数据结构---手撕图解七大排序(含动图演示)

news2025/1/16 17:48:19

文章目录

  • 插入排序
    • 直接插入排序
    • 希尔排序
  • 选择排序
    • 选择排序
    • 堆排序
  • 交换排序
    • 冒泡排序
    • 快速排序
      • hoare版
      • 挖坑法
      • 前后指针法
      • 快速排序的递归展开图
      • 快速排序的优化
        • 三数取中法
      • 快速排序的非递归实现
  • 归并排序

在这里插入图片描述

插入排序

插入排序分为直接插入排序和希尔排序,其中希尔排序是很值得学习的算法

希尔排序的基础是直接插入排序,先学习直接插入排序

直接插入排序

直接插入排序类似于打扑克牌前的整牌的过程,假设我们现在有2 4 5 3四张牌,那么应该怎么整牌?
方法很简单,把3插到2和4中间,这样就完成了整牌的过程,而插入排序的算法就是这样的过程

插入排序的基本原理图如下所示

在这里插入图片描述
我们在这里定义end为已经排查结束的,排好序的一段数据的最后一个元素,tmp作为存储要移动的元素,那么具体实现方法如下:
在这里插入图片描述
这里找到了tmp确实比end要小,于是下一步是要让tmp移动到end前面这段有序的数据中的合适的位置

算法实现的思想是:tmp如果比end的值小,那么就让end的值向后移动,end再指向前一个,再比较覆盖移动…直到tmp的值不比end小或者end直接走出数组,如果走出数组就让tmp成为新的首元素

在这里插入图片描述

这样就完成了一次插入,那么接着进行一次排序:

在这里插入图片描述
从中可以看出,插入排序整体的思想并不算复杂,代码实现相对也更简单,直接插入排序的价值在于给希尔排序做准备

插入排序的实现如下:

void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;      // 找到有序数组的最后一个元素
		int tmp = a[i + 1];  // 要参与插入排序的元素
		while (end >= 0)
		{
			if (a[end] > tmp)
			{
				// 进行覆盖
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}

		a[end + 1] = tmp;
	}
}

直接插入排序的时间复杂度也不难分析,是O(N^2),和冒泡排序在同一个水平,并不算高效
直接插入排序更多是给希尔排序做铺垫,希尔排序是很重要的排序,处理数据的效率可以和快速排序看齐

希尔排序

上面学完了插入排序,那么就必须总结一下插入排序的弊端

  1. 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
  2. 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。

于是,希尔排序就是基于上面这两个问题进行解决的:
首先,插入排序对于已经排序差不多的序列有很强的效率,但与此同时它一次只能调整一个元素的位置,因此希尔就发明了希尔排序,它具体的操作几乎和插入排序相同,只是在插入排序的基础上,前面多了预排序的步骤,预排序是相当重要的,可以把一段数据的大小排序基本相同

那预排序的实现是如何实现的?

首先把数据进行分组,假设分成3组,下面的图片演示了这个过程

在这里插入图片描述

分好组后,对每一组元素单独进行插入排序

在这里插入图片描述
此时,序列里的数据就已经很接近有序了,再对这里的数据进行插入排序,可以完美适应插入排序的优点

在这里插入图片描述

这里只是写了希尔排序的基本思想是如何工作的,具体的代码实现较为复杂

那么下一个问题就有了,为什么gap是3?如果数据量特别大还是3吗?gap的选择应该如何选择?
这里对gap要进行理解,gap到底是用来做什么的,它的大小会对最终结果造成什么影响

gap是对数据进行预处理阶段选择的大小,通过gap可以把数据变得相对有序一点,而gap越大,说明分的组越多,每一组的数据就越少,gap越小,分的就越细,就越接近真正的有序,当gap为1的时候,此时序列只有一组,那么就排成了真正的有序

代码实现如下:

void ShellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		for (int i = 0; i < n - gap; i++)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end = end - gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

