MySQL索引1——索引基本概念与索引结构(B树、R树、Hash等)

news2024/11/15 5:59:09

目录

索引(INDEX)基本概念

索引结构分类

B+Tree树索引结构

Hash索引结构

Full-Text索引

R-Tree索引


索引(INDEX)基本概念

什么是索引

索引是帮助MySQL高效获取数据的有序数据结构

为数据库表中的某些列创建索引,就是对数据库表中某些列的值通过不同的数据结构进行排序

为列建立索引之后,数据库除了维护数据之外,还会维护满足特定查找算法的数据结构,这些数据结构以某种方式指向数据,这样就可以在这些数据结构上实现快速查询,这种数据结构就是索引

索引的作用

通过索引可以将无序的数据变为有序的数据,能够实现快速访问数据库表中的特定信息

优缺点

优点

提高数据检索的效率,降低数据库的IO成本

通过索引对数据进行排序,降低数据排序的成本,降低CPU的消耗

缺点

索引会占用空间

索引提高了表的查询效率,但是却降低了更新表的速度(Insert、Update、Delete)

索引只是一个提高效率的因素,如果MySQL有大数据量的表,就需要花时间研究最优秀的索引(即需要研究为哪些字段建立索引能够使得效率提升到最大化,因为一条查询语句只会引用到一种索引,并且一般建议一个表建立的索引数量不要超过5个)


索引结构分类

索引结构主要分为四大类

B+Tree索引-(B+树)

最常见的索引类型,大部分的存储引擎都支持此索引

Hash索引-(Hash表)

底层的数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询

Full-Text索引-(倒排索引)

又名全文索引,是一种通过建立倒排索引,快速匹配文档的方式

R-Tree索引(R-Tree树)

又名空间索引,是MyISAM引擎的一个特殊索引类型,主要用于地理位置数据,使用较少

存储引擎对不同索引的支持情况(默认B+Tree索引)

 在MySQL数据库中,支持Hash索引的是Memory引擎;而InnoDB中具有自适应Hash的功能,根据B+tree索引在指定条件下自动构建的

B+Tree树索引结构

B+Tree树是由二叉树 → 红黑树(自平衡二叉树) → B-Tree树烟花而来的,我们在介绍B+Tree树之前先介绍这三种数据结构

二叉树

二叉树的每个节点最多有两个子节点(两颗子树);并且两个子节点是有序的

以单个节点为例:左边子节点是比自身小的,右边子节点是比自身大的

缺点

  1. 大数据量的情况下,层级较深,检索速度慢
  2. 容易形成倾斜树(左倾斜或右倾斜)

 二叉树的工作原理

 二叉树的数据插入(依次插入30、40、20、19、21、39、35)

 二叉树的数据遍历

 二叉树的数据查找(查找39 、21、25)

 二叉树的数据删除(依次删除19、39、30)

红黑树(自平衡二叉树)

红黑树时二叉树的变种,可以解决二叉树插入数值时产生斜树的问题

任何一个节点都有颜色(红色或黑色),通过颜色来确保树在插入和删除时的平衡

根节点一定是黑色的;Null节点被认为是黑色的;每个红色节点的两个叶子节点都是黑色

每个叶子节点到根的路径上不能出现连续的红色节点

任何一个节点到达叶子节点所经过的黑节点个数必须相等

当在红黑树中进行插入和删除操作时,会通过左旋、右旋、重新着色来修复树结构,保持树的平衡

缺点

  1. 在进行大量插入和删除操作的情况下,可能会造成频繁的树重构,影响性能
  2. 红黑树的实现比较复杂,需要维护节点的颜色和平衡
  3. 红黑树本质也是二叉树,在大数据量的情况下,层级较深,检索速度会下降

红黑树的工作原理

红黑树的数据插入(依次插入30、40、20、19、21、39、35)  使用到了右旋

红黑树的数据遍历

红黑树的数据查找(查找39 、21、25)

红黑树的数据删除(依次删除19、39、30)

B-Tree树(多路平衡查找树)

二叉树一个Node节点只能够存储一个Key和一个Value,并且只有两个子节点;而多路树相比较而言一个Node节点能够存储更多的Key和Value,能够携带更多的子节点,建树高度会比二叉树要低

B-Tree树的一个节点能够存储多少Key和Value,可以有多少个子节点通过最大度数(MAX-Degree 也称为阶数)决定

一个m阶的B-Tree树

       树中的每个节点最多有m个子节点,m-1个Key和Value(两个子树的指针夹着一个Key和Value)

