06 - Stream如何提高遍历集合效率?

news2024/11/23 2:43:44

前面我们讲过 List 集合类,那我想你一定也知道集合的顶端接口 Collection。

在 Java8 中,Collection 新增了两个流方法,分别是 Stream() 和 parallelStream()。

1、什么是 Stream?

现在很多大数据量系统中都存在分表分库的情况。

例如,电商系统中的订单表,常常使用用户 ID 的 Hash 值来实现分表分库,这样是为了减少单个表的数据量,优化用户查询订单的速度。

但在后台管理员审核订单时,他们需要将各个数据源的数据查询到应用层之后进行合并操作。

例如,当我们需要查询出过滤条件下的所有订单,并按照订单的某个条件进行排序,单个数据源查询出来的数据是可以按照某个条件进行排序的,但多个数据源查询出来已经排序好的数据,并不代表合并后是正确的排序,所以我们需要在应用层对合并数据集合重新进行排序。

在 Java8 之前,我们通常是通过 for 循环或者 Iterator 迭代来重新排序合并数据,又或者通过重新定义 Collections.sorts 的 Comparator 方法来实现,这两种方式对于大数据量系统来说,效率并不是很理想。

Java8 中添加了一个新的接口类 Stream,他和我们之前接触的字节流概念不太一样,Java8 集合中的 Stream 相当于高级版的 Iterator,他可以通过 Lambda 表达式对集合进行各种非常便利、高效的聚合操作(Aggregate Operation),或者大批量数据操作 (Bulk Data Operation)。

Stream 的聚合操作与数据库 SQL 的聚合操作 sorted、filter、map 等类似。我们在应用层就可以高效地实现类似数据库 SQL 的聚合操作了,而在数据操作方面,Stream 不仅可以通过串行的方式实现数据操作,还可以通过并行的方式处理大批量数据,提高数据的处理效率。

 接下来我们就用一个简单的例子来体验下 Stream 的简洁与强大。

这个 Demo 的需求是过滤分组一所中学里身高在 160cm 以上的男女同学,我们先用传统的迭代方式来实现,代码如下:

    Map<String, List<Student>> stuMap = new HashMap<String, List<Student>>();
        for (Student stu: studentsList) {
        if (stu.getHeight() > 160) { // 如果身高大于 160
            if (stuMap.get(stu.getSex()) == null) { // 该性别还没分类
                List<Student> list = new ArrayList<Student>(); // 新建该性别学生的列表
                list.add(stu);// 将学生放进去列表
                stuMap.put(stu.getSex(), list);// 将列表放到 map 中
            } else { // 该性别分类已存在
                stuMap.get(stu.getSex()).add(stu);// 该性别分类已存在,则直接放进去即可
            }
        }
    }

我们再使用 Java8 中的 Stream API 进行实现:

  • 串行实现
    Map<String, List<Student>> stuMap = stuList.stream()
            .filter((Student s) -> s.getHeight() > 160)
            .collect(Collectors.groupingBy(Student::getSex));
  • 并行实现
    Map<String, List<Student>> stuMap = stuList.parallelStream()
            .filter((Student s) -> s.getHeight() > 160)
            .collect(Collectors.groupingBy(Student ::getSex));

通过上面两个简单的例子,我们可以发现,Stream 结合 Lambda 表达式实现遍历筛选功能非常得简洁和便捷。

2、Stream 如何优化遍历?