这里重点理解两点

gap = gap / 3 + 1;  // 这句的目的是什么?
gap==1  // 是什么

gap=gap/3+1会让gap的最终结果一定为1
而gap为1的时候,此时就是插入排序,而序列也接近有序,插入排序的优点可以很好的被利用

希尔排序的时间复杂度相当难算,需要建立复杂的数学模型,这里直接说结论,希尔排序的时间复杂度大体上是接近于 O(N^1.3) 整体看效率是不低的,值得深入钻研学习

选择排序

选择排序

基础版的选择排序实现是很简单的,算法思路如下

在这里插入图片描述

在这里插入图片描述

这里需要注意一点是,maxi可能会和begin重叠,导致交换begin和min的时候产生bug,因此只需要在前面补充一下条件即可

void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int maxi = begin, mini = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] > a[maxi])
			{
				maxi = i;
			}

			if (a[i] < a[mini])
			{
				mini = i;
			}
		}

		Swap(&a[begin], &a[mini]);
		// 如果maxi和begin重叠,修正一下即可
		if (begin == maxi)
		{
			maxi = mini;
		}

		Swap(&a[end], &a[maxi]);

		++begin;
		--end;
	}
}

堆排序

堆排序前面文章有过详细讲解,这里就不多赘述了

数据结构—手撕图解堆

直接上代码实现

void Swap(int* p, int* c)
{
	int tmp = *p;
	*p = *c;
	*c = tmp;
}

void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[parent] < a[child])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapSort(int* a, int n)
{
	// 建堆
	for (int i = (n - 2) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

	// 堆排序
	int end = n - 1;
	while (end)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

交换排序

冒泡排序

在这里插入图片描述

入门出学的第一个排序,效率很低

void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int flag = 0;
		for (int j = 0; j < n - i - 1; j++)
		{
			if (a[j] > a[j + 1])
			{
				flag = 1;
				int tmp = a[j];
				a[j] = a[j + 1];
				a[j + 1] = tmp;
			}
		}
		if (flag == 0)
		{
			break;
		}
	}
}

下面重点是对快速排序进行学习,快速排序正常来说是泛用性最广的排序算法

快速排序

快速排序是所有排序算法中速度最快的一个排序算法(在数据量很庞大的前提下),因此,很多库中自带的sort都是用快速排序做底层实现的,例如qsort和STL中的sort,因此,学习好它是很有必要的

首先说明它的基本思想

基本思路是,选定一个元素为key,经过一系列算法让原本数组中比key小的数据在key的左边,比key大的数据在key的右边,然后递归进入key的左边,在递归函数中重复这个操作,最后就能完成排序,那么第一个关键点就是如何实现让以key为分界点,左右分别是比它大和比它小的?

关于这个算法有很多版本,我们一一介绍

hoare版

快速排序的创始人就是hoare,作为快速排序的祖师爷,hoare在研究快速排序自然写出了对应的算法,那么我们当然要先学习最经典的算法

下面展示hoare算法的示意图

在这里插入图片描述
在这里插入图片描述
看完演绎图和上面的流程图,大概可以理解hoare算法的基本思路,但其实还有一些问题,比如最后交换的元素(上图中为3) 一定比key小吗?比key大难道不会让大的元素到key的左边吗?

解释上述问题的原因

其实问题的原因就在于left和right谁先走的问题,在上面算法中是让right先走,这是为什么?
我们假设中间的元素不是3,而是8 (大于key的都可以) 那么,当right继续向前走的时候就会跳过8,继续向前找,最后最坏的结果会找到left,而left对应的是和前面交换后的比key小的元素,因此这里只要是right先走,最终和right和left相遇的位置一定比key小!

这个算法其实并不好写,需要控制的变量和问题很多,实现过程如下

int PartSort1(int* a, int left, int right)
{
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}

		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}

		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);
	
	return left;
}

注意点

  1. keyi的选取是left而不是0,因为后面递归的时候最左边的元素下标不一定是0
  2. while循环向前/向后寻找时要随时判断left有没有小于right,防止越界
  3. 返回的是左值,这个左值就是下一次的左边界或右边界、

快速排序的实现

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort1(a, begin, end);

