个数据对象点p;
  • 如果对于参数Eps和MinPts,所选取的数据对象点p为核心点,则找出所有从p密度可达的数据对象点,形成一个簇;
  • 如果选取的数据对象点 p 是边缘点,选取另一个数据对象点;
  • 重复以上2、3步,直到所有点被处理。
from sklearn.cluster import DBSCAN
import numpy as np
X = np.array([[1, 2], [2, 2], [2, 3],
              [8, 7], [8, 8], [25, 80]])
clustering = DBSCAN(eps=3, min_samples=2).fit(X)

clustering.labels_
array([ 0,  0,  0,  1,  1, -1])
# 0,,0,,0:表示前三个样本被分为了一个群
# 1, 1:中间两个被分为一个群
# -1:最后一个为异常点,不属于任何一个群

8. 基于树的方法

Isolation Forest (iForest)

孤立森林中的 “孤立” (isolation) 指的是 “把异常点从所有样本中孤立出来”,论文中的原文是 “separating an instance from the rest of the instances”。

我们用一个随机超平面对一个数据空间进行切割,切一次可以生成两个子空间。接下来,我们再继续随机选取超平面,来切割第一步得到的两个子空间,以此循环下去,直到每子空间里面只包含一个数据点为止。我们可以发现,那些密度很高的簇要被切很多次才会停止切割,即每个点都单独存在于一个子空间内,但那些分布稀疏的点,大都很早就停到一个子空间内了。所以,整个孤立森林的算法思想:异常样本更容易快速落入叶子结点或者说,异常样本在决策树上,距离根节点更近。

随机选择m个特征,通过在所选特征的最大值和最小值之间随机选择一个值来分割数据点。观察值的划分递归地重复,直到所有的观察值被孤立。

图10:孤立森林

获得 t 个孤立树后,单棵树的训练就结束了。接下来就可以用生成的孤立树来评估测试数据了,即计算异常分数 s。对于每个样本 x,需要对其综合计算每棵树的结果,通过下面的公式计算异常得分:

from sklearn.datasets import load_iris 
from sklearn.ensemble import IsolationForest

data = load_iris(as_frame=True) 
X,y = data.data,data.target 
df = data.frame 

# 模型训练
iforest = IsolationForest(n_estimators=100, max_samples='auto',  
                          contamination=0.05, max_features=4,  
                          bootstrap=False, n_jobs=-1, random_state=1)

#  fit_predict 函数 训练和预测一起 可以得到模型是否异常的判断,-1为异常,1为正常
df['label'] = iforest.fit_predict(X) 

# 预测 decision_function 可以得出 异常评分
df['scores'] = iforest.decision_function(X)

9. 基于降维的方法

9.1. Principal Component Analysis (PCA)

PCA在异常检测方面的做法,大体有两种思路:

(1) 将数据映射到低维特征空间,然后在特征空间不同维度上查看每个数据点跟其它数据的偏差;

(2) 将数据映射到低维特征空间,然后由低维特征空间重新映射回原空间,尝试用低维特征重构原始数据,看重构误差的大小。

PCA在做特征值分解,会得到:

  • 特征向量:反应了原始数据方差变化程度的不同方向;
  • 特征值:数据在对应方向上的方差大小。

得分大于阈值C则判断为异常。

第二种做法,PCA提取了数据的主要特征,如果一个数据样本不容易被重构出来,表示这个数据样本的特征跟整体数据样本的特征不一致,那么它显然就是一个异常的样本:

基于低维特征进行数据样本的重构时,舍弃了较小的特征值对应的特征向量方向上的信息。换一句话说,重构误差其实主要来自较小的特征值对应的特征向量方向上的信息。基于这个直观的理解,PCA在异常检测上的两种不同思路都会特别关注较小的特征值对应的特征向量。所以,我们说PCA在做异常检测时候的两种思路本质上是相似的,当然第一种方法还可以关注较大特征值对应的特征向量。 

from sklearn.decomposition import PCA
pca = PCA()
pca.fit(centered_training_data)
transformed_data = pca.transform(training_data)
y = transformed_data

# 计算异常分数
lambdas = pca.singular_values_
M = ((y*y)/lambdas)

# 前k个特征向量和后r个特征向量
q = 5
print "Explained variance by first q terms: ", sum(pca.explained_variance_ratio_[:q])
q_values = list(pca.singular_values_ < .2)
r = q_values.index(True)

