目标检测基础

news2025/1/11 14:56:21

MTCNN  人脸检测

MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,它的主题框架类似于cascade。总体可分为P-Net、R-Net、和O-Net三层网络结构。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等技术。

参考文献

【论文解析】MTCNN论文要点翻译 - 向前奔跑的少年 - 博客园 (cnblogs.com)

Faster RCNN

YOLOV1

 yolov1 的处理步骤:首先将图片调整为448,然后输入网络,最后通过置信度进行非极大抑制

检测框架

 

 YOLO将检测问题看作是一个回归问题。YOLO将输入图像分为SxS的网格,如果一个物体的中心点落入网络中,则该网格负责检测该物体。

对于每一个网格会预测B个边界框,每一个边界框包含了5个张量,x,y,w,h,置信度。其中置信度的定义

置信度反应了该边界框是否包含物体以及包含物体的可能性。

x,y 是相对于网格左上角归一化后的坐标。

w,h是边界框的宽和高相较于图像宽和高归一化后的结果。

● x,y: 是指bounding box的预测框的中心坐标相较于该bounding box归属的grid cell左上角的偏移量,在0-1之间。

在上图中,绿色虚线框代表grid cell,绿点表示该grid cell的左上角坐标,为(0,0);红色和蓝色框代表该grid cell包含的两个bounding box,红点和蓝点表示这两个bounding box的中心坐标。有一点很重要,bounding box的中心坐标一定在该grid cell内部,因此,红点和蓝点的坐标可以归一化在0-1之间。在上图中,红点的坐标为(0.5,0.5),即x=y=0.5,蓝点的坐标为(0.9,0.9),即x=y=0.9。

在测试时,将置信度分数和类别分数相乘得到:

这表示 每个边界框的类别概率。注意这里每个网格负责检测一个物体,所以在测试时会选择置信度比较大的边界框进行检测。

网络结构

YOLO主要是建立一个CNN网络生成预测7×7×1024 的张量 ,然后通过两个全连接层进行线性回归。

为了优化目标,作者采取了平均差进行优化。但是平方差并不能提高MAP。为了提高定位精度,作者在坐标损失前加入一个参数。有些边界框并不包含物体,所以作者对于不包含物体的边界框赋予更小的权重。对于大框的小偏差和小框的大偏差的重要性是不一样的,所以对于宽和高进行开平方。

代码  

从零开始实现yolov1目标检测算法

准备数据

"""
数据准备,将数据处理为两个文件,一个是train.csv,另一个是train.txt。同理也会有test.csv, test.txt
train.csv: 每一行是一张图片的标签,具体储存情况根据不同任务的需求自行设定
train.txt: 每一行是图片的路径,该文件每行的图片和train.csv的每一行标注应该是一一对应的
另外,根据需要将图片稍微离线处理一下,比如将原图片裁剪出训练使用的图片(resize成训练要求大小)后,保存在自定义文件夹中,train.txt里的路径应与自定义文件夹相同
"""
import xml.etree.ElementTree as ET
import numpy as np
import cv2
import random
import os

GL_CLASSES = ['person', 'bird', 'cat', 'cow', 'dog', 'horse', 'sheep',
           'aeroplane', 'bicycle', 'boat', 'bus', 'car', 'motorbike', 'train',
           'bottle', 'chair', 'diningtable', 'pottedplant', 'sofa', 'tvmonitor']
GL_NUMBBOX = 2
GL_NUMGRID = 7
STATIC_DATASET_PATH = r'./VOCdevkit/VOC2012/'
STATIC_DEBUG = False  # 调试用

def convert(size, box):
    """将bbox的左上角点、右下角点坐标的格式,转换为bbox中心点+bbox的w,h的格式
    并进行归一化"""
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)

