【机器学习】— 2 图神经网络GNN

news2024/11/18 17:47:27

一、说明

        在本文中,我们探讨了图神经网络(GNN)在推荐系统中的潜力,强调了它们相对于传统矩阵完成方法的优势。GNN为利用图论来改进推荐系统提供了一个强大的框架。在本文中,我们将在推荐系统的背景下概述图论和图神经网络(GNN)。

在推荐系统系列的第一部分中,我们讨论了任务和常用的各种类型的推荐系统,以及基于业务上下文的相关指标。在本文中,我们将在推荐系统的背景下概述图论和图神经网络(GNN)。

二、经典矩阵补全方法

        推荐系统的一种流行技术是利用经典的机器学习方法进行矩阵补全,这是一种协同过滤方法。给定用户数 m 和数项 n,它旨在填充用户-项交互矩阵 R(维度为 mxn)中的缺失值。为了实现这一点,我们将每个用户和项目映射到大小为 k 的嵌入 — 向量空间中的抽象表示。这些嵌入可能会捕获电影类型或用户人口统计数据等特征,但很多时候是潜在的未知特征。生成用户嵌入矩阵 U(维度为 mxk)和项目嵌入矩阵 I(维度为 nxk)。 为了预测用户-项目对,我们计算转置项目矩阵和用户矩阵的点积。最初,潜在矩阵是随机初始化的,我们使用基于已知用户-项交互的损失函数优化嵌入。

图 1:此图显示了用户-项交互矩阵 R,以及我们如何在用户和项嵌入矩阵之间取点积来预测 R 矩阵中的特定值。

        但是,此方法在处理稀疏矩阵时会遇到性能问题。在用户仅与数百万个可用项中的几个项交互的情况下,经典的矩阵完成方法可能是不够的,因为它们只考虑用户和项之间的直接连接。为了解决这一限制,基于图神经网络(GNN)的推荐系统已成为一种更有效的替代方案。

        GNN 不仅通过考虑单个用户的偏好,还集成来自相邻用户的信息,在稀疏数据集中提供改进的性能。通过利用图形结构,GNN 可以更全面地捕获用户和项目之间的关系,从而实现更准确和个性化的推荐。让我们首先提醒自己一些关于图论的知识。

三、图论概述

3.1 什么是图表?

        图形是一种数据结构,将实体集合表示为节点(顶点),并将其关系表示为边。它是建模和理解各种真实场景的强大工具。例如,图表可以表示银行交易,其中节点符号化银行账户,边表示它们之间的交易。同样,社交网络图以人为节点,边缘描绘个人之间的关系。

图 2:图形示例。

        图表的类型

        根据其特征,有不同类型的图形。 有向图具有具有特定方向的边。 例如,在银行交易图中,每条边表示从发送方到接收方的交易,从而建立明确的方向。另一方面,无向图不会为边分配方向。在社交网络中,无向边缘表示两个人之间的联系或相识,没有任何固有的方向性。

        图形也可以分为同构或异构。 同类图具有单一类型的节点和边,而异构图可能包含多种类型。例如,在电子商务方案中,可能有两种类型的节点:一种表示可供销售的商品,另一种表示用户。不同类型的边缘可以表示不同的交互,例如用户单击项目或进行购买。

图 3:有向图、无向图、齐次图和异构图的示例

        二分图是一种特定类型的异构图,在建模推荐系统方面非常有用。它们涉及两组不同的节点,例如用户和项目,边缘专门连接来自不同集的节点。二分图有效地捕获用户-项目交互,并启用高效的推荐算法来利用丰富的网络结构。

图 4:二分图示例。

3.2 我们如何存储图形数据?