       树的根节点至少有一个Key和Value,至少两个子节点

缺点

B树的叶子节点和非叶子节点都会保存数据,使得非叶子节点保存的指针量变小

如果存储大量的数据,需要增加树的高度,导致IO操作变多,查询性能变低

B-Tree树的工作原理

B-Tree树的数据插入Max-Degree为3(依次插入30、40、20、19、21、39、35)

B-Tree树的数据遍历

B-Tree树的数据查找(查找39 、21、25)

B-Tree树的数据删除(依次删除19、39、30)

B+Tree

B+Tree树是B-Tree树的变种,也是一种多路搜索树,定义基本与B-Tree相同

B+Tree只有叶子节点存储数据,并且所有的元素都会出现在叶子节点中,所有叶子节点形成了一个单向链表;叶子节点将数据按照大小排列,并且相邻叶子节点之间按照大小排列

非叶子节点不存储数据,只存储Key,只是起到索引的作用,在相同的数据量下,B+Tree树更加矮壮

B-Tree树的工作原理

B+Tree树的数据插入Max-Degree为3(依次插入30、40、20、19、21、39、35)

B+Tree树的数据遍历

B+Tree树的数据查找(查找39 、21、25)

B+Tree树的数据删除(依次删除19、39、30)

MySQL的B+Tree索引结构

MySQL的索引数据结构对经典的B+Tree进行了优化,在原B+Tree的基础上,增加了一个指向相邻叶子节点的链表指针,所有叶子节点形成了一个双向链表,提高了遍历速度

MySQL在查询是根据查询条件查询对应的键值(Key),然后将键值对应数据(Value)提取出来

Hash索引结构

哈希索引就是采用一定的hash算法,将键值换算成新的Hash值,将哈希值映射到一个桶中,桶中存储了所有哈希值相同的数据行的指针,然后存储在Hash表中;

当查询时,MySQL会先通过哈希函数计算出查询条件的哈希值,在Hash表中查找对应的桶,然后在对应的桶中查找相应的数据行

哈希冲突

如果两个或多个键值,映射到同一个相同的槽位(桶),则他们就产生了hash冲突,通过链表解决

 特点

  1. Hash索引只能够用于对等比较(=,in等),不支持范围查询(between,>,<等)
  2. 无法利用Hash索引完成排序操作;因为Hash索引中存放的是经过Hash计算后的Hash值,此值的大小并不一定和Hash运算之前的键值完全一样
  3. Hash索引无法避免表扫描,即每次都要全表扫描;因为Hash索引是将键值通过Hash运算之后,将其结果和对应的行指针信息存放在一个Hash表中,由于不同的索引键可能存在相同的Hash值,也就是哈希冲突,所以满足某个Hash键值的数据的记录跳数,无法直接从Hash索引中直接完成查询,还是要通过访问表中的实际数据进行比较,并得到相应的结果
  4. 对于联合索引,Hash不能使用部分索引键查询(要么全部使用,要么全部不使用)
  5. Hash只需要做一次运算,就可以找到该数据所在的桶;不像树结构那样从根、叶子节点的顺序来查找;所以Hash索引的查询效率理论上是要高于B+Tree的;不过对于存在大量Hash值相同的情况下,性能不一定比B+Tree高

Full-Text索引

通过建立倒排索引(Inverted Index)构建Full-Text索引,提高数据的检索效率

倒排索引是一种将文档中的单词/汉字映射到其出现位置的数据结构,主要用来解决判断字段的值中 是否包含 某字符/汉字的问题

我们对于简单业务或者数据量小的业务,可以通过Like()关键字来判断;但是对于大数据量业务,使用Like效率会大大降低

不同存储索引对Full-Text索引的支持

在MySQL5.6版本之前,只有MYISAM存储引擎支持全文索引

在MySQL5.6版本之后,InnoDB能够支持全文索引;不过只支持对英文的全文索引,不支持中文的全文索引;后续通过内置分词器(ngram)来支持中文索引

配置ngram的最小长度

在MySQL的配置文件中添加以下字段

ft_min_word_len = 2     #此最小长度就是分词的最小长度,默认为2

即:对于一段语句,可以分为多个汉字组,每个汉字组最少都有2个汉字

    我想学习数据库  可以分词为: 我想 学习  数据库 三个组

一般不会将ngram设置的很小,如果很小的话会占用大量的空间,因此我们一般都不修改此最小长度,就默认为2

全文索引的流程

用户输入要查找的内容 → SQL执行引擎 → ngram对查找的内容进行分词 → 把分词后的词依次的去倒排索引中去查找 → 将相应的记录返回

分词器ngram在建立索引时会对字段中的值进行分词;在进行查询时也会对要查找的内容分词

R-Tree索引

构建空间索引有多种数据结构,例如四叉树、R-Tree树

在MySQL中是通过R-Tree树来构建空间索引的,是一种加快空间数据查询速度的技术

R-tree将空间数据分割成一系列矩形区域,每个节点可以表示一个矩形区域,同时可以包含其他节点或数据项。这种层级结构允许MySQL在空间查询中更快地定位所需的数据,减少搜索范围,从而提高查询性能

