【Linux 驱动篇(三)】新字符设备驱动

news2024/11/15 18:14:58

文章目录

  • 一、新字符设备驱动原理
    • 1. 分配和释放设备号
    • 2. 新的字符设备注册方法
      • 2.1 字符设备结构
      • 2.2 cdev_init 函数
      • 2.3 cdev_add 函数
      • 2.4 cdev_del 函数
  • 二、自动创建设备节点
    • 1. mdev 机制
    • 2. 创建和删除类
    • 3. 创建设备
    • 4. 参考示例
    • 5. 设置文件私有数据
  • 三、LED 灯驱动程序编写
  • 四、运行测试
    • 1. 编译驱动程序和测试 APP
      • 1.1 编译驱动程序
      • 1.2 编译测试 APP
    • 2. 运行测试


字符设备驱动开发重点是使用 register_chrdev 函数注册字符设备,当不再使用设备的时候就使用 unregister_chrdev 函数注销字符设备,驱动模块加载成功以后还需要手动使用 mknod 命令创建设备节点。 register_chrdev 和 unregister_chrdev 这两个函数是老版本驱动使用的函数,现在新的字符设备驱动已经不再使用这两个函数,而是使用Linux内核推荐的新字符设备驱动API函数。本节我们就来学习一下如何编写新字符设备驱动,并且在驱动模块加载的时候自动创建设备节点文件。



一、新字符设备驱动原理

1. 分配和释放设备号

使用 register_chrdev 函数注册字符设备的时候只需要给定一个主设备号即可,但是这样会带来两个问题:

  1. 需要我们事先确定好哪些主设备号没有使用。
  2. 会将一个主设备号下的所有次设备号都使用掉,比如现在设置 LED 这个主设备号为200,那么 0~1048575(2^20-1) 这个区间的次设备号就全部都被 LED 一个设备分走了。这样太浪费次设备号了!一个 LED 设备肯定只能有一个主设备号,一个次设备号。

解决这两个问题最好的方法就是要使用设备号的时候向 Linux 内核申请,需要几个就申请几个,由 Linux 内核分配设备可以使用的设备号。

如果没有指定设备号的话就使用如下函数来申请设备号:

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)

如果给定了设备的主设备号和次设备号就使用如下所示函数来注册设备号即可:

int register_chrdev_region(dev_t from, unsigned count, const char *name)

/*
from:要申请的起始设备号

count:要申请的数量,一般都是一个

name:设备名字
*/

注 销 字 符 设 备 之 后 要 释 放 掉 设 备 号 , 不 管 是 通 过 alloc_chrdev_region 函 数 还 是 register_chrdev_region 函数申请的设备号,统一使用如下释放函数:

void unregister_chrdev_region(dev_t from, unsigned count)

新字符设备驱动下,设备号分配示例代码如下:

int major; /* 主设备号 */
int minor; /* 次设备号 */
dev_t devid; /* 设备号 */

if (major) { /* 定义了主设备号 */
	devid = MKDEV(major, 0); /* 大部分驱动次设备号都选择 0*/
	register_chrdev_region(devid, 1, "test");
} else { /* 没有定义设备号 */
	alloc_chrdev_region(&devid, 0, 1, "test"); /* 申请设备号 */
	major = MAJOR(devid); /* 获取分配号的主设备号 */
	minor = MINOR(devid); /* 获取分配号的次设备号 */
}

第 1~3 行,定义了主/次设备号变量 major 和 minor,以及设备号变量 devid。
第 5 行,判断主设备号 major 是否有效,在 Linux 驱动中一般给出主设备号的话就表示这个设备的设备号已经确定了,因为次设备号基本上都选择 0,这算个 Linux 驱动开发中约定俗成的一种规定了。
第 6 行,如果 major 有效的话就使用 MKDEV 来构建设备号,次设备号选择 0。
第 7 行,使用 register_chrdev_region 函数来注册设备号。
第 9~11 行,如果 major 无效,那就表示没有给定设备号。此时就要使用 alloc_chrdev_region函数来申请设备号。设备号申请成功以后使用 MAJOR 和 MINOR 来提取出主设备号和次设备号,当然了,第 10 和 11 行提取主设备号和次设备号的代码可以不要。