# 对每个样本点进行距离求和的计算
major_components = M[:,range(q)]
minor_components = M[:,range(r, len(features))]
major_components = np.sum(major_components, axis=1)
minor_components = np.sum(minor_components, axis=1)

# 人为设定c1、c2阈值
components = pd.DataFrame({'major_components': major_components, 
                               'minor_components': minor_components})
c1 = components.quantile(0.99)['major_components']
c2 = components.quantile(0.99)['minor_components']

# 制作分类器
def classifier(major_components, minor_components):  
    major = major_components > c1
    minor = minor_components > c2    
    return np.logical_or(major,minor)

results = classifier(major_components=major_components, minor_components=minor_components)

9.2. AutoEncoder 

PCA是线性降维,AutoEncoder是非线性降维。根据正常数据训练出来的AutoEncoder,能够将正常样本重建还原,但是却无法将异于正常分布的数据点较好地还原,导致还原误差较大。因此如果一个新样本被编码,解码之后,它的误差超出正常数据编码和解码后的误差范围,则视作为异常数据。需要注意的是,AutoEncoder训练使用的数据是正常数据(即无异常值),这样才能得到重构后误差分布范围是多少以内是合理正常的。所以AutoEncoder在这里做异常检测时,算是一种有监督学习的方法。

图11:自编码器
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense

# 标准化数据
scaler = preprocessing.MinMaxScaler()
X_train = pd.DataFrame(scaler.fit_transform(dataset_train),
                              columns=dataset_train.columns,
                              index=dataset_train.index)
# Random shuffle training data
X_train.sample(frac=1)
X_test = pd.DataFrame(scaler.transform(dataset_test),
                             columns=dataset_test.columns,
                             index=dataset_test.index)

tf.random.set_seed(10)
act_func = 'relu'
# Input layer:
model=Sequential()
# First hidden layer, connected to input vector X.
model.add(Dense(10,activation=act_func,
                kernel_initializer='glorot_uniform',
                kernel_regularizer=regularizers.l2(0.0),
                input_shape=(X_train.shape[1],)
               )
         )
model.add(Dense(2,activation=act_func,
                kernel_initializer='glorot_uniform'))
model.add(Dense(10,activation=act_func,
                kernel_initializer='glorot_uniform'))
model.add(Dense(X_train.shape[1],
                kernel_initializer='glorot_uniform'))
model.compile(loss='mse',optimizer='adam')
print(model.summary())

# Train model for 100 epochs, batch size of 10:
NUM_EPOCHS=100
BATCH_SIZE=10
history=model.fit(np.array(X_train),np.array(X_train),
                  batch_size=BATCH_SIZE,
                  epochs=NUM_EPOCHS,
                  validation_split=0.05,
                  verbose = 1)

plt.plot(history.history['loss'],
         'b',
         label='Training loss')
plt.plot(history.history['val_loss'],
         'r',
         label='Validation loss')
plt.legend(loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Loss, [mse]')
plt.ylim([0,.1])
plt.show()

# 查看训练集还原的误差分布如何,以便制定正常的误差分布范围
X_pred = model.predict(np.array(X_train))
X_pred = pd.DataFrame(X_pred,
                      columns=X_train.columns)
X_pred.index = X_train.index

scored = pd.DataFrame(index=X_train.index)
scored['Loss_mae'] = np.mean(np.abs(X_pred-X_train), axis = 1)
plt.figure()
sns.distplot(scored['Loss_mae'],
             bins = 10,
             kde= True,
            color = 'blue')
plt.xlim([0.0,.5])

# 误差阈值比对,找出异常值
X_pred = model.predict(np.array(X_test))
X_pred = pd.DataFrame(X_pred,
                      columns=X_test.columns)
X_pred.index = X_test.index
threshod = 0.3
scored = pd.DataFrame(index=X_test.index)
scored['Loss_mae'] = np.mean(np.abs(X_pred-X_test), axis = 1)
scored['Threshold'] = threshod
scored['Anomaly'] = scored['Loss_mae'] > scored['Threshold']
scored.head()

10. 基于分类的方法

One-Class SVM,这个算法的思路非常简单,就是寻找一个超平面将样本中的正例圈出来,预测就是用这个超平面做决策,在圈内的样本就认为是正样本,在圈外的样本是负样本,用在异常检测中,负样本可看作异常样本。它属于无监督学习,所以不需要标签。