例如:

一个表中的某字段存储着一个地方餐馆的经纬度位置信息,现在我们需要根据我们的位置,找附近1公里的餐馆

我们可以通过计算我们的位置,找到附近1公里范围内的经纬度范围,然后查询表中的满足此经纬度的值;为了加快检索效率,我们就可以对存储经纬度位置信息的字段建立空间索引

R-Tree的构建过程——R树是把B树的思想扩展到了多维空间

1、数据划分

所有的数据项也成为对象(点、线或面)都被视为一个单独的矩形

2、构建叶子节点(叶子节点是R树的底层节点)

将划分好的矩形进行分组,并构建叶子节点;每个叶子节点包含多个对象及其对应的矩形

3、合并叶子节点

当叶子节点的数目超过了R-Tree规定的最大容量,此时R树会尝试合并相邻的叶子节点来减少树的高度和提高查询效率

4、构建非叶子节点

将合并后叶子构建为新的非叶子节点;非叶子节点也是一个矩形,包含了其所有子节点的矩形范围

5、递归构建

重复上述的操作,知道构建出整个R树的根节点(R树的最顶层节点,将包含所有的数据范围)

具体R树的构建方式可以参考以下文章

从B树、B+树、B*树谈到R 树_v_JULY_v的博客-CSDN博客https://blog.csdn.net/v_JULY_v/article/details/6530142

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/853839.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Flask.Request的方法和属性,获取get和post请求参数(二)

1、Flask中的request 在Python发送Post、Get等请求时&#xff0c;我们使用到requests库。Flask中有一个request库&#xff0c;有其特有的一些方法和属性&#xff0c;注意跟requests不是同一个。 2、Post请求&#xff1a;request.get_data() 用于服务端获取客户端请求数据。注…

JVM:运行时数据区域(白话文)

最近有时间在看一本<深入了解Java虚拟机>的书籍&#xff0c;这本书是一个中国人&#xff0c;名叫周志明的人写的。相比于其他翻译过来的技术书籍&#xff0c;这本书还是挺通俗易懂的。先前有和彬哥在聊&#xff0c;他说如果是自己一个人看的话会很枯燥&#xff0c;很难坚…

智慧城市美术效果Unity实现笔记流程

智慧城市美术效果Unity实现笔记流程&#xff1a; 参考 对标 效果图&#xff1a; 写实类-参考图&#xff1a; (以上均为网络搜索效果,有落叶大师&#xff0c;以及其他优秀开发者效果图参考) 未来类-参考图&#xff1a; 如上图所示,智慧城市基本分为 这两个大类&#xff0c;偏写…

辛苦了,你身边有一批优秀下属

领导者不是全知全能的&#xff0c;假如领导者啥都会&#xff0c;还要下属有何用&#xff1f;下属还有用武之地&#xff1f; 保罗赫塞说过&#xff1a;“领导力是通过与他人合作或通过他人协作实现组织目标的过程。” 一、日行一善 我们无法靠自己完成复杂的事情&#xff0c;…

在Python中定义Main函数

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 许多编程语言都有一个特殊的函数&#xff0c;当操作系统开始运行程序时会自动执行该函数。 这个函数通常被命名为main()&#xff0c;并且依据语言标准具有特定的返回类型和参数。 另一方面&#xff0c;Python解释器从文件…

DC-7靶机

DC-7靶机地址 同样的&#xff0c;把靶机跟kali放在同一网段&#xff0c;&#xff08;NAT模式&#xff09; 主机发现 arp-scan -l端口扫描 nmap -A -T4 -p- 192.168.80.13922端口开始&#xff0c;80端口开启 浏览器先访问一下靶机的80端口 熟悉的Drupal站点 先爆破一下目录…

【Linux】详解进程状态之僵尸进程——孤儿进程

目录 &#x1f31e;专栏导读 &#x1f31b;什么是进程 ⭐什么是PCB&#xff1f; &#x1f31b;查看进程 &#x1f31b;如何通过系统调用查看进程PID &#x1f31b;fork &#x1f31e;认识进程状态 &#x1f31b;查看进程状态 &#x1f31b;R状态 ⭐例如&#xff1a…

C 语言的 ctype.h 头文件

C 语言的 ctype.h 头文件包含了很多字符函数的函数原型, 可以专门用来处理一个字符, 这些函数都以一个字符作为实参. ctype.h 中的字符测试函数如表所示: 这些测试函数返回 0 或 1, 即 false 或 true. ctype.h 中的字符映射函数如表所示: 字符测试函数不会修改原始实参, 只会…

YOLOV5改进:更换为MPDIOU,实现有效涨点!