def convert_annotation(anno_dir, image_id, labels_dir):
    """把图像image_id的xml文件转换为目标检测的label文件(txt)
    其中包含物体的类别,bbox的左上角点坐标以及bbox的宽、高
    并将四个物理量归一化"""
    in_file = open(os.path.join(anno_dir, 'Annotations/%s' % (image_id)))
    image_id = image_id.split('.')[0]
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in GL_CLASSES or int(difficult) == 1:
            continue
        cls_id = GL_CLASSES.index(cls)
        xmlbox = obj.find('bndbox')
        points = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), points)
        with open(os.path.join(labels_dir, '%s.txt' % (image_id)), 'a') as out_file:
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

def make_label_txt(anno_dir, labels_dir):
    """在labels文件夹下创建image_id.txt,对应每个image_id.xml提取出的bbox信息"""
    filenames = os.listdir(os.path.join(anno_dir,'Annotations'))[:13]
    for file in filenames:
        convert_annotation(anno_dir, file, labels_dir)

def img_augument(img_dir, save_img_dir, labels_dir):
    imgs_list = [x.split('.')[0]+".jpg" for x in os.listdir(labels_dir)]
    for img_name in imgs_list:
        print("process %s"%os.path.join(img_dir, img_name))
        img = cv2.imread(os.path.join(img_dir, img_name))
        h, w = img.shape[0:2]
        input_size = 448  # 输入YOLOv1网络的图像尺寸为448x448
        # 因为数据集内原始图像的尺寸是不定的,所以需要进行适当的padding,将原始图像padding成宽高一致的正方形
        # 然后再将Padding后的正方形图像缩放成448x448
        padw, padh = 0, 0  # 要记录宽高方向的padding具体数值,因为padding之后需要调整bbox的位置信息
        if h > w:
            padw = (h - w) // 2
            img = np.pad(img, ((0, 0), (padw, padw), (0, 0)), 'constant', constant_values=0)
        elif w > h:
            padh = (w - h) // 2
            img = np.pad(img, ((padh, padh), (0, 0), (0, 0)), 'constant', constant_values=0)
        img = cv2.resize(img, (input_size, input_size))
        cv2.imwrite(os.path.join(save_img_dir, img_name), img)
        # 读取图像对应的bbox信息,按1维的方式储存,每5个元素表示一个bbox的(cls,xc,yc,w,h)
        with open(os.path.join(labels_dir,img_name.split('.')[0] + ".txt"), 'r') as f:
            bbox = f.read().split('\n')
        bbox = [x.split() for x in bbox]
        bbox = [float(x) for y in bbox for x in y]
        if len(bbox) % 5 != 0:
            raise ValueError("File:"
                             + os.path.join(labels_dir,img_name.split('.')[0] + ".txt") + "——bbox Extraction Error!")

        # 根据padding、图像增广等操作,将原始的bbox数据转换为修改后图像的bbox数据
        if padw != 0:
            for i in range(len(bbox) // 5):
                bbox[i * 5 + 1] = (bbox[i * 5 + 1] * w + padw) / h
                bbox[i * 5 + 3] = (bbox[i * 5 + 3] * w) / h
                if STATIC_DEBUG:
                    cv2.rectangle(img, (int(bbox[1] * input_size - bbox[3] * input_size / 2),
                                        int(bbox[2] * input_size - bbox[4] * input_size / 2)),
                                  (int(bbox[1] * input_size + bbox[3] * input_size / 2),
                                   int(bbox[2] * input_size + bbox[4] * input_size / 2)), (0, 0, 255))
        elif padh != 0:
            for i in range(len(bbox) // 5):
                bbox[i * 5 + 2] = (bbox[i * 5 + 2] * h + padh) / w
                bbox[i * 5 + 4] = (bbox[i * 5 + 4] * h) / w
                if STATIC_DEBUG:
                    cv2.rectangle(img, (int(bbox[1] * input_size - bbox[3] * input_size / 2),
                                        int(bbox[2] * input_size - bbox[4] * input_size / 2)),
                                  (int(bbox[1] * input_size + bbox[3] * input_size / 2),
                                   int(bbox[2] * input_size + bbox[4] * input_size / 2)), (0, 0, 255))
        # 此处可以写代码验证一下,查看padding后修改的bbox数值是否正确,在原图中画出bbox检验
        if STATIC_DEBUG:
            cv2.imshow("bbox-%d"%int(bbox[0]), img)
            cv2.waitKey(0)
        with open(os.path.join(labels_dir, img_name.split('.')[0] + ".txt"), 'w') as f:
            for i in range(len(bbox) // 5):
                bbox = [str(x) for x in bbox[i*5:(i*5+5)]]
                str_context = " ".join(bbox)+'\n'
                f.write(str_context)