上面我们初步了解了 Java8 中的 Stream API,那 Stream 是如何做到优化迭代的呢?并行又是如何实现的?下面我们就透过 Stream 源码剖析 Stream 的实现原理。

2.1、Stream 操作分类

在了解 Stream 的实现原理之前,我们先来了解下 Stream 的操作分类,因为他的操作分类其实是实现高效迭代大数据集合的重要原因之一。为什么这样说,分析完你就清楚了。

官方将 Stream 中的操作分为两大类:中间操作(Intermediate operations)和终结操作(Terminal operations)。中间操作只对操作进行了记录,即只会返回一个流,不会进行计算操作,而终结操作是实现了计算操作。

中间操作又可以分为无状态(Stateless)与有状态(Stateful)操作,前者是指元素的处理不受之前元素的影响,后者是指该操作只有拿到所有元素之后才能继续下去。

终结操作又可以分为短路(Short-circuiting)与非短路(Unshort-circuiting)操作,前者是指遇到某些符合条件的元素就可以得到最终结果,后者是指必须处理完所有元素才能得到最终结果。操作分类详情如下图所示:

 我们通常还会将中间操作称为懒操作,也正是由这种懒操作结合终结操作、数据源构成的处理管道(Pipeline),实现了 Stream 的高效。

2.2、Stream 源码实现

在了解 Stream 如何工作之前,我们先来了解下 Stream 包是由哪些主要结构类组合而成的,各个类的职责是什么。参照下图:

BaseStream 和 Stream 为最顶端的接口类。BaseStream 主要定义了流的基本接口方法,例如,spliterator、isParallel 等;Stream 则定义了一些流的常用操作方法,例如,map、filter 等。

ReferencePipeline 是一个结构类,他通过定义内部类组装了各种操作流。他定义了 Head、StatelessOp、StatefulOp 三个内部类,实现了 BaseStream 与 Stream 的接口方法。

Sink 接口是定义每个 Stream 操作之间关系的协议,他包含 begin()、end()、cancellationRequested()、accpt() 四个方法。ReferencePipeline 最终会将整个 Stream 流操作组装成一个调用链,而这条调用链上的各个 Stream 操作的上下关系就是通过 Sink 接口协议来定义实现的。

2.3、Stream 操作叠加

 我们知道,一个 Stream 的各个操作是由处理管道组装,并统一完成数据处理的。在 JDK 中每次的中断操作会以使用阶段(Stage)命名。

管道结构通常是由 ReferencePipeline 类实现的,前面讲解 Stream 包结构时,我提到过 ReferencePipeline 包含了 Head、StatelessOp、StatefulOp 三种内部类。

Head 类主要用来定义数据源操作,在我们初次调用 names.stream() 方法时,会初次加载 Head 对象,此时为加载数据源操作;接着加载的是中间操作,分别为无状态中间操作 StatelessOp 对象和有状态操作 StatefulOp 对象,此时的 Stage 并没有执行,而是通过 AbstractPipeline 生成了一个中间操作 Stage 链表;当我们调用终结操作时,会生成一个最终的 Stage,通过这个 Stage 触发之前的中间操作,从最后一个 Stage 开始,递归产生一个 Sink 链。如下图所示:

 下面我们再通过一个例子来感受下 Stream 的操作分类是如何实现高效迭代大数据集合的。

    List<String> names = Arrays.asList(" 张三 ", " 李四 ", " 王老五 ", " 李三 ", " 刘老四 ", " 王小二 ", " 张四 ", " 张五六七 ");

    String maxLenStartWithZ = names.stream()
            .filter(name -> name.startsWith(" 张 "))
            .mapToInt(String::length)
            .max()
            .toString();

这个例子的需求是查找出一个长度最长,并且以张为姓氏的名字。从代码角度来看,你可能会认为是这样的操作流程:首先遍历一次集合,得到以“张”开头的所有名字;然后遍历一次 filter 得到的集合,将名字转换成数字长度;最后再从长度集合中找到最长的那个名字并且返回。

这里我要很明确地告诉你,实际情况并非如此。我们来逐步分析下这个方法里所有的操作是如何执行的。

首先 ,因为 names 是 ArrayList 集合,所以 names.stream() 方法将会调用集合类基础接口 Collection 的 Stream 方法:

    default Stream<E> stream() {
        return StreamSupport.stream(spliterator(), false);
    }