        有多种方法可以存储图形数据。一种方法是使用邻接矩阵,表示为 A ∈ {0, 1}ⁿxⁿ,其中 n 是图中的节点数矩阵的 (i, j) 条目 Ai,j 表示节点 vi 和 vj 之间的连通性,如果有连接 vi 和 vj 的边,则为 Ai,j = 1。对于无向图,邻接矩阵是对称的,即 Ai,j = Aj,i。但是,对于大型和稀疏图(如社交网络),邻接矩阵可能是内存密集型的。这是因为邻接矩阵随节点数而缩放。在拥有数百万个节点的社交网络中,大多数人彼此不认识。这将导致一个大矩阵,其中大多数单元格为空。

        为了解决这个问题,邻接列表表示形式对内存效率更高。 它将节点之间的边描述为元组 (i,j),其中 (0,1) 表示节点 0 和 1 之间的边。例如,对于图 5 中的图形,邻接列表为 [(A,B)、(B,D)、(B,C)、(D,C)]。

图 5a:图形示例 — 图 5b:图 4a 中图形的邻接矩阵。

        邻接列表表示形式提供了更高的内存效率,特别是对于稀疏图,因为它仅存储有关连接节点的必要信息。这使其成为处理大规模图形数据(例如社交网络)的首选,其中连接数与节点总数相比通常有限。

四、推荐系统中的图神经网络

        与传统的矩阵完成方法类似,GNN 可以为用户和项目生成嵌入,以预测看不见的用户-项目交互。但是,它们提供了一种显式合并高阶图结构的方法,并且可以捕获数据本身中可能不可用的潜在或隐藏相关性。

        给定一个图,我们的目标是将每个节点 v 映射到其自己的 d 维最终嵌入,其中基于其网络邻域特征以及自身特征的相似节点最终应在其最终嵌入空间中彼此接近。

图 6:节点编码到嵌入空间。

4.1 图形神经网络层

        GNN 的一层在图中的所有直接邻居之间交换信息,为图中的每个节点生成新的节点嵌入。在 2 层 GNN 模型中,每个节点将根据其 2 跳邻域生成其第 2 层嵌入。 K-hop 邻域是指距离感兴趣节点 K 边的所有节点。这是一个迭代过程,其中邻居变量通过传递消息(一种消息传递方法)与每个变量“对话”。

图 7:2 层 GNN 中特定目标节点的输入图和计算图

        在此图像中,我们看到节点 A 的第 2 层表示是通过以某种方式聚合其直接邻居 [B,C,D] 的第 1 层嵌入并对其应用黑盒转换或神经网络生成的。这些嵌入又由其第 0 层 [X_A、X_B...X_F] 嵌入直接相邻要素,这是初始输入要素。每一层都会生成一个新的节点嵌入,节点的 K 层嵌入从距离自身的 K 跳节点获取信息。

4.2 图神经网络的特点、优势和局限性

        图神经网络(GNN)具有几个显着的特征和优势,使其与传统的矩阵补全方法区分开来。这些特征有助于它们在推荐系统中的有效性。让我们探索这些功能:

  • 阶次不变性: GNN 是顺序不变的,这意味着节点的标记顺序不会影响结果。计算图考虑节点连接而不是节点顺序,利用顺序不变的聚合函数(如平均值、最大/最小池化)进行消息传递。
  • 大小不变性: GNN 中的每个节点都有自己的计算图,这使得 GNN 的大小不变。这允许各个节点根据其本地邻域处理和集成信息,从而实现个性化和灵活的学习。下图显示了上图中每个节点的计算图。

图 8:图 7 输入图中每个节点的计算图。

  • 处理稀疏矩阵:与经典的矩阵补全方法不同,GNN 擅长处理稀疏矩阵。它们超越了直接节点交互,并捕获了高阶图结构中存在的隐藏相关性。此功能增强了它们在交互受限的场景中的性能
  • 端到端学习: GNN 提供端到端学习,同时优化嵌入和预测任务。这减轻了对手动特征工程的需求,简化了推荐管道。此外,GNN 可以很好地适应不断发展的用户/项目功能,从而减少对重大代码修改的需求。

        尽管GNN具有优势,但它们也有应考虑的局限性:

  • 计算复杂性:GNN 可能是计算密集型的,特别是对于大型图形和深度架构。与更简单的模型相比,训练GNN可能需要大量的计算资源和更长的训练时间。
  • 可解释性:与传统方法相比,GNN的复杂性可能使它们的可解释性降低。了解基于 GNN 的建议背后的内部工作原理和推理可能具有挑战性。

五、结论

          通过利用嵌入在图结构中的丰富信息,GNN可以捕获复杂的模式,发现潜在特征,并在推荐过程中考虑相邻用户的影响。这种方法增强了推荐系统做出准确预测的能力,即使在经典方法难以生存的稀疏数据集中也是如此。

        随着推荐系统领域的不断发展,GNN已成为解决传统方法局限性的有前途的解决方案。 他们适应不同领域并自动从数据中学习的能力使他们非常适合在各种情况下提供相关和量身定制的建议。

        在本系列的下一部分中,我们将深入研究GNN的数学基础,特别关注LightGCN在电影推荐系统中的应用。通过了解基本原理和算法,我们可以进一步了解GNN如何改变推荐系统的格局。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/898798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在“听得懂”之后“看得见、动起来”,实在智能首发“你说PC做”的大模型Agent

大洋彼岸种下了一颗AI的种子,拥有“算力魔法”的ChatGPT在海内外掀起一场“大”爆发——大型语言模型爆发,带动了AI大模型技术的新热潮。 “你问我答”的不仅是ChatGPT上的交互形态,更是一张名为“大模型”的问卷,答的是全球人工…

Python可视化在量化交易中的应用(13)_Seaborn直方图

Seaborn中带核密度的直方图的绘制方法 seaborn中绘制直方图使用的是sns.histlot()函数: sns.histplot(data,x,y,hue,weights,stat‘count’,bins‘auto’,binwidth,binrange,discrete,cumulative,common_bins,common_norm,multiple‘layer’,element‘bars’,fill,…

如何解决使用npm出现Cannot find module ‘XXX\node_modules\npm\bin\npm-cli.js’错误

遇到问题:用npm下载组件时出现Cannot find module ‘D:software\node_modules\npm\bin\npm-cli.js’ 问题,导致下载组件不能完成。 解决方法:下载缺少的npm文件即可解决放到指定node_modules目录下即可解决。 分析问题&#xff1…

KubeSphere 社区双周报 | Java functions framework 支持 SkyWalking | 2023.8.4-8.17

KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为:2023.08.04-2023.…

CPU执行程序的三个阶段简单示例(取指,解码,执行)

基础知识 RAM:RAM是随机存取存储器(random access memory),是计算机内部存储器中的一种,也是其中最重要的,计算机和手机中一般把其叫做(运行)内存,它的速度要比硬盘快得多…

JDK8知识点梳理

JDK8知识点梳理 一、lambda表达式1.标准格式2.实现原理3.省略模式4.前提条件 二、函数式接口1.函数式接口:FunctionalInterface2.接口默认方法3.接口静态方法4.供给型接口:Supplier5.消费型接口:Consumer6.消费供给型接口:Functio…

Redis中的分布式锁及其延生的问题

前言 本文将着重介绍Redis中的分布式锁及其与出现的死锁和锁误删问题 什么是分布式锁 首先问题就是什么是分布式锁,分布式锁就是分布式系统中实现并发控制的一种锁机制,它可以保证多个节点在同一个时间只有有一个能成功竞争到系统资源(共享…

[oneAPI] 使用序列到序列网络和注意力进行翻译

[oneAPI] 使用序列到序列网络和注意力进行翻译 oneAPI特殊写法使用序列到序列网络和注意力进行翻译Intel Optimization for PyTorch导入包加载数据并对数据进行处理序列到序列网络和注意力模型与介绍编码器解码器简单解码器注意力解码器 训练过程准备训练数据训练模型可视化注意…