图12:One-Class SVM

One-Class SVM又一种推导方式是SVDD(Support Vector Domain Description,支持向量域描述),对于SVDD来说,我们期望所有不是异常的样本都是正类别,同时它采用一个超球体,而不是一个超平面来做划分,该算法在特征空间中获得数据周围的球形边界,期望最小化这个超球体的体积,从而最小化异常点数据的影响。

C是调节松弛变量的影响大小,说的通俗一点就是,给那些需要松弛的数据点多少松弛空间,如果C比较小,会给离群点较大的弹性,使得它们可以不被包含进超球体。 

from sklearn import svm
# fit the model
clf = svm.OneClassSVM(nu=0.1, kernel='rbf', gamma=0.1)
clf.fit(X)
y_pred = clf.predict(X)
n_error_outlier = y_pred[y_pred == -1].size

11. 基于预测的方法

对于单条时序数据,根据其预测出来的时序曲线和真实的数据相比,求出每个点的残差,并对残差序列建模,利用KSigma或者分位数等方法便可以进行异常检测。具体的流程如下:

图13:基于预测的方法

12. 总结

异常检测方法总结如下:

参考文献

【算法】异常检测方法总结

异常检测算法分类及经典模型概览 - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/92604.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1999-2020年各省农村综合数据

1999-2020年各省农村综合数据 1、时间&#xff1a;1999-2020年 2&#xff1a;来源&#xff1a;各省NJ、统计NJ、农村NJ 3、范围&#xff1a;包括31省 4、指标包括&#xff1a; 第一产业增加值占地区生产总值比重&#xff08;%&#xff09;、第一产业人员占就业人员比重&a…

scikit-learn 决策树入门实践 iris花分类

背景 为了了解sklearn的API&#xff0c;以及决策树的工作原理&#xff0c;本文以经典的花分类问题为例&#xff0c;编写代码并讲解。最后深入源代码查看其实现 关键词&#xff1a;决策树、基尼系数、决策树可视化、特征重要性。 代码案例 训练决策树 首先要准备数据集&#…

1.引入——如何创建Spring项目

目录 1.创建SpringBoot项目 1.未安装插件 2.安装插件 2.尝试着运行这个FirstApplication 3.Spring的核心——IOC&#xff08;控制反转&#xff09;/DI的讲解 1.相关概念&#xff1a; 2.什么是IOC&#xff0c;为什么要有IOC&#xff1f; 4.基于XML的方式&#xff0c;演示…

制造企业数字化车间MES系统方案

在市场经济越发严峻的局面下&#xff0c;现代制造业工厂越来越追求效率与精益生产管理&#xff0c;争相通过各种技术手段实现生产线上的现代管理&#xff0c;其中&#xff0c;可视化生产管理技术受到企业的关注&#xff0c;对MES系统也越来越重视。 MES系统解决的问题 1、条码…

094基于nodejs框架的学生作业管理系统vue

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 前端技术&#xff1a;nodejsvueelementui 前端&#xff1a;HTML5,CSS3、JavaScript、VUE 系统分为不同的层次&#xff1a;视图层&#xff08;vue页面…

【C语言数据结构(基础版)】第三站:链表(二)

目录 一、单链表的缺陷以及双向链表的引入 1.单链表的缺陷 2.双向链表的引入 3.八大链表结构 &#xff08;1&#xff09;单向和双向 &#xff08;2&#xff09;带头和不带头 &#xff08;3&#xff09;循环和不循环 &#xff08;4&#xff09;八种链表结构 二、带头双向…

牛掰,阿里技术人刷了四年LeetCode才总结出来的数据结构和算法手册

时间飞逝&#xff0c;转眼间毕业七年多&#xff0c;从事 Java 开发也六年了。我在想&#xff0c;也是时候将自己的 Java 整理成一套体系。 这一次的知识体系面试题涉及到 Java 知识部分、性能优化、微服务、并发编程、开源框架、分布式等多个方面的知识点。 写这一套 Java 面试…

ssm+Vue计算机毕业设计校园疫情防控管理软件(程序+LW文档)

ssmVue计算机毕业设计校园疫情防控管理软件&#xff08;程序LW文档&#xff09; 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项…

数据库拆分3--使用sharding-jdbc 子查询注意事项

最近在使用sharding-jdbc来改造项目的时候遇到了一些问题&#xff0c;主要是有关子查询的&#xff0c;记录一下。 在某一个库中新建两张表 CREATE TABLE user_t ( user_id bigint(20) NOT NULL AUTO_INCREMENT, name varchar(255) DEFAULT NULL, age int(8) DEFAULT NU…

世界杯决赛号角吹响!趁周末来搭一套足球3D+AI量化分析系统吧!