1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。 2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。 2.涨点效果:更换为MPDIOU,实现有效涨点! 目录…

C++代码生成静态LIB链接库及其调用方法

1、在进行C代码移植时可将CPP文件封装为静态lib链接库&#xff0c;本文章讲述了如何将cpp文件封装为lib文件。 2、假设有文件a.cpp、a.h、b.cpp、b.h以及main.cpp&#xff0c;假设main调用了b&#xff0c;b调用了a。现在需要将a.cpp以及b.cpp封装为a.lib以及b.lib。 3、在VS2…

Java8中forEach()里使用return的效果

先总结&#xff1a;使用forEach()处理集合时不能使用break和continue这两个方法&#xff0c;可以使用无返回值的return跳出此次循环&#xff0c;效果同标准for循环的continue。 首先&#xff0c;forEach()先对入参判空&#xff0c;然后使用增强for循环调用action.accept(t)&am…

VGG16模型详解

VGG16模型详解 0、VGG16介绍 VGG16是一种深度卷积神经网络&#xff0c;由牛津大学的研究团队于2014年开发。 VGG16在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 竞赛中取得了显著的成绩。它在图像分类任务中获得了当年的第二名&#xff0c;其准确…

【Java可执行命令】(二十一)线程快照生成工具 jstack:帮助开发人员分析和排查线程相关问题(死锁、死循环、线程阻塞...)

Java可执行命令之jstack 1️⃣ 概念2️⃣ 优势和缺点3️⃣ 使用3.1 语法格式3.2 使用步骤及技巧3.3 使用案例 4️⃣ 应用场景&#x1f33e; 总结 1️⃣ 概念 jstack 命令是 Java Development Kit&#xff08;JDK&#xff09;中提供的一项诊断工具&#xff0c;用于生成Java虚拟…

震坤行工业超市旗下震坤行智能制造(苏州)有限公司开工奠基仪式圆满成功

震坤行工业超市旗下震坤行智能制造&#xff08;苏州&#xff09;有限公司开工奠基仪式圆满成功 2023年7月3日&#xff0c;震坤行工业超市于太仓港经济技术开发区举行了震坤行智能制造&#xff08;苏州&#xff09;有限公司项目奠基动工仪式。震坤行董事长兼CEO陈龙&#xff0c…

基于OFDM通信系统的低复杂度的资源分配算法matlab性能仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .......................................................................%子载波分配[~,po…

Grafana技术文档-概念-《十分钟扫盲》

Grafana官网链接 Grafana: The open observability platform | Grafana Labs 基本概念 Grafana是一个开源的度量分析和可视化套件&#xff0c;常用于对大量数据进行实时分析和可视化。以下是Grafana的基本概念&#xff1a; 数据源&#xff08;Data Source&#xff09;&#…

idea+gradle阅读spring5.2.9源码之源码构建报错解决方案

注意 1、先确保gradle版本和spring、jdk版本对应 本文:gradle:5.6.4/spring 5.2.9/jdk1.8&#xff08;gradle和jdk都要先安装好&#xff0c;gradle还要配置好本地资源文件路径&#xff09; 2、原来项目乱了的话&#xff0c;先重新导入下载的源码项目 3、进入源码所在根目录&…

【iOS】autoreleasepool

来说一下最近在了解的autoreleasepool吧&#xff0c;我们可能平时书写过许多脑残代码&#xff0c;其有很多的缺陷但是我们可能当时学的比较浅就也不太了解&#xff0c;就像下面这样的&#xff1a; for (int i 0; i < 1000000; i) {NSNumber *num [NSNumber numberWithInt…

【前端 | CSS】aligin-items与aligin-content的区别

align-items 描述 CSS align-items 属性将所有直接子节点上的 align-self 值设置为一个组。align-self 属性设置项目在其包含块中在交叉轴方向上的对齐方式 align-items是针对每一个子项起作用&#xff0c;它的基本单位是每一个子项&#xff0c;在所有情况下都有效果&…

【uniapp】原生子窗体subNvue的使用与踩坑

需求 最近接到个需求, 需要在video组件上弹出弹窗, 也就是覆盖video这个原生组件 未播放时, 弹窗可以覆盖, 但是当video播放时, 写的弹窗就覆盖不了了 因为video是原生组件, 层级非常高, 普通标签是覆盖不了的, map标签同理 覆盖原生组件, 官方给出解决办法一. 使用cover-view…