def convert_bbox2labels(bbox):
    """将bbox的(cls,x,y,w,h)数据转换为训练时方便计算Loss的数据形式(7,7,5*B+cls_num)
    注意,输入的bbox的信息是(xc,yc,w,h)格式的,转换为labels后,bbox的信息转换为了(px,py,w,h)格式"""
    gridsize = 1.0/GL_NUMGRID
    labels = np.zeros((7,7,5*GL_NUMBBOX+len(GL_CLASSES)))  # 注意,此处需要根据不同数据集的类别个数进行修改
    for i in range(len(bbox)//5):
        gridx = int(bbox[i*5+1] // gridsize)  # 当前bbox中心落在第gridx个网格,列
        gridy = int(bbox[i*5+2] // gridsize)  # 当前bbox中心落在第gridy个网格,行
        # (bbox中心坐标 - 网格左上角点的坐标)/网格大小  ==> bbox中心点的相对位置
        gridpx = bbox[i * 5 + 1] / gridsize - gridx
        gridpy = bbox[i * 5 + 2] / gridsize - gridy
        # 将第gridy行,gridx列的网格设置为负责当前ground truth的预测,置信度和对应类别概率均置为1
        labels[gridy, gridx, 0:5] = np.array([gridpx, gridpy, bbox[i * 5 + 3], bbox[i * 5 + 4], 1])
        labels[gridy, gridx, 5:10] = np.array([gridpx, gridpy, bbox[i * 5 + 3], bbox[i * 5 + 4], 1])
        labels[gridy, gridx, 10+int(bbox[i*5])] = 1
    labels = labels.reshape(1, -1)
    return labels

def create_csv_txt(img_dir, anno_dir, save_root_dir, train_val_ratio=0.9, padding=10, debug=False):
    """
    TODO:
    将img_dir文件夹内的图片按实际需要处理后,存入save_dir
    最终得到图片文件夹及所有图片对应的标注(train.csv/test.csv)和图片列表文件(train.txt, test.txt)
    """
    labels_dir = os.path.join(anno_dir, "labels")
    if not os.path.exists(labels_dir):
        os.mkdir(labels_dir)
        make_label_txt(anno_dir, labels_dir)
        print("labels done.")
    save_img_dir = os.path.join(os.path.join(anno_dir, "voc2012_forYolov1"), "img")
    if not os.path.exists(save_img_dir):
        os.mkdir(save_img_dir)
        img_augument(img_dir, save_img_dir, labels_dir)
    imgs_list = os.listdir(save_img_dir)
    n_trainval = len(imgs_list)
    shuffle_id = list(range(n_trainval))
    random.shuffle(shuffle_id)
    n_train = int(n_trainval*train_val_ratio)
    train_id = shuffle_id[:n_train]
    test_id = shuffle_id[n_train:]
    traintxt = open(os.path.join(save_root_dir, "train.txt"), 'w')
    traincsv = np.zeros((n_train, GL_NUMGRID*GL_NUMGRID*(5*GL_NUMBBOX+len(GL_CLASSES))),dtype=np.float32)
    for i,id in enumerate(train_id):
        img_name = imgs_list[id]
        img_path = os.path.join(save_img_dir, img_name)+'\n'
        traintxt.write(img_path)
        with open(os.path.join(labels_dir,"%s.txt"%img_name.split('.')[0]), 'r') as f:
            bbox = [float(x) for x in f.read().split()]
            traincsv[i,:] = convert_bbox2labels(bbox)
    np.savetxt(os.path.join(save_root_dir, "train.csv"), traincsv)
    print("Create %d train data." % (n_train))

