多维时序 | MATLAB实现SCNGO-CNN-Attention多变量时间序列预测

news2024/11/15 11:14:40

多维时序 | MATLAB实现SCNGO-CNN-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现SCNGO-CNN-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.SCNGO-CNN-Attention超前24步多变量回归预测算法。
程序平台:无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上;
2.基于融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)、卷积神经网络(CNN)融合注意力机制的超前24步多变量时间序列回归预测算法;
3.北方苍鹰优化算法(Northern Goshawk Optimization,NGO)由MOHAMMAD DEHGHANI等人于2022年提出,该算法,该算法模拟了北方苍鹰捕猎过程(猎物识别和攻击、追逐及逃生);
4.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测;
5.改进策略参照麻雀优化算法,改进点如下:
①采用折射反向学习策略初始化北方苍鹰算法个体,基本思想是通过计算当前解的反向解来扩大搜索范围,借此找出给定问题更好的备选解;
②采用正余弦策略替换原始苍鹰算法的勘察阶段的位置更新公式;
③对正余弦策略的步长搜索因子进行改进;原始步长搜索因子呈线性递减趋势,不利于进一步平衡北方苍鹰算法的全局搜索和局部开发能力。
6.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测;
7.通过SCNGO优化算法优化学习率、卷积核大小、卷积核个数,这3个关键参数,以最小MAPE为目标函数;
8.提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线;
7.提供MAPE、RMSE、MAE等计算结果展示。
适用领域:
风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现SCNGO-CNN-Attention多变量时间序列预测
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入
lgraph = connectLayers(lgraph, "sequnfold", "flip");
lgraph = connectLayers(lgraph, "bigru2", "cat/in2");

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 100,...                  % 最大训练次数
    'MiniBatchSize',64,...                % 批处理
    'InitialLearnRate', 0.001,...         % 初始学习率为0.001
    'L2Regularization', 0.001,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%%  训练模型
[net,traininfo] = trainNetwork(p_train, t_train, lgraph, options);

%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/907914.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue 弹出框 引入另一个vue页面

为什么要这么做,适用于在一个页面逻辑比较多的时候,可以搞多个页面,防止出错 index页面点击解约按钮,弹出框 进入jieyue.vue 核心代码 <el-buttonsize"mini"type"text"icon"el-icon-edit"v-if"scope.row.delFlag 0"click"j…

openpnp - 日常使用的零碎记录

文章目录 openpnp - 日常使用的零碎记录概述抓偏贴偏的问题END openpnp - 日常使用的零碎记录 概述 设备标定已经妥妥的了(随时有需求从头要设备标定, 都是一次通过:) ), 现在主要是使用openpnp正常干活. 使用过程中, 发现了一些问题, 尝试解决并记录. 抓偏贴偏的问题 软件…

探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

前言 模型训练是指使用算法和数据对机器学习模型进行参数调整和优化的过程。模型训练一般包含以下步骤&#xff1a;数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 文章目录 前言数据收集数据预处理模型选择模型训练模型评估超参数调…

基于MATLAB开发AUTOSAR软件应用层Code mapping专题-part 3 Paramter标签页介绍

这页是参数设置的界面,那首先要知道什么是参数,参数就是算法中的系数这些可以更改的变量,接下来就是要学习如何创建参数,如下图: 打开模型资源管理器 选择model Workspace标签,点击上边工具栏里的创建参数的按钮(红色箭头指向的按钮),添加一个新的参数K,值设置为4,数…

摄影预约小程序制作的技术要点与难点解析

随着移动互联网的发展&#xff0c;小程序成为了很多企业和个人推广自己的产品和服务的有效工具。对于摄影师来说&#xff0c;一个功能完善、用户友好的摄影预约小程序可以方便客户预约拍摄时间&#xff0c;提升工作效率。那么&#xff0c;如何制作开发摄影预约小程序呢&#xf…

字幕翻译难吗,如何做好影视字幕翻译?

你是否曾经遇到过观看外国影视作品时&#xff0c;因为字幕翻译不准确而影响观影体验的情况&#xff1f; 专业的字幕翻译员不仅需要具备丰富的知识储备和语言组织能力&#xff0c;还要了解国内外文化风俗的差异。那么&#xff0c;如何才能做好影视字幕翻译呢&#xff1f;北京哪家…

CouchDB Erlang 分布式协议代码执行

漏洞描述 在CouchDB 3.2.1及以前版本中,使用了默认Cookie,值为“monster”,由于Erlang的特性,其支持分布式计算,分布式节点之间通过Erlang/OTP Distribution协议进行通信。攻击者如果知道通信时使用的Cookie,即可在握手包通过认证并执行任意命令。 免责声明 技术文章…

正中优配:降息利好什么股票?降息利好什么板块?