如果要注销设备号的话,使用如下代码即可:

unregister_chrdev_region(devid, 1); /* 注销设备号 */

2. 新的字符设备注册方法

2.1 字符设备结构

在 Linux 中使用 cdev 结构体表示一个字符设备, cdev 结构体在 include/linux/cdev.h 文件中的定义如下:

struct cdev {
	struct kobject kobj;
	struct module *owner;
	const struct file_operations *ops;
	struct list_head list;
	dev_t dev;
	unsigned int count;
};

在 cdev 中有两个重要的成员变量: ops 和 dev,这两个就是字符设备文件操作函数集合 file_operations 以及设备号 dev_t。编写字符设备驱动之前需要定义一个 cdev 结构体变量,这个变量就表示一个字符设备,如下所示:

struct cdev test_cdev;

2.2 cdev_init 函数

定义好 cdev 变量以后就要使用 cdev_init 函数对其进行初始化, cdev_init 函数原型如下:

void cdev_init(struct cdev *cdev, const struct file_operations *fops)

参数 cdev 就是要初始化的 cdev 结构体变量,参数 fops 就是字符设备文件操作函数集合。使用 cdev_init 函数初始化 cdev 变量的示例代码如下:

struct cdev testcdev;

/* 设备操作函数 */
static struct file_operations test_fops = {
	.owner = THIS_MODULE,
	/* 其他具体的初始项 */
};

testcdev.owner = THIS_MODULE;
cdev_init(&testcdev, &test_fops); /* 初始化 cdev 结构体变量 */

2.3 cdev_add 函数

cdev_add 函数用于向 Linux 系统添加字符设备(cdev 结构体变量),首先使用 cdev_init 函数完成对 cdev 结构体变量的初始化,然后使用 cdev_add 函数向 Linux 系统添加这个字符设备。

int cdev_add(struct cdev *p, dev_t dev, unsigned count)

参数 p 指向要添加的字符设备(cdev 结构体变量),参数 dev 就是设备所使用的设备号,参数 count 是要添加的设备数量。加入 cdev_add 函数,内容如下所示:

struct cdev testcdev;

/* 设备操作函数 */
static struct file_operations test_fops = {
.owner = THIS_MODULE,
/* 其他具体的初始项 */
};

testcdev.owner = THIS_MODULE;
cdev_init(&testcdev, &test_fops); /* 初始化 cdev 结构体变量 */
cdev_add(&testcdev, devid, 1); /* 添加字符设备 */

2.4 cdev_del 函数

卸载驱动的时候一定要使用 cdev_del 函数从 Linux 内核中删除相应的字符设备, cdev_del 函数原型如下:

void cdev_del(struct cdev *p)

参数 p 就是要删除的字符设备。如果要删除字符设备,参考如下代码:

cdev_del(&testcdev); /* 删除 cdev */

cdev_del 和 unregister_chrdev_region 这两个函数合起来的功能相当于 unregister_chrdev 函数。


二、自动创建设备节点

当我们使用 modprobe 加载驱动程序以后还需要使用命令 “mknod”手动创建设备节点。本节就来讲解一下如何实现自动创建设备节点,在驱动中实现自动创建设备节点的功能以后,使用 modprobe 加载驱动模块成功的话就会自动在/dev 目录下创建对应的设备文件。