    testtxt = open(os.path.join(save_root_dir, "test.txt"), 'w')
    testcsv = np.zeros((n_trainval - n_train, GL_NUMGRID*GL_NUMGRID*(5*GL_NUMBBOX+len(GL_CLASSES))),dtype=np.float32)
    for i,id in enumerate(test_id):
        img_name = imgs_list[id]
        img_path = os.path.join(save_img_dir, img_name)+'\n'
        testtxt.write(img_path)
        with open(os.path.join(labels_dir,"%s.txt"%img_name.split('.')[0]), 'r') as f:
            bbox = [float(x) for x in f.read().split()]
            testcsv[i,:] = convert_bbox2labels(bbox)
    np.savetxt(os.path.join(save_root_dir, "test.csv"), testcsv)
    print("Create %d test data." % (n_trainval-n_train))

if __name__ == '__main__':
    random.seed(0)
    np.set_printoptions(threshold=np.inf)
    img_dir = os.path.join(STATIC_DATASET_PATH, "JPEGImages")  # 原始图像文件夹
    anno_dirs = [STATIC_DATASET_PATH]  # 标注文件
    save_dir = os.path.join(STATIC_DATASET_PATH, "voc2012_forYolov1")  # 保存处理后的数据(图片+标签)的文件夹
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
    # 分别处理
    for anno_dir in anno_dirs:
        create_csv_txt(img_dir, anno_dir, save_dir, debug=False)

 上面这个函数负责提取xml文件中的边框信息,并且把边框信息归一化,保存为下面的类型。其中第一项表示类别,后面是归一化后的中心的坐标和归一化后的宽和高

上面这个函数负责将坐标进行归一化。 

def convert_bbox2labels(bbox):
    """将bbox的(cls,x,y,w,h)数据转换为训练时方便计算Loss的数据形式(7,7,5*B+cls_num)
    注意,输入的bbox的信息是(xc,yc,w,h)格式的,转换为labels后,bbox的信息转换为了(px,py,w,h)格式"""
    gridsize = 1.0/GL_NUMGRID
    labels = np.zeros((7,7,5*GL_NUMBBOX+len(GL_CLASSES)))  # 注意,此处需要根据不同数据集的类别个数进行修改
    for i in range(len(bbox)//5):
        gridx = int(bbox[i*5+1] // gridsize)  # 当前bbox中心落在第gridx个网格,列
        gridy = int(bbox[i*5+2] // gridsize)  # 当前bbox中心落在第gridy个网格,行
        # (bbox中心坐标 - 网格左上角点的坐标)/网格大小  ==> bbox中心点的相对位置
        gridpx = bbox[i * 5 + 1] / gridsize - gridx
        gridpy = bbox[i * 5 + 2] / gridsize - gridy
        # 将第gridy行,gridx列的网格设置为负责当前ground truth的预测,置信度和对应类别概率均置为1
        labels[gridy, gridx, 0:5] = np.array([gridpx, gridpy, bbox[i * 5 + 3], bbox[i * 5 + 4], 1])
        labels[gridy, gridx, 5:10] = np.array([gridpx, gridpy, bbox[i * 5 + 3], bbox[i * 5 + 4], 1])
        labels[gridy, gridx, 10+int(bbox[i*5])] = 1
    labels = labels.reshape(1, -1)
    return labels