降息通常是指央行下降银行的存款、贷款利率&#xff0c;它是一种宽松的货币政策&#xff0c;会导致资金从银行流出&#xff0c;存款变为出资或消费&#xff0c;结果是资金流动性添加&#xff0c;给股市带来更多的资金&#xff0c;整体上会影响股市的上涨&#xff0c;那么&#…

2023-08-21 Unity Shader 开发入门1 —— 渲染管线

文章目录 一、概述二、应用阶段三、几何阶段四、光栅化阶段 一、概述 ​ Unity 中的渲染管线和图形学中的渲染管线基本上指的是相同的概念&#xff0c;但是具体实现和细节方面可能存在一些差异。 ​ Unity 的渲染管线建立在图形学的基础上&#xff0c;但具有自己的实现和拓展。…

windows安装使用RocketMQ常见问题,及springboot整合

win安装rocketmq 官网下载二进制包&#xff1a;https://rocketmq.apache.org/download 解压到不包含中文及空格的目录&#xff0c;配置环境变量 ROCKETMQ_HOME4. 修改runbroker.cmd和runserver.cmd文件 文件地址在rocketmq安装目录下的bin文件夹中。 如果不修改可能会遇见以…

CSS伪类:where和:is

CSS伪类:where和:is 1 :where1.1 概述1.2 组合与叠加1.3 优先级1.4 安全性1.5 兼容性 2 :is兼容性 1 :where 1.1 概述 :where()接受选择器列表作为它的参数&#xff0c;将会选择所有能被该选择器列表中任何一条规则选中的元素。 例如&#xff0c;在以下代码中&#xff0c;a标…

linux安装 jdk

1.下载 jdk 网盘资源&#xff1a; 链接: https://pan.baidu.com/s/1Z-fyHGDyj9b_km6ymR6mZg?pwdwd42 提取码: wd42 2.上传至服务器并解压 这里是上传至/opt 文件夹&#xff0c;并创建了/opt/soft 文件夹&#xff0c;解压在此 cd /opt tar -zxvf ./jdk-8u321-linux-x64.t…

8月18日上课内容 Haproxy搭建Web群集

本章结构 课程大纲 Haproxy调度算法 常见的web集群调度器 目前常见的Web集群调度器分为软件和硬件软件 通常使用开源的LVS、Haproxy、Nginx 硬件一般使用比较多的是F5&#xff0c;也有很多人使用国内的一些产品&#xff0c;如梭子鱼、绿盟等 Haproxy应用分析 LVS在企业应用中…

微信小程序使用云存储和Markdown开发页面

最近想在一个小程序里加入一个使用指南的页面&#xff0c;考虑到数据存储和减少页面的开发工作量&#xff0c;决定尝试在云存储里上传Markdown文件&#xff0c;微信小程序端负责解析和渲染。小程序端使用到一个库Towxml。 Towxml Towxml是一个可将HTML、Markdown转为微信小程…

mysql 、sql server 游标 cursor

游标 声明的位置 游标必须在声明处理程序之前被声明&#xff0c;并且变量和条件还必须在声明游标或处理程序之前被声明 游标的使用步骤 声明游标打开游标使用游标关闭游标 &#xff08;sql server 关闭游标和释放游标&#xff09; sql server 游标 declare my_cursor curs…

Redis企业级解决方案

缓存预热 “ 宕机 ” 服务器启动后迅速宕机 问题排查 1. 请求数量较高 2. 主从之间数据吞吐量较大&#xff0c;数据同步操作频度较高 , 因为刚刚启动时&#xff0c;缓存中没有任何数据 解决方案 准备工作&#xff1a; 1. 日常例行统计数据访问记录&#xff0c;统计访…

亚马逊云科技 云技能孵化营——机器学习心得

亚马逊云科技 云技能孵化营机器学习心得 前言什么是机器学习&#xff1f;机器学习如何解决业务问题&#xff1f;什么时候适合使用机器学习模型&#xff1f;总结 前言 很荣幸参加了本次亚马逊云科技云技能孵化营&#xff0c;再本期的《亚马逊云科技云技能孵化营》中&#xff0c…

eNSP综合小实验:VRRP、MSTP、Eth-Trunk、NAT、DHCP等技术应用

完成下图要求&#xff1a; 拓扑图&#xff1a; 配置命令&#xff1a; 由于交换机日志太多不便于复制&#xff0c;所以就复制命令。大概步骤如下&#xff1a; 第一步先分配IP地址&#xff0c;在sw1和sw2上创建VLAN100用于e0/0/3口配IP&#xff0c;在sw1、sw2、sw3、sw4上创建VL…

分布式搜索引擎----elasticsearch

目录 1、初识elasticsearch 1.1、什么是elasticsearch 1.2.ELK技术栈 2、正向索引和倒排索引 2.1、正向索引 2.2、倒排索引 2.3、正向索引和倒排索引的区别 3、elasticsearch中的概念理解 3.1、文档和字段 3.2、索引和映射 3.3、mysql与elasticsearch 1、初识elasti…

快手大模型出炉【快意】来袭

「快意」大模型&#xff08;KwaiYii&#xff09; 是由快手AI团队从零到一独立自主研发的一系列大规模语言模型&#xff08;Large Language Model&#xff0c;LLM&#xff09;&#xff0c;当前包含了多种参数规模的模型&#xff0c;并覆盖了预训练模型&#xff08;KwaiYii-Base)…