	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

后续的三种写法只需要替换掉PartSort1即可

挖坑法

在这里插入图片描述
在这里插入图片描述
代码实现如下:

int PartSort2(int* a, int left, int right)
{
	int key = a[left];
	int hole = left;
	while (left < right)
	{
		while (left<right && a[right]>= key)
		{
			right--;
		}

		a[hole] = a[right];
		hole = right;

		while (left < right && a[left] <= key)
		{
			left++;
		}

		a[hole] = a[left];
		hole = left;
	}

	a[hole] = key;

	return hole;
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort2(a, begin, end);

	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

这个实现很简单,没有需要额外注意,相较第一个算法来说更容易理解一些

前后指针法

实现原理如下图所示

在这里插入图片描述
在这里插入图片描述
代码实现逻辑如下

int PartSort3(int* a, int left, int right)
{
	int cur = left+1;
	int prev = left;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi])
		{
			++prev;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}

	Swap(&a[prev], &a[keyi]);

	return prev;
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort3(a, begin, end);

	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

实际上是prev找cur,如果cur指针对应的值小于key,那么就++prev再交换,否则cur就继续前进,这样就能使得cur和prev之间的数据全部为比key大的数据

快速排序的递归展开图

了解了快速排序的工作原理,独立画出它的递归展开图有助于了解它的工作原理

在这里插入图片描述

快速排序的优化

快速排序确实是在很多方面都很优秀的排序,但是仅仅用上述的代码并不能完全解决问题,假设现在给的序列是一个按升序排列的序列,那么此时我们选取的key是最小的数据,时间复杂度是O(N^2),但如果每次选取的数据恰好是中位数,那么就是整个数据最高效的方式,时间复杂度是O(NlogN),因此如何优化?

常见的优化有三数取中法和递归到小的子区间选取插入排序法

三数取中法

顾名思义,就是取开头,末尾和中间的三个数,选这三个数中最中间的一个,让这个数作为key

int GetMid(int* a, int left, int right)
{
	int midi = (left + right) / 2;
	if (a[left] < a[midi])
	{
		if (a[midi] < a[right])
		{
			return midi;
		}
		else if (a[left] > a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else  // a[left] > a[midi]
	{
		if (a[midi] > a[right])
		{
			return midi;
		}
		else if (a[left] < a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

int PartSort1(int* a, int left, int right)
{
	int midi = GetMid(a, left, right);
	Swap(&a[midi], &a[left]);
	int keyi = left;
	while (left < right)
	{
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}

		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}

		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);

	return left;
}

int PartSort2(int* a, int left, int right)
{
	int midi = GetMid(a, left, right);
	Swap(&a[midi], &a[left]);
	int key = a[left];
	int hole = left;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}

		a[hole] = a[right];
		hole = right;

		while (left < right && a[left] <= key)
		{
			left++;
		}

		a[hole] = a[left];
		hole = left;
	}

	a[hole] = key;

	return hole;
}

int PartSort3(int* a, int left, int right)
{
	int midi = GetMid(a, left, right);
	Swap(&a[midi], &a[left]);
	int cur = left+1;
	int prev = left;
	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi])
		{
			++prev;
			Swap(&a[prev], &a[cur]);
		}
		cur++;
	}

	Swap(&a[prev], &a[keyi]);

	return prev;
}

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = PartSort1(a, begin, end);

	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

快速排序的非递归实现

快速排序是利用递归实现的,而凡是递归就有可能爆栈的情况出现,因此这里要准备快速排序的非递归实现方法

非递归实现是借助栈实现的,栈是在堆上malloc实现的,栈区一般在几十Mb左右,而堆区有几G左右的空间,在堆上完成操作是没有问题的

在这里插入图片描述

当left<keyi-1才会入栈,当keyi+1<right才会入栈

随着不断入栈出栈,区间划分越来越小,left最终会等于keyi-1,这样就不会入栈,右边同理,不入栈只出栈,最终栈会为空,当栈为空时,排序完成

归并排序

归并排序的排序原理如下:

在这里插入图片描述

从中可以看出,归并排序的原理就是把一整个大的,无序的数组分解成小数组,直到分到数组中只有一个数,再把数组组装成有序的数组,再把组装成有序的两个数组合并成有序数组,再让这个有序数组和另外一个合并…依次递归,这样就和二叉树一样递归成了一个合适的数组