该函数将bbox转换为labels。

data.py

from torch.utils.data import Dataset, DataLoader
import numpy as np
import os
import random
import torch
from PIL import Image
import torchvision.transforms as transforms

class MyDataset(Dataset):
    def __init__(self, dataset_dir, seed=None, mode="train", train_val_ratio=0.9, trans=None):
        """
        :param dataset_dir: 数据所在文件夹
        :param seed: 打乱数据所用的随机数种子
        :param mode: 数据模式,"train", "val", "test"
        :param train_val_ratio: 训练时,训练集:验证集的比例
        :param trans:  数据预处理函数

        TODO:
        1. 读取储存图片路径的.txt文件,并保存在self.img_list中
        2. 读取储存样本标签的.csv文件,并保存在self.label中
        3. 如果mode="train", 将数据集拆分为训练集和验证集,用self.use_ids来保存对应数据集的样本序号。
            注意,mode="train"和"val"时,必须传入随机数种子,且两者必须相同
        4. 保存传入的数据增广函数
        """
        if seed is None:
            seed = random.randint(0, 65536)
        random.seed(seed)
        self.dataset_dir = dataset_dir
        self.mode = mode
        if mode=="val":
            mode = "train"
        img_list_txt = os.path.join(dataset_dir, mode+".txt").replace('\\','/')  # 储存图片位置的列表
        label_csv = os.path.join(dataset_dir, mode+".csv").replace('\\','/')  # 储存标签的数组文件
        self.img_list = []
        self.label = np.loadtxt(label_csv)  # 读取标签数组文件
        # 读取图片位置文件
        with open(img_list_txt, 'r') as f:
            for line in f.readlines():
                self.img_list.append(line.strip())
        # 在mode=train或val时, 将数据进行切分
        # 注意在mode="val"时,传入的随机种子seed要和mode="train"相同
        self.num_all_data = len(self.img_list)
        all_ids = list(range(self.num_all_data))
        num_train = int(train_val_ratio*self.num_all_data)
        if self.mode == "train":
            self.use_ids = all_ids[:num_train]
        elif self.mode == "val":
            self.use_ids = all_ids[num_train:]
        else:
            self.use_ids = all_ids

        # 储存数据增广函数
        self.trans = trans

    def __len__(self):
        """获取数据集数量"""
        return len(self.use_ids)

    def __getitem__(self, item):
        """
        TODO:
        1. 按顺序依次取出第item个训练数据img及其对应的样本标签label
        2. 图像数据要进行预处理,并最终转换为(c, h, w)的维度,同时转换为torch.tensor
        3. 样本标签要按需要转换为指定格式的torch.tensor
        """
        id = self.use_ids[item]
        label = torch.tensor(self.label[id, :])
        img_path = self.img_list[id]
        img = Image.open(img_path)
        if self.trans is None:
            trans = transforms.Compose([
                # transforms.Resize((112,112)),
                transforms.ToTensor(),
            ])
        else:
            trans = self.trans
        img = trans(img)  # 图像预处理&数据增广
        # transforms.ToPILImage()(img).show()  # for debug
        # print(label)
        return img, label

if __name__ == '__main__':
    # 调试用,依次取出数据看看是否正确
    dataset_dir = "./VOCdevkit/VOC2012/voc2012_forYolov1"
    dataset = MyDataset(dataset_dir)
    image,label=dataset[1]
    print(image.shape)
    print(label.shape)
    # dataloader = DataLoader(dataset, 1)
    # for i in enumerate(dataloader):
    #     input("press enter to continue")

model.py

import torch
import torch.nn as nn
import torchvision.models as tvmodel
from prepare_data import GL_CLASSES, GL_NUMBBOX, GL_NUMGRID
from util import calculate_iou


class MyNet(nn.Module):
    """
    @ 网络实际名称
    为了和后续接口对齐,此处类名固定为MyNet,具体是什么网络可以写在注释里。
    """
    def __init__(self):
        """
        :param args: 构建网络所需要的参数