1. mdev 机制

udev 是一个用户程序,在 Linux 下通过 udev 来实现设备文件的创建与删除, udev 可以检测系统中硬件设备状态,可以根据系统中硬件设备状态来创建或者删除设备文件。比如使用 modprobe 命令成功加载驱动模块以后就自动在/dev 目录下创建对应的设备节点文件,使用 rmmod 命令卸载驱动模块以后就删除掉/dev 目录下的设备节点文件。 使用 busybox 构建根文件系统的时候, busybox 会创建一个 udev 的简化版本—mdev,所以在嵌入式 Linux 中我们使用 mdev 来实现设备节点文件的自动创建与删除, Linux 系统中的热插拔事件也由 mdev 管理,在/etc/init.d/rcS 文件中如下语句:

echo /sbin/mdev > /proc/sys/kernel/hotplug

上述命令设置热插拔事件由 mdev 来管理,关于 udev 或 mdev 更加详细的工作原理这里就不详细探讨了,我们重点来学习一下如何通过 mdev 来实现设备文件节点的自动创建与删除。


2. 创建和删除类

自动创建设备节点的工作是在驱动程序的入口函数中完成的,一般在 cdev_add 函数后面添加自动创建设备节点相关代码。首先要创建一个 class 类, class 是个结构体,定义在文件 include/linux/device.h 里面。 class_create 是类创建函数, class_create 是个宏定义,内容如下:

#define class_create(owner, name) \
({ 										\
	static struct lock_class_key __key; \
	__class_create(owner, name, &__key); \
})

struct class *__class_create(struct module *owner, const char *name, struct lock_class_key *key)

根据上述代码,将宏 class_create 展开以后内容如下:

struct class *class_create (struct module *owner, const char *name)

/*
owner: 一般为 THIS_MODULE

name:类名字

返回值:指向结构体 class 的指针,也就是创建的类
*/

卸载驱动程序的时候需要删除掉类,类删除函数为 class_destroy,函数原型如下:

void class_destroy(struct class *cls);

/*
cls:要删除的类
*/

3. 创建设备

上一小节创建好类以后还不能实现自动创建设备节点,我们还需要在这个类下创建一个设备。使用 device_create 函数在类下面创建设备, device_create 函数原型如下:

struct device *device_create(struct class *class,
								struct device *parent,
								dev_t devt,
								void *drvdata,
								const char *fmt, ...)

device_create 是个可变参数函数,参数 class 就是设备要创建哪个类下面;参数 parent 是父设备,一般为 NULL,也就是没有父设备;参数 devt 是设备号;参数 drvdata 是设备可能会使用的一些数据,一般为 NULL;参数 fmt 是设备名字,如果设置 fmt=xxx 的话,就会生成/dev/xxx 这个设备文件。返回值就是创建好的设备。

同样的,卸载驱动的时候需要删除掉创建的设备,设备删除函数为 device_destroy,函数原型如下:

void device_destroy(struct class *class, dev_t devt)

参数 class 是要删除的设备所处的类,参数 devt 是要删除的设备号。


4. 参考示例

在驱动入口函数里面创建类和设备,在驱动出口函数里面删除类和设备,参考示例如下:

struct class *class; /* 类 */
struct device *device; /* 设备 */
dev_t devid; /* 设备号 */

/* 驱动入口函数 */
static int __init led_init(void)
{
	/* 创建类 */
	class = class_create(THIS_MODULE, "xxx");
	/* 创建设备 */
	device = device_create(class, NULL, devid, NULL, "xxx");
	return 0;
}

/* 驱动出口函数 */
static void __exit led_exit(void)
{
	/* 删除设备 */
	device_destroy(newchrled.class, newchrled.devid);
	/* 删除类 */
	class_destroy(newchrled.class);
}

module_init(led_init);
module_exit(led_exit);

5. 设置文件私有数据

每个硬件设备都有一些属性,比如主设备号(dev_t),类(class)、设备(device)、开关状态(state) 等等,在编写驱动的时候你可以将这些属性全部写成变量的形式,如下所示:

dev_t devid; /* 设备号 */
struct cdev cdev; /* cdev */
struct class *class; /* 类 */
struct device *device; /* 设备 */
int major; /* 主设备号 */
int minor; /* 次设备号 */