然后,Stream 方法就会调用 StreamSupport 类的 Stream 方法,方法中初始化了一个 ReferencePipeline 的 Head 内部类对象:

    public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
        Objects.requireNonNull(spliterator);
        return new ReferencePipeline.Head<>(spliterator,
                StreamOpFlag.fromCharacteristics(spliterator),
                parallel);
    }

再调用 filter 和 map 方法,这两个方法都是无状态的中间操作,所以执行 filter 和 map 操作时,并没有进行任何的操作,而是分别创建了一个 Stage 来标识用户的每一次操作。

而通常情况下 Stream 的操作又需要一个回调函数,所以一个完整的 Stage 是由数据来源、操作、回调函数组成的三元组来表示。如下图所示,分别是 ReferencePipeline 的 filter 方法和 map 方法:

    @Override
    public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
        Objects.requireNonNull(predicate);
        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
                StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
                return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {
                    @Override
                    public void begin(long size) {
                        downstream.begin(-1);
                    }

                    @Override
                    public void accept(P_OUT u) {
                        if (predicate.test(u))
                            downstream.accept(u);
                    }
                };
            }
        };
    }
    
    @Override
    @SuppressWarnings("unchecked")
    public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
        Objects.requireNonNull(mapper);
        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
                StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
                return new Sink.ChainedReference<P_OUT, R>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        downstream.accept(mapper.apply(u));
                    }
                };
            }
        };
    }

new StatelessOp 将会调用父类 AbstractPipeline 的构造函数,这个构造函数将前后的 Stage 联系起来,生成一个 Stage 链表:

    AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
        if (previousStage.linkedOrConsumed)
            throw new IllegalStateException(MSG_STREAM_LINKED);
        previousStage.linkedOrConsumed = true;
        previousStage.nextStage = this;// 将当前的 stage 的 next 指针指向之前的 stage

        this.previousStage = previousStage;// 赋值当前 stage 当全局变量 previousStage 
        this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
        this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
        this.sourceStage = previousStage.sourceStage;
        if (opIsStateful())
            sourceStage.sourceAnyStateful = true;
        this.depth = previousStage.depth + 1;
    }

因为在创建每一个 Stage 时,都会包含一个 opWrapSink() 方法,该方法会把一个操作的具体实现封装在 Sink 类中,Sink 采用(处理 -> 转发)的模式来叠加操作。

当执行 max 方法时,会调用 ReferencePipeline 的 max 方法,此时由于 max 方法是终结操作,所以会创建一个 TerminalOp 操作,同时创建一个 ReducingSink,并且将操作封装在 Sink 类中。

    @Override
    public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
        return reduce(BinaryOperator.maxBy(comparator));
    }

最后,调用 AbstractPipeline 的 wrapSink 方法,该方法会调用 opWrapSink 生成一个 Sink 链表,Sink 链表中的每一个 Sink 都封装了一个操作的具体实现。

    @Override
    @SuppressWarnings("unchecked")
    final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
        Objects.requireNonNull(sink);

        for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
            sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
        }
        return (Sink<P_IN>) sink;
    }

当 Sink 链表生成完成后,Stream 开始执行,通过 spliterator 迭代集合,执行 Sink 链表中的具体操作。

    @Override
    final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
        Objects.requireNonNull(wrappedSink);

        if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
            wrappedSink.begin(spliterator.getExactSizeIfKnown());
            spliterator.forEachRemaining(wrappedSink);
            wrappedSink.end();
        }
        else {
            copyIntoWithCancel(wrappedSink, spliterator);
        }
    }

Java8 中的 Spliterator 的 forEachRemaining 会迭代集合,每迭代一次,都会执行一次 filter 操作,如果 filter 操作通过,就会触发 map 操作,然后将结果放入到临时数组 object 中,再进行下一次的迭代。完成中间操作后,就会触发终结操作 max。

这就是串行处理方式了,那么 Stream 的另一种处理数据的方式又是怎么操作的呢?