        TODO:
        在__init__()函数里,将网络框架搭好,并存在self里
        """
        super(MyNet, self).__init__()
        resnet = tvmodel.resnet34(pretrained=True)  # 调用torchvision里的resnet34预训练模型
        resnet_out_channel = resnet.fc.in_features  # 记录resnet全连接层之前的网络输出通道数,方便连入后续卷积网络中
        self.resnet = nn.Sequential(*list(resnet.children())[:-2])  # 去除resnet的最后两层
        # 以下是YOLOv1的最后四个卷积层
        self.Conv_layers = nn.Sequential(
            nn.Conv2d(resnet_out_channel, 1024, 3, padding=1),
            nn.BatchNorm2d(1024),  # 为了加快训练,这里增加了BN层,原论文里YOLOv1是没有的
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(1024, 1024, 3, stride=2, padding=1),
            nn.BatchNorm2d(1024),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(1024, 1024, 3, padding=1),
            nn.BatchNorm2d(1024),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(1024, 1024, 3, padding=1),
            nn.BatchNorm2d(1024),
            nn.LeakyReLU(inplace=True),
        )
        # 以下是YOLOv1的最后2个全连接层
        self.Conn_layers = nn.Sequential(
            nn.Linear(GL_NUMGRID * GL_NUMGRID * 1024, 4096),
            nn.LeakyReLU(inplace=True),
            nn.Linear(4096, GL_NUMGRID * GL_NUMGRID * (5*GL_NUMBBOX+len(GL_CLASSES))),
            nn.Sigmoid()  # 增加sigmoid函数是为了将输出全部映射到(0,1)之间,因为如果出现负数或太大的数,后续计算loss会很麻烦
        )


    def forward(self, inputs):
        """
        :param inputs:  输入网络的张量
        :return:  输出网络的结果

        TODO
        根据网络的结构,完成网络的前向传播计算。
        如果网络有多条分支,可以用self储存需要在别的地方使用的中间张量。
        如果网络有多个输出,需要将多个输出按后续inference的需求打包输出
        """
        x = self.resnet(inputs)
        x = self.Conv_layers(x)
        x = x.view(x.size()[0], -1)
        x = self.Conn_layers(x)
        self.pred = x.reshape(-1, (5 * GL_NUMBBOX + len(GL_CLASSES)), GL_NUMGRID, GL_NUMGRID)  # 记住最后要reshape一下输出数据
        return self.pred


    def calculate_loss(self, labels):
        """
        TODO: 根据labels和self.outputs计算训练loss
        :param labels: (bs, n), 对应训练数据的样本标签
        :return: loss数值
        """
        self.pred = self.pred.double()
        labels = labels.double()
        num_gridx, num_gridy = GL_NUMGRID, GL_NUMGRID  # 划分网格数量
        noobj_confi_loss = 0.  # 不含目标的网格损失(只有置信度损失)
        coor_loss = 0.  # 含有目标的bbox的坐标损失
        obj_confi_loss = 0.  # 含有目标的bbox的置信度损失
        class_loss = 0.  # 含有目标的网格的类别损失
        n_batch = labels.size()[0]  # batchsize的大小