这样写肯定没有问题,但是这样写不专业!对于一个设备的所有属性信息我们最好将其做成一个结构体。编写驱动 open 函数的时候将设备结构体作为私有数据添加到设备文件中,如下所示:

/* 设备结构体 */
struct test_dev{
	dev_t devid; /* 设备号 */
	struct cdev cdev; /* cdev */
	struct class *class; /* 类 */
	struct device *device; /* 设备 */
	int major; /* 主设备号 */
	int minor; /* 次设备号 */
};

struct test_dev testdev;

/* open 函数 */
static int test_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &testdev; /* 设置私有数据 */
	return 0;
}

在 open 函数里面设置好私有数据以后,在 write、 read、 close 等函数中直接读取 private_data 即可得到设备结构体。


三、LED 灯驱动程序编写

新建名为“3_newchrled”文件夹,然后在 3_newchrled 文件夹里面创建 vscode 工程,工作区命名为“newchrled”。工程创建好以后新建 newchrled.c 文件,在 newchrled.c 里面输入如下内容:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>

#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: newchrled.c
作者	  	: 左忠凯
版本	   	: V1.0
描述	   	: LED驱动文件。
其他	   	: 无
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2019/6/27 左忠凯创建
***************************************************************/
#define NEWCHRLED_CNT			1		  	/* 设备号个数 */
#define NEWCHRLED_NAME			"newchrled"	/* 名字 */
#define LEDOFF 					0			/* 关灯 */
#define LEDON 					1			/* 开灯 */
 
/* 寄存器物理地址 */
#define CCM_CCGR1_BASE				(0X020C406C)	
#define SW_MUX_GPIO1_IO03_BASE		(0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE		(0X020E02F4)
#define GPIO1_DR_BASE				(0X0209C000)
#define GPIO1_GDIR_BASE				(0X0209C004)

/* 映射后的寄存器虚拟地址指针 */
static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;

/* newchrled设备结构体 */
struct newchrled_dev{
	dev_t devid;			/* 设备号 	 */
	struct cdev cdev;		/* cdev 	*/
	struct class *class;		/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
};

struct newchrled_dev newchrled;	/* led设备 */

/*
 * @description		: LED打开/关闭
 * @param - sta 	: LEDON(0) 打开LED,LEDOFF(1) 关闭LED
 * @return 			: 无
 */
void led_switch(u8 sta)
{
	u32 val = 0;
	if(sta == LEDON) {
		val = readl(GPIO1_DR);
		val &= ~(1 << 3);	
		writel(val, GPIO1_DR);
	}else if(sta == LEDOFF) {
		val = readl(GPIO1_DR);
		val|= (1 << 3);	
		writel(val, GPIO1_DR);
	}	
}

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int led_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &newchrled; /* 设置私有数据 */
	return 0;
}

/*
 * @description		: 从设备读取数据 
 * @param - filp 	: 要打开的设备文件(文件描述符)
 * @param - buf 	: 返回给用户空间的数据缓冲区
 * @param - cnt 	: 要读取的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	return 0;
}

/*
 * @description		: 向设备写数据 
 * @param - filp 	: 设备文件,表示打开的文件描述符
 * @param - buf 	: 要写给设备写入的数据
 * @param - cnt 	: 要写入的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 写入的字节数,如果为负值,表示写入失败
 */
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
	int retvalue;
	unsigned char databuf[1];
	unsigned char ledstat;

	retvalue = copy_from_user(databuf, buf, cnt);
	if(retvalue < 0) {
		printk("kernel write failed!\r\n");
		return -EFAULT;
	}

	ledstat = databuf[0];		/* 获取状态值 */

	if(ledstat == LEDON) {	
		led_switch(LEDON);		/* 打开LED灯 */
	} else if(ledstat == LEDOFF) {
		led_switch(LEDOFF);	/* 关闭LED灯 */
	}
	return 0;
}

/*
 * @description		: 关闭/释放设备
 * @param - filp 	: 要关闭的设备文件(文件描述符)
 * @return 			: 0 成功;其他 失败
 */
static int led_release(struct inode *inode, struct file *filp)
{
	return 0;
}