2022年卡塔尔世界杯从11月21日开赛至今&#xff0c;即将在12月18日迎来这次赛事的最后高潮。对于大部分热爱世界杯的朋友来说&#xff0c;无论之前是哪队的球迷&#xff0c;现在都在会师决赛的两支队伍上选择站队。从赛事结果看&#xff0c;最终无论哪支队伍夺冠&#xff0c;都…

01背包和完全背包

01背包 最大约数和 题目链接点击这里 题目描述 选取和不超过 SSS 的若干个不同的正整数&#xff0c;使得所有数的约数&#xff08;不含它本身&#xff09;之和最大。 输入格式 输入一个正整数 SSS。 输出格式 输出最大的约数之和。 样例 #1 样例输入 #1 11样例输出 …

有哪些值得推荐的Python学习网站?

我学习的时候&#xff0c;我发现大部分 Python 课程和资源都太通用了。 马上&#xff0c;我想学习如何使用 Python 制作网站。但是 Python 学习资源要我花几个月的时间学习语法&#xff0c;然后才能进入我感兴趣的领域。 这个问题让人感到恐惧和畏惧。我推迟了几个月。每当我…

大学生化妆品网页设计模板代码 化妆美妆网页作业成品 学校美妆官网网页制作模板 学生简单html网站设计成品

&#x1f389;精彩专栏推荐 &#x1f4ad;文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业&#xff1a; 【&#x1f4da;毕设项目精品实战案例 (10…

为什么人家的开源项目文档如此炫酷?原来用的是这款神器

VuePress简介 VuePress是Vue驱动的静态网站生成器。对比我们的Docsify动态生成网站&#xff0c;对SEO更加友好。 使用VuePress具有如下优点&#xff1a; 使用Markdown来写文章&#xff0c;程序员写起来顺手&#xff0c;配置网站非常简洁。 我们可以在Markdown中使用Vue组件&…

所谓工作能力强,其实就这五点

博客主页&#xff1a;https://tomcat.blog.csdn.net 博主昵称&#xff1a;农民工老王 主要领域&#xff1a;Java、Linux、K8S 期待大家的关注&#x1f496;点赞&#x1f44d;收藏⭐留言&#x1f4ac; #mermaid-svg-YapmQUqJ0V32EFv6 {font-family:"trebuchet ms",ve…

用三台云服务器搭建hadoop完全分布式集群

用三台云服务器搭建hadoop完全分布式集群一、硬件准备&#xff08;一&#xff09;集群配置&#xff08;二&#xff09;集群规划&#xff08;三&#xff09;Hadoop、Zookeeper、Java、CentOS版本二、基础环境配置&#xff08;一&#xff09;关闭防火墙&#xff08;二&#xff09…

[附源码]Python计算机毕业设计SSM基于Java的在线点餐系统(程序+LW)

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

12.15

JSONP 1) JSONP 是什么 JSONP(JSON with Padding)&#xff0c;只支持 get 请求。 2) JSONP 怎么工作的&#xff1f; 在网页有一些标签天生具有跨域能力&#xff0c;比如&#xff1a;img link iframe script。 JSONP 就是利用 script 标签的跨域能力来发送请求的。 3) JSONP …

为什么你的接口性能差,实际原因就在这里?

一、前言这篇文章咱们来聊一下&#xff0c;百亿级别的海量数据场景下还要支撑每秒十万级别的高并发查询&#xff0c;这个架构该如何演进和设计&#xff1f;咱们先来看看目前系统已经演进到了什么样的架构&#xff0c;大家看看下面的图&#xff1a;首先回顾一下&#xff0c;整个…

三、Node.js模块化基础 2.0

在Node.js中&#xff0c;模块分为核心&#xff08;原生&#xff09;模块和文件&#xff08;自定义&#xff09;模块&#xff0c;核心模块就是Node.js自带的模块&#xff0c;而自定义模块则是开发者自定义的模块&#xff1b; 核心模块 核心模块有 os&#xff0c;fs&#xff0c;…