2.4、Stream 并行处理

Stream 处理数据的方式有两种,串行处理和并行处理。要实现并行处理,我们只需要在例子的代码中新增一个 Parallel() 方法,代码如下所示:

    List<String> names = Arrays.asList(" 张三 ", " 李四 ", " 王老五 ", " 李三 ", " 刘老四 ", " 王小二 ", " 张四 ", " 张五六七 ");

    String maxLenStartWithZ = names.stream()
            .parallel()
            .filter(name -> name.startsWith(" 张 "))
            .mapToInt(String::length)
            .max()
            .toString();

Stream 的并行处理在执行终结操作之前,跟串行处理的实现是一样的。而在调用终结方法之后,实现的方式就有点不太一样,会调用 TerminalOp 的 evaluateParallel 方法进行并行处理。

    final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
        assert getOutputShape() == terminalOp.inputShape();
        if (linkedOrConsumed)
            throw new IllegalStateException(MSG_STREAM_LINKED);
        linkedOrConsumed = true;

        return isParallel()
                ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
                : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
    }

这里的并行处理指的是,Stream 结合了 ForkJoin 框架,对 Stream 处理进行了分片,Splititerator 中的 estimateSize 方法会估算出分片的数据量。

ForkJoin 框架和估算算法,在这里我就不具体讲解了,如果感兴趣,你可以深入源码分析下该算法的实现。

通过预估的数据量获取最小处理单元的阀值,如果当前分片大小大于最小处理单元的阀值,就继续切分集合。每个分片将会生成一个 Sink 链表,当所有的分片操作完成后,ForkJoin 框架将会合并分片任何结果集。

3、合理使用 Stream

看到这里,你应该对 Stream API 是如何优化集合遍历有个清晰的认知了。Stream API 用起来简洁,还能并行处理,那是不是使用 Stream API,系统性能就更好呢?通过一组测试,我们一探究竟。

我们将对常规的迭代、Stream 串行迭代以及 Stream 并行迭代进行性能测试对比,迭代循环中,我们将对数据进行过滤、分组等操作。分别进行以下几组测试:

  • 多核 CPU 服务器配置环境下,对比长度 100 的 int 数组的性能;
  • 多核 CPU 服务器配置环境下,对比长度 1.00E+8 的 int 数组的性能;
  • 多核 CPU 服务器配置环境下,对比长度 1.00E+8 对象数组过滤分组的性能;
  • 单核 CPU 服务器配置环境下,对比长度 1.00E+8 对象数组过滤分组的性能。

由于篇幅有限,我这里直接给出统计结果,你也可以自己去验证一下,具体的测试代码可以在Github上查看。通过以上测试,我统计出的测试结果如下(迭代使用时间):

  • 常规的迭代
  • Stream 并行迭代 < 常规的迭代
  • Stream 并行迭代 < 常规的迭代
  • 常规的迭代

通过以上测试结果,我们可以看到:在循环迭代次数较少的情况下,常规的迭代方式性能反而更好;在单核 CPU 服务器配置环境中,也是常规迭代方式更有优势;而在大数据循环迭代中,如果服务器是多核 CPU 的情况下,Stream 的并行迭代优势明显。所以我们在平时处理大数据的集合时,应该尽量考虑将应用部署在多核 CPU 环境下,并且使用 Stream 的并行迭代方式进行处理。

用事实说话,我们看到其实使用 Stream 未必可以使系统性能更佳,还是要结合应用场景进行选择,也就是合理地使用 Stream。

4、总结

纵观 Stream 的设计实现,非常值得我们学习。从大的设计方向上来说,Stream 将整个操作分解为了链式结构,不仅简化了遍历操作,还为实现了并行计算打下了基础。

从小的分类方向上来说,Stream 将遍历元素的操作和对元素的计算分为中间操作和终结操作,而中间操作又根据元素之间状态有无干扰分为有状态和无状态操作,实现了链结构中的不同阶段。