/* 设备操作函数 */
static struct file_operations newchrled_fops = {
	.owner = THIS_MODULE,
	.open = led_open,
	.read = led_read,
	.write = led_write,
	.release = 	led_release,
};

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init led_init(void)
{
	u32 val = 0;

	/* 初始化LED */
	/* 1、寄存器地址映射 */
  	IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);
	SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
  	SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);
	GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);
	GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);

	/* 2、使能GPIO1时钟 */
	val = readl(IMX6U_CCM_CCGR1);
	val &= ~(3 << 26);	/* 清楚以前的设置 */
	val |= (3 << 26);	/* 设置新值 */
	writel(val, IMX6U_CCM_CCGR1);

	/* 3、设置GPIO1_IO03的复用功能,将其复用为
	 *    GPIO1_IO03,最后设置IO属性。
	 */
	writel(5, SW_MUX_GPIO1_IO03);
	
	/*寄存器SW_PAD_GPIO1_IO03设置IO属性
	 *bit 16:0 HYS关闭
	 *bit [15:14]: 00 默认下拉
     *bit [13]: 0 kepper功能
     *bit [12]: 1 pull/keeper使能
     *bit [11]: 0 关闭开路输出
     *bit [7:6]: 10 速度100Mhz
     *bit [5:3]: 110 R0/6驱动能力
     *bit [0]: 0 低转换率
	 */
	writel(0x10B0, SW_PAD_GPIO1_IO03);

	/* 4、设置GPIO1_IO03为输出功能 */
	val = readl(GPIO1_GDIR);
	val &= ~(1 << 3);	/* 清除以前的设置 */
	val |= (1 << 3);	/* 设置为输出 */
	writel(val, GPIO1_GDIR);

	/* 5、默认关闭LED */
	val = readl(GPIO1_DR);
	val |= (1 << 3);	
	writel(val, GPIO1_DR);

	/* 注册字符设备驱动 */
	/* 1、创建设备号 */
	if (newchrled.major) {		/*  定义了设备号 */
		newchrled.devid = MKDEV(newchrled.major, 0);
		register_chrdev_region(newchrled.devid, NEWCHRLED_CNT, NEWCHRLED_NAME);
	} else {						/* 没有定义设备号 */
		alloc_chrdev_region(&newchrled.devid, 0, NEWCHRLED_CNT, NEWCHRLED_NAME);	/* 申请设备号 */
		newchrled.major = MAJOR(newchrled.devid);	/* 获取分配号的主设备号 */
		newchrled.minor = MINOR(newchrled.devid);	/* 获取分配号的次设备号 */
	}
	printk("newcheled major=%d,minor=%d\r\n",newchrled.major, newchrled.minor);	
	
	/* 2、初始化cdev */
	newchrled.cdev.owner = THIS_MODULE;
	cdev_init(&newchrled.cdev, &newchrled_fops);
	
	/* 3、添加一个cdev */
	cdev_add(&newchrled.cdev, newchrled.devid, NEWCHRLED_CNT);

	/* 4、创建类 */
	newchrled.class = class_create(THIS_MODULE, NEWCHRLED_NAME);
	if (IS_ERR(newchrled.class)) {
		return PTR_ERR(newchrled.class);
	}

	/* 5、创建设备 */
	newchrled.device = device_create(newchrled.class, NULL, newchrled.devid, NULL, NEWCHRLED_NAME);
	if (IS_ERR(newchrled.device)) {
		return PTR_ERR(newchrled.device);
	}
	
	return 0;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit led_exit(void)
{
	/* 取消映射 */
	iounmap(IMX6U_CCM_CCGR1);
	iounmap(SW_MUX_GPIO1_IO03);
	iounmap(SW_PAD_GPIO1_IO03);
	iounmap(GPIO1_DR);
	iounmap(GPIO1_GDIR);