在这里插入图片描述
代码实现如下:

void _MergeSort(int* a, int begin, int end, int* tmp)
{
	if (begin == end)
		return;
	int mid = (begin + end) / 2;
	_MergeSort(a, begin, mid, tmp);
	_MergeSort(a, mid + 1, end, tmp);

	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}

	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}

	memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}

void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/780257.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

xxl-job分布式任务调度器的学习

先看一下原生的任务调度器 package com.xxl.job.executor.service.jobhandler;import org.springframework.scheduling.annotation.EnableScheduling; import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stereotype.Component;Compone…

3.Docker网络和资源控制

文章目录 Docker操作二Docker网络实现原理端口映射查看日志 网络模式host模式container模式none模式bridge模式自定义网络 Docker资源控制CPU资源控制设置CPU使用率上限设置CPU资源占用比&#xff08;设置多个容器才有效&#xff09;设置容器绑定指定CPU 内存使用限制设置磁盘I…

RK3399移植u-boot

RK3399移植u-boot 0.前言一、移植1.交叉工具链安装2.获取bl31.elf3.移植u-boot1)下载&#xff1a;2)配置&#xff1a;修改串口波特率&#xff1a;修改emmc&#xff1a;配置FIT&#xff1a;配置boot delay&#xff1a;(可选) 3)编译&#xff1a;4)生成idbloader.img文件&#xf…

使用 Docker 快速上手中文版 LLaMA2 开源大模型

本篇文章&#xff0c;我们聊聊如何使用 Docker 容器快速上手朋友团队出品的中文版 LLaMA2 开源大模型&#xff0c;国内第一个真正开源&#xff0c;可以运行、下载、私有部署&#xff0c;并且支持商业使用。 写在前面 感慨于昨天 Meta LLaMA2 模型开放下载之后&#xff0c;Git…

实验五 分支限界法

实验五 分支限界法 01背包问题的分治限界法的实现 剪枝函数 限界函数 1.实验目的 1、理解分支限界法的剪枝搜索策略&#xff0c;掌握分支限界法的算法框架 2、设计并实现问题&#xff0c;掌握分支限界算法。 2.实验环境 java 3.问题描述 给定n种物品和一背包。物品i的重…

JMeter基础入门教程之CSV数据文件设置CSV Data Set Config

最近在做压力测试&#xff0c;登录功能用到了配置元件&#xff1a;CSV 数据文件设置&#xff0c;可以将登录用户名和密码放在一个csv文件中&#xff0c;然后通过CSV数据文件设置元件读取出来&#xff0c;用来做压测。 一、CSV文件 CSV文件小知识分享&#xff1a;是指"逗号…

Linux内核--内存管理

MMU的产生背景 在计算机出现的早期&#xff0c;其内存资源十分有限&#xff0c;一般只有几十几百KB&#xff0c;当时的程序规模也小&#xff0c;对于当时的程序而言&#xff0c;KB级的内存资源尚足够使用。但随着计算机技术的发展&#xff0c;应用程序的规模不断膨胀&#xff…

k8s部署wordpress+mysql博客平台

k8s部署wordpressmysql博客平台 1、yaml文件准备1.1 wordpress-db.yaml1.2 wordpress.yaml 2、部署安装2.1 先创建wordpress命名空间2.2 部署wordpress-db2.3部署wordpress 3、访问测试 1、yaml文件准备 1.1 wordpress-db.yaml apiVersion: apps/v1kind: Deploymentmetadata:…

【flink】ColumnarRowData

列式存储 在调试flink读取parquet文件时&#xff0c;读出来的数据是ColumnarRowData&#xff0c;由于parquet是列式存储的文件格式&#xff0c;所以需要用一种列式存储的表示方式&#xff0c;ColumnarRowData就是用来表示列式存储的一行数据&#xff0c;它包含多个数组的数据结…