在串行处理操作中,Stream 在执行每一步中间操作时,并不会做实际的数据操作处理,而是将这些中间操作串联起来,最终由终结操作触发,生成一个数据处理链表,通过 Java8 中的 Spliterator 迭代器进行数据处理;此时,每执行一次迭代,就对所有的无状态的中间操作进行数据处理,而对有状态的中间操作,就需要迭代处理完所有的数据,再进行处理操作;最后就是进行终结操作的数据处理。

在并行处理操作中,Stream 对中间操作基本跟串行处理方式是一样的,但在终结操作中,Stream 将结合 ForkJoin 框架对集合进行切片处理,ForkJoin 框架将每个切片的处理结果 Join 合并起来。最后就是要注意 Stream 的使用场景。

5、思考题

这里有一个简单的并行处理案例,请你找出其中存在的问题。

        // 使用一个容器装载 100 个数字,通过 Stream 并行处理的方式将容器中为单数的数字转移到容器 parallelList
        List<Integer> integerList = new ArrayList<Integer>();
        for (int i = 0; i < 100; i++) {
            integerList.add(i);
        }

        List<Integer> parallelList = new ArrayList<Integer>();
        integerList.stream()
                .parallel()
                .filter(i -> i % 2 == 1)
                .forEach(i -> parallelList.add(i));

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/856669.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安防视频监控平台EasyNVR页面无法上传授权文件,该如何进行授权?

TSINGSEE青犀视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif协议接入&#xff0c;并能对接入的视频流进行处理与多端分发&#xff0c;包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。在智慧安防等视频监控场景中&#xff0c;EasyNVR可提供视频实时监控直播、云端…

LeetCode 1289. 下降路径最小和 II:通俗易懂地讲解O(n^2) + O(1)的做法

【LetMeFly】1289.下降路径最小和 II&#xff1a;通俗易懂地讲解O(n^2) O(1)的做法 力扣题目链接&#xff1a;https://leetcode.cn/problems/minimum-falling-path-sum-ii/ 给你一个 n x n 整数矩阵 arr &#xff0c;请你返回 非零偏移下降路径 数字和的最小值。 非零偏移下…

【力扣每日一题】2023.8.10 下降路径最小和Ⅱ

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个数组&#xff0c;让我们模拟从上面第一层走到下面的最后一层&#xff0c;下降路径需要加上经过的格子的值&#xff0c;每层…

vue使用ElementUI

1.安装 npm i element-ui -S 2.引入 2.1完整引入 import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue;Vue.use(ElementUI); 2.2按需引入 说明&#xff1a;为了输入时候有提示&#xff0c;建…

【雕爷学编程】Arduino动手做(03)---RCWL-0516微波雷达传感器模块2

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

S7-1500系列PLC读取V90伺服驱动器电流扭矩等参数的具体方法示例(2种)

S7-1500系列PLC读取V90伺服驱动器电流扭矩等参数的具体方法示例(2种) 示例1: 当V90PN配置为EPOS控制模式下的标准报文111时,报文中在接受与发送方向均包含一个可供用户自定义的保留字(PZD12)。 在这种条件下,可以通过修改参数P29151(用户自定义PZD发送字)来定义传输方…

YOLOV5改进:更换为MPDIOU,实现有效涨点

1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。 2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。 2.涨点效果:更换为MPDIOU,实现有效涨点! 目录…

【雕爷学编程】Arduino动手做(201)---DFRobot 行空板03

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

三种常见的平滑滤波方法

一、概述 平滑滤波&#xff0c;顾名思义就是对信号进行处理使之整体显得更加平滑&#xff0c;降低噪声影响&#xff0c;提高信号质量&#xff0c;它常见于数学信号处理和图像处理&#xff0c;一般意义上的数字信号多体现于一维数据&#xff0c;图像信号多体现于二维数据。   …