	/* 注销字符设备驱动 */
	cdev_del(&newchrled.cdev);/*  删除cdev */
	unregister_chrdev_region(newchrled.devid, NEWCHRLED_CNT); /* 注销设备号 */

	device_destroy(newchrled.class, newchrled.devid);
	class_destroy(newchrled.class);
}

module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");

第 25 行,宏 NEWCHRLED_CNT 表示设备数量,在申请设备号或者向 Linux 内核添加字符设备的时候需要设置设备数量,一般我们一个驱动一个设备,所以这个宏为 1。
第 26 行,宏 NEWCHRLED_NAME 表示设备名字,本实验的设备名为“newchrdev”,为了方便管理,所有使用到设备名字的地方统一使用此宏,当驱动加载成功以后就生成 /dev/newchrled 这个设备文件。
第 44~52 行,创建设备结构体 newchrled_dev。
第 54 行,定义一个设备结构体变量 newchrdev,此变量表示 led 设备。
第 82~86 行,在 led_open 函数中设置文件的私有数据 private_data 指向 newchrdev。
第 194~221 行,根据前面讲解的方法在驱动入口函数 led_init 中申请设备号、添加字符设备、创建类和设备。本实验我们采用动态申请设备号的方法,第 202 行使用 printk 在终端上显示出申请到的主设备号和次设备号。
第 241~245 行,根据前面讲解的方法,在驱动出口函数 led_exit 中注销字符新设备、删除类和设备。
总体来说 newchrled.c 文件中的内容不复杂, LED 灯驱动部分的程序和上一章一样。重点就是使用了新的字符设备驱动方法。


四、运行测试

1. 编译驱动程序和测试 APP

1.1 编译驱动程序

编写 Makefile 文件,本章实验的 Makefile 文件和上章实验基本一样,只是将 obj-m 变量的值改为 newchrled.o, Makefile 内容如下所示:


KERNELDIR := /home/zuozhongkai/linux/IMX6ULL/linux/temp/linux-imxrel_imx_4.1.15_2.1.0_ga_alientek
......
obj-m := newchrled.o
......
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

第 4 行,设置 obj-m 变量的值为 newchrled.o。

输入如下命令编译出驱动模块文件:

make -j32

编译成功以后就会生成一个名为“newchrled.ko”的驱动模块文件。


1.2 编译测试 APP

输入如下命令编译测试 ledApp.c 这个测试程序:

arm-linux-gnueabihf-gcc ledApp.c -o ledApp

编译成功以后就会生成 ledApp 这个应用程序。


2. 运行测试

将上一小节编译出来的 newchrled.ko 和 ledApp 这两个文件拷贝到 rootfs/lib/modules/4.1.15目录中,重启开发板,进入到目录 lib/modules/4.1.15 中,输入如下命令加载 newchrled.ko 驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe newchrled.ko //加载驱动

驱动加载成功以后会输出申请到的主设备号和次设备号,如图所示:
在这里插入图片描述
可以看出,申请到的主设备号为 249,次设备号为 0。驱动加载成功以后会自动在/dev 目录下创建设备节点文件/dev/newchrdev,输入如下命令查看/dev/newchrdev 这个设备节点文件是否存在:

ls /dev/newchrled -l

在这里插入图片描述
从上图可以看出, /dev/newchrled 这个设备文件存在,而且主设备号为 249,此设备号为 0,说明设备节点文件创建成功。


驱动节点创建成功以后就可以使用 ledApp 软件来测试驱动是否工作正常,输入如下命令打开 LED 灯:

./ledApp /dev/newchrled 1 //打开 LED 灯

输入如下命令关闭 LED 灯:

./ledApp /dev/newchrled 0 //关闭 LED 灯

如果要卸载驱动的话输入如下命令即可:

rmmod newchrled.ko

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/697677.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Q-Learning 原理干货讲解

强化学习 本文是强化学习和Q-Learning算法的概念及原理 项目实战案例可查看下一篇文章&#xff1a;Q-Learning 单路径吃宝箱问题–棋盘格吃宝箱问题–拓扑节点较优路径问题 一. 强化学习概述 1.1 什么是强化学习 基于环境的反馈而行动&#xff0c;通过不断与环境的交互、试错&…