Ubuntu在自己的项目中使用pcl

1、建立一个文件夹,如pcl_demos,里面建立一个.cpp文件和一个cmake文件 2、打开终端并进入该文件夹下,建立一个build文件夹存放编译的结果并进入该文件夹 3、对上一级进行编译 cmake .. 4、生成可执行文件 make 5、运行该可执行文件 6、可视…

STL——stack和queue

一、stack和queue stl中提供了栈和队列配接器供我们使用,以后就可以直接使用了。不需要我们自己造轮子。 使用细节参考文档就可以,与之学过的容器并无二致。栈和队列的特性我们再学习数据结构时已经了解了。这里就不在赘述了。 stack - C Reference (…

FifthOne:计算机视觉提示和技巧

一、说明 欢迎来到我们每周的FiftyOne提示和技巧博客,我们回顾了最近在Slack,GitHub,Stack Overflow和Reddit上弹出的问题和答案。FiftyOne是一个开源机器学习工具集,使数据科学团队能够通过帮助他们策划高质量数据集、评估模型、…

Games 103 作业一

Games 103 作业一 整个作业一的内容其实就是要自己动手实现一遍Impulse和Shape Matching这两个方法。作业中给的示例场景如下: 场景中有个兔子的刚体,我们要模拟的就是给兔子一个初始的速度,让其在重力的影响下,与两堵墙发生碰撞的…

嵌入式开发中的抽象、封装与继承

嵌入式开发中的抽象、封装与继承 ## 1 何从实现? OOP 是 CPP 的显著特征,尽管它是一种多重范式的语言 第一部分谈的是产品的实现(implement)而非产品的设计,因为对于个人开发者而言,往往是知道如何实现产…

港科夜闻|香港科大校长叶玉如教授、香港科大(广州)校长倪明选教授等两校领导共同出席香港科大(广州)首批本科新生见面会...

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大校长叶玉如教授、香港科大(广州)校长倪明选教授等两校领导共同出席香港科大(广州)首批本科新生见面会。8月16日,香港科大(广州)首批本科新生参加了一次具有特殊意义的见面会。香港科大、香港科大(广州…

菜单中的类似iOS中开关的样式

背景是我们有需求,做类似ios中开关的按钮。github上有一些开源项目,比如 SwitchButton, 但是这个项目中提供了很多选项,并且实际使用中会出现一些奇怪的问题。 我调整了下代码,把无关的功能都给删了,保留核…

Unsafe Filedownload

文件下载功能在很多web系统上都会出现,一般我们当点击下载链接,便会向后台发送一个下载请求,一般这个请求会包含一个需要下载的文件名称,后台在收到请求后会开始执行下载代码,将该文件名对应的文件response给浏览器&am…

XDR解决方案正式发布

面对日益严峻的网络安全形势,为了增强安全防护能力,不同单位经常不定期举行以真实网络目标为对象的攻防实战演练,旨在发现、暴露和解决安全问题,检验各个企业单位的网络安全防护水平和应急处置能力。 作为攻防实战防守方的蓝队&am…

WebStrom 前端项目Debug

1. 正常启动前端项目 2. 配置webStrom的JavaScript Debugger 点击Edit Configurations添加avaScript Debug填写URL 为项目启动路径配置要Debug的浏览器-remote-allow-origins* (最重要,否则唤起的是一个about:blank空白页面) 3. 启动Debug模…

[ MySQL ] — 基础增删查改的使用

目录 表的增删查改 Create 单行数据 全列插入 多行数据 全列插入 多行数据 指定列插入 不存在插入存在则更新 替换 Retrieve SELECT 列 全列查询 指定列查询 查询字段为表达式 为查询结果指定别名 结果去重 WHERE 条件 结果排序 筛选结果分页 Update De…

GPT系列总结

1.GPT1 无监督预训练有监督的子任务finetuning https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf 1.1 Unsupervised pre-training (1)通过一个窗口的输入得到下一个token在目标token上的一个概率分布…