Matlab求解基于RRT算法的自定义垛型的路径避障

目录 背景 1 RRT搜索算法 2 基于Matlab的RRT搜索算法 3 基于Matlab的自定义垛型绘制 4 基于RRT算法的自定义垛型的路径避障 背景 在码垛机械臂路径规划过程中&#xff0c;需要根据现有箱子的码垛状态&#xff0c;给出下一个箱子的最佳码放无碰撞路径。RRT 快速搜索随机…

vue2项目 自定义详情组件

vue2项目 自定义详情组件 效果组件代码组件引入以及传参格式寄语 效果 组件代码 DetailFormRow.vue已经封装好&#xff0c;根据数据格式直接引用即可。 <template><div class"detail-form"><el-row class"detail-form-row" style"ma…

基本函数、常见曲线图像

基本函数图像是指一些常见的数学函数的图像&#xff0c;这些函数在数学和工程等领域中经常被使用。下面是一些常见的基本函数及其图像&#xff1a; 参考文献&#xff1a;同济版高等数学【第七版】上下册教材

几张表格搞定Mysql的SQL语句

一、数据库的登录与退出 登录Mysqlmysql -uroot -p123退出Mysqlexit 二、对数据库的操作 查询所有数据库show databases;创建数据库create database 数据库名字;删除数据库drop database 数据库名字;查询创建数据库的具体语句show create database 数据库名字;使用数据库use…

自学网络安全(黑客),遇到问题怎么解决

自学网络安全很容易学着学着就迷茫了&#xff0c;找到源头问题&#xff0c;解决它就可以了&#xff0c;所以首先咱们聊聊&#xff0c;学习网络安全方向通常会有哪些问题&#xff0c;看到后面有惊喜哦 1、打基础时间太长 学基础花费很长时间&#xff0c;光语言都有几门&#xf…

RocketMQ的系统设计

消息存储 下图为producer、broker、consumer的交互过程 1.消息存储整体架构 CommitLog&#xff1a;消息主体以及元数据的存储主体&#xff0c;存储Producer端写入的消息主体内容(即Producer端投递的消息都会先写入CommitLog中)&#xff0c;消息内容不是定长的。单个文件大小默…

代码随想录day8 | KMP 28.实现strStr() 459.重复的子字符串

文章目录 一、实现strStr()二、重复的子字符串 一、实现strStr() 先学学KMP算法&#xff0c;代码随想录 28.实现strStr() class Solution { public:void getNext(int* next, const string& s) {int j -1;next[0] j;for(int i 1; i < s.size(); i) { // 注意i从1开始…

win 安装虚拟机 再安装macos

0 视频教程 windows虚拟机一键安装苹果系统macos&#xff0c;轻松拥有xcode环境_哔哩哔哩_bilibili在windows环境下vmware虚拟机一键安装macos Catalina10.15.7苹果系统&#xff0c;帮助学习ios编程的朋友们实现xcode环境。文字教程&#xff1a;https://www.dhzy.fun/archives…

【Matlab】基于遗传算法优化 BP 神经网络的数据分类预测(Excel可直接替换数据)

【Matlab】基于遗传算法优化 BP 神经网络的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理2.文件结构3.Excel数据4.分块代码4.1 arithXover.m4.2 delta.m4.3 ga.m4.4 gabpEval.m4.5 initializega.m4.6 maxGenTerm.m4.7 nonUnifMutation.m4.8 normGeomSel…

Qt ComboBox 下拉框设置多列

Qt ComboBox 下拉框设置多列 通过设置listview实现。 class MultiColumnComboBoxItemDelegate; class MultiColumnComboBoxListView;class MultiColumnComboBox : public QComboBox {Q_OBJECT public:explicit MultiColumnComboBox(QWidget *parent nullptr);~MultiColumnCo…

Linux -- 进阶 自动挂载服务 ( autofs ) 介绍及安装 主配置文件分析

背景引入 &#xff1a; 针对于 挂载 &#xff0c; 大家有没有思考过一个问题&#xff0c;如果我们需要挂载的文件或访问的远程数据甚至只是挂载一些设备&#xff0c;如果太多的话&#xff0c;数量很大的话&#xff0c;那 光每次挂载 敲的 mount 命令&#xff0c;都得敲很多遍…