AR急诊急救大平台远程专家会诊方案

随着AR技术的完善&#xff0c;在医院急救中&#xff0c;需要及时把各方面专家汇在一起会诊&#xff0c;在AR这方面有数据采集清晰&#xff0c;资料呈现方便便捷&#xff0c;针对客户需要&#xff0c;我们对业务需求分析&#xff0c;比较市面多种产品&#xff0c;把会议&#xf…

Spring Boot 中的 @Cacheable 注解

Spring Boot 中的 Cacheable 注解 在 Spring Boot 中&#xff0c;缓存是一个非常重要的话题。当我们需要频繁读取一些数据时&#xff0c;为了提高性能&#xff0c;可以将这些数据缓存起来&#xff0c;避免每次都从数据库中读取。为了实现缓存&#xff0c;Spring Boot 提供了一…

Apikit 自学日记:发起文档测试-TCP/UDP

进入某个TCP/UDP协议的API文档详情页&#xff0c;点击文档上方 测试 标签&#xff0c;即可进入 API 测试页&#xff0c;系统会根据API文档的定义的求头部、Query参数、请求体自动生成测试界面并且填充测试数据。 填写/修改请求参数 1.1设置请求参数 与发起HTTP协议测试类似&am…

Django Vue corsheaders跨域问题

跨域问题 记录一下在我自己的django-vue项目里面出现的跨域问题 我的项目之前一直是在本地跑的&#xff0c;因为需要上线测试&#xff0c;所以我就运行在同一个vlan里面 ip段&#xff1a;192.168.1.0/24 突然发现存在跨域问题&#xff0c;我django的接口访问被拦截了。 检查…

Web服务器群集:Nginx+Tomcat实现负载均衡与动静分离集群

目录 一、理论 1.多实例 2.Nginx负载均衡 3.Nginx动静分离 4.配置NginxTomcat负载均衡 5.配置NginxTomcat动静分离集群 6.Nginx 四层代理配置 二、实验 1.配置NginxTomcat负载均衡 2.、配置NginxTomcat动静分离集群 三、问题 1.服务器群集与集群的区别 四、总结 一…

十分钟实现 Android Camera2 视频录制

1. 前言 因为工作中要使用Android Camera2 API&#xff0c;但因为Camera2比较复杂&#xff0c;网上资料也比较乱&#xff0c;有一定入门门槛&#xff0c;所以花了几天时间系统研究了下&#xff0c;并在CSDN上记录了下&#xff0c;希望能帮助到更多的小伙伴。 上两篇文章们使用…

Python主动抛出Warning的艺术:一种提醒用户的优雅方式

简介&#xff1a;Python提供了一个内置的warnings模块&#xff0c;使得开发者可以在代码中主动地发出警告。这对于告知用户某些问题或者对某些即将废弃的特性进行提示尤其有用。本文将重点介绍如何在Python代码中主动抛出警告&#xff0c;并探讨其使用场景和优势。 历史攻略&a…

设计模式3:单例模式:volatile关键字能不能解决多线程计数问题?

先说结论不能&#xff1a; 代码实测下&#xff1a; public class Counter {public volatile static int count 0;public static void inc() {//这里延迟1毫秒&#xff0c;使得结果明显try {Thread.sleep(1);} catch (InterruptedException e) {}count;}public static void ma…

Win10安装CUDA

一、安装Nvidia显卡驱动 安装Nvidia显卡驱动前可以先检查Nvidia显卡驱动是否已安装。搜索 Nvidia控制面板 或 Nvidia Control Panel可以看到当前已经安装的显卡驱动及版本。 如需安装显卡驱动&#xff0c;在官方驱动下载网站找到自己的显卡型号对应的驱动下载并安装:官方驱动…