基于Java的体育网站的设计与实现(论文+源码)_kaic

基于Java的体育网站的设计与实现 摘 要&#xff1a;在网络应用的迅速发展与科技的不断进步的现代环境下&#xff0c;人们生活节奏越来越快&#xff0c;娱乐方式也多种多样&#xff0c;各种软件应用&#xff0c;各种娱乐&#xff0c;购物网站已经成为必不可少的伴随品&#xff…

Jenkins+Docker+SpringCloud微服务持续集成项目优化和微服务集群

JenkinsDockerSpringCloud微服务持续集成项目优化和微服务集群 JenkinsDockerSpringCloud部署方案优化JenkinsDockerSpringCloud集群部署流程说明修改所有微服务配置 设计Jenkins集群项目的构建参数编写多选项遍历脚本多项目提交进行代码审查多个项目打包及构建上传镜像把Eurek…

一种简单高效的IMU姿态解算方法

这里给出一种简单高效的IMU姿态解算方法&#xff0c;本方法的特点就是思路非常的简单&#xff0c;并且效果也还可以&#xff0c;地面机器人这类运动想对不那么剧烈的应用应该是能应付的&#xff0c;但是震动较大的无人机、足式机器人等应用是否能应用还有待试验。 代码如下&am…

【Leetcode】(自食用)LRU算法(哈希链表法)

step by step. 题目&#xff1a; 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键…

【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)

CBAM&#xff08;Convolutional Block Attention Module&#xff09;是一种用于增强卷积神经网络&#xff08;CNN&#xff09;性能的注意力机制模块。它由Sanghyun Woo等人在2018年的论文[1807.06521] CBAM: Convolutional Block Attention Module (arxiv.org)中提出。CBAM的主…

实现静态资源访问的几种方法

什么是静态资源&#xff1f; 静态资源是指在服务器端存储的不会变化的文件&#xff0c;如HTML、CSS、JavaScript、图片、音频、视频等文件。这些文件一般不包含动态内容&#xff0c;每次请求时返回的内容都是固定的。 为什么要使用静态资源&#xff1f; 提升网站性能&#xf…

gitblit-使用

1.登入GitBlit服务器 默认用户和密码: admin/admin 2.创建一个新的版本库 点击图中的“版本库”&#xff0c;然后点击图中“创建版本库” 填写名称和描述&#xff0c;注意名称最后一定要加 .git选择限制查看、克隆和推送勾选“加入README”和“加入.gitignore文件”在图中的1处…

kafka-2.12使用记录

kafka-2.12使用记录 安装kafka 2.12版本 下载安装包 根据你的系统下载rpm /deb /zip包等等, 这里我使用的是rpm包 安装命令 rpm -ivh kafka-2.12-1.nfs.x86_64.rpm启动内置Zookeeper 以下命令要写在同一行上 /opt/kafka-2.12/bin/zookeeper-server-start.sh /opt/kafka-2…

5.3.7.自动创建字符设备驱动的设备文件 class_create device_create

5.3.7.自动创建字符设备驱动的设备文件 5.3.7.1、问题描述&#xff1a; (1)整体流程回顾 (2)使用mknod创建设备文件的缺点 (3)能否自动生成和删除设备文件 5.3.7.2、解决方案&#xff1a;udev是PC机&#xff08;嵌入式中用的是mdev&#xff09; (1)什么是udev&#xff1f;应用层…

C语言笔记6

关于microsoft visual 的学习笔记 CtrlF5就是启动编译程序 先CtrlA进行全选&#xff0c;然后AitF8就自动的调节代码的格式 #include <stdio.h> #include <stdlib.h> int main() {//system启动程序(在一个程序中启动另外一个程序)//如果程序环境变量中找不到程序&am…

OpenCV实战(29)——视频对象追踪

OpenCV实战&#xff08;29&#xff09;——视频对象追踪 0. 前言1. 追踪视频中的对象2. 中值流追踪器算法原理3. 完整代码小结系列链接 0. 前言 我们已经学习了如何跟踪图像序列中点和像素的运动。但在多数应用中&#xff0c;通常要求追踪视频中的特定移动对象。首先确定感兴趣…