行业分析| 无人机电力巡检技术的应用

随着现代生活水平的不断提升&#xff0c;人们对各行各业的发展都提出了更高的品质要求&#xff0c;对于电力的需求不断上涨&#xff0c;因此也加速了电力行业的转型升级。基于这一发展状况&#xff0c;我国电力行业逐渐开始选择应用无人机电力巡检等现代高科技技术。 无人机电…

Baumer工业相机堡盟工业相机如何通过BGAPISDK进行定序器编程:VCXG双快门操作(C#)

Baumer工业相机堡盟工业相机如何通过BGAPISDK进行定序器编程:VCXG双快门操作&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机BGAPISDK和定序器编程的技术背景Baumer工业相机通过BGAPISDK进行定序器编程功能1.引用合适的类文件2.Baumer工业相机通过BGAPISDK进行定序器…

Keep上市,打响健身科技第一炮?

近些年&#xff0c;大众对于身体健康和审美的需求越来越旺盛&#xff0c;因此也引发了一场无形的健身革命。无论是线下动辄大几千的健身房&#xff0c;还是线上的健身直播经济都受到了不小的关注&#xff0c;在疫情刚开始的那段时间&#xff0c;各地的封控让在线健身成为了一种…

修改滚动条样式 和 那些高度

一、滚动条样式 二、那些高度 网页可见区域宽&#xff1a; document .body.clientWidth; 网页可见区域高&#xff1a; document .body.clientHeight; 网页可见区域宽&#xff1a; document .body.offsetWidth (包括边线的宽); 网页可见区域高&#xff1a; document .body.of…

亚马逊实践 | 构建可持续发展的架构模型

可持续发展概念源于对系统性文明危机和世界问题的科学和社会意识形态研究。世界级的进步学术社群和政治精英在二十世纪末就认识到了这些问题的存在。他们将即将到来的二十一世纪视为充满不确定性、全球灾难进程逐步升级的时代。可持续发展对多个领域产生影响&#xff0c;目前已…

Sudo堆溢出漏洞(CVE-2021-3156)复现

背景介绍 2021 年 1 月 26 日&#xff0c;Qualys Research Labs在 sudo 发现了一个缺陷。sudo 解析命令行参数的方式时&#xff0c;错误的判断了截断符&#xff0c;从而导致攻击者可以恶意构造载荷&#xff0c;使得sudo发生堆溢出&#xff0c;该漏洞在配合环境变量等分配堆以及…

在Mac上安装Aspectj1.9.8(用于Java17)+IDEA

1. 确定所使用的Java版本和AspectJ的对应关系 2. 下载AspectJ包 3. 安装AspectJ 4. 添加AspectJ对应的环境变量 5. AspectJ测试-简单终端测试 6. AspectJ测试-通过IDEA敲代码测试 ---------------------------------------详细教程-------------------------------------…

【深度学习】7-0 自制框架实现DeZero - 自动微分

介绍下处理深度学习的框架DeZero&#xff0c;通过这个框架来了解自动微分是如何实现的 自动微分指的是自动求出导数的做法(技术)。“自动求出导数”是指由计算机(而非人)求出导数。具体来说&#xff0c;它是指在对某个计算(函数)编码后计算机会自动求出该计算的导数的系统。 自…

flexible.js适配pc端、移动端并自动将px转换rem

首先在assets中创建一个flexible.js文件 ;(function(win, lib) {let doc win.document;let docEl doc.documentElement;let metaEl doc.querySelector(meta[name"viewport"]);let flexibleEl doc.querySelector(meta[name"flexible"]);let dpr 0;let…

POI及EasyExcel操作xls,xlsx文件

Apache POI 是基于 Office Open XML 标准&#xff08;OOXML&#xff09;和 Microsoft 的 OLE 2 复合文档格式&#xff08;OLE2&#xff09;处理各种文件格式的开源项目。 可以使用 Java 读写 MS Excel 文件&#xff0c;可以使用 Java 读写 MS Word 和 MS PowerPoint 文件。 模…