        # 可以考虑用矩阵运算进行优化,提高速度,为了准确起见,这里还是用循环
        for i in range(n_batch):  # batchsize循环
            for n in range(num_gridx):  # x方向网格循环
                for m in range(num_gridy):  # y方向网格循环
                    if labels[i, 4, m, n] == 1:  # 如果包含物体
                        # 将数据(px,py,w,h)转换为(x1,y1,x2,y2)
                        # 先将px,py转换为cx,cy,即相对网格的位置转换为标准化后实际的bbox中心位置cx,xy
                        # 然后再利用(cx-w/2,cy-h/2,cx+w/2,cy+h/2)转换为xyxy形式,用于计算iou
                        bbox1_pred_xyxy = ((self.pred[i, 0, m, n] + n) / num_gridx - self.pred[i, 2, m, n] / 2,
                                           (self.pred[i, 1, m, n] + m) / num_gridy - self.pred[i, 3, m, n] / 2,
                                           (self.pred[i, 0, m, n] + n) / num_gridx + self.pred[i, 2, m, n] / 2,
                                           (self.pred[i, 1, m, n] + m) / num_gridy + self.pred[i, 3, m, n] / 2)
                        bbox2_pred_xyxy = ((self.pred[i, 5, m, n] + n) / num_gridx - self.pred[i, 7, m, n] / 2,
                                           (self.pred[i, 6, m, n] + m) / num_gridy - self.pred[i, 8, m, n] / 2,
                                           (self.pred[i, 5, m, n] + n) / num_gridx + self.pred[i, 7, m, n] / 2,
                                           (self.pred[i, 6, m, n] + m) / num_gridy + self.pred[i, 8, m, n] / 2)
                        bbox_gt_xyxy = ((labels[i, 0, m, n] + n) / num_gridx - labels[i, 2, m, n] / 2,
                                        (labels[i, 1, m, n] + m) / num_gridy - labels[i, 3, m, n] / 2,
                                        (labels[i, 0, m, n] + n) / num_gridx + labels[i, 2, m, n] / 2,
                                        (labels[i, 1, m, n] + m) / num_gridy + labels[i, 3, m, n] / 2)
                        iou1 = calculate_iou(bbox1_pred_xyxy, bbox_gt_xyxy)
                        iou2 = calculate_iou(bbox2_pred_xyxy, bbox_gt_xyxy)
                        # 选择iou大的bbox作为负责物体
                        if iou1 >= iou2:
                            coor_loss = coor_loss + 5 * (torch.sum((self.pred[i, 0:2, m, n] - labels[i, 0:2, m, n]) ** 2) \
                                        + torch.sum((self.pred[i, 2:4, m, n].sqrt() - labels[i, 2:4, m, n].sqrt()) ** 2))
                            obj_confi_loss = obj_confi_loss + (self.pred[i, 4, m, n] - iou1) ** 2
                            # iou比较小的bbox不负责预测物体,因此confidence loss算在noobj中,注意,对于标签的置信度应该是iou2
                            noobj_confi_loss = noobj_confi_loss + 0.5 * ((self.pred[i, 9, m, n] - iou2) ** 2)
                        else:
                            coor_loss = coor_loss + 5 * (torch.sum((self.pred[i, 5:7, m, n] - labels[i, 5:7, m, n]) ** 2) \
                                        + torch.sum((self.pred[i, 7:9, m, n].sqrt() - labels[i, 7:9, m, n].sqrt()) ** 2))
                            obj_confi_loss = obj_confi_loss + (self.pred[i, 9, m, n] - iou2) ** 2
                            # iou比较小的bbox不负责预测物体,因此confidence loss算在noobj中,注意,对于标签的置信度应该是iou1
                            noobj_confi_loss = noobj_confi_loss + 0.5 * ((self.pred[i, 4, m, n] - iou1) ** 2)
                        class_loss = class_loss + torch.sum((self.pred[i, 10:, m, n] - labels[i, 10:, m, n]) ** 2)
                    else:  # 如果不包含物体
                        noobj_confi_loss = noobj_confi_loss + 0.5 * torch.sum(self.pred[i, [4, 9], m, n] ** 2)

        loss = coor_loss + obj_confi_loss + noobj_confi_loss + class_loss
        # 此处可以写代码验证一下loss的大致计算是否正确,这个要验证起来比较麻烦,比较简洁的办法是,将输入的pred置为全1矩阵,再进行误差检查,会直观很多。
        return loss / n_batch

    def calculate_metric(self, preds, labels):
        """
        TODO: 根据preds和labels,以及指定的评价方法计算网络效果得分, 网络validation时使用
        :param preds: 预测数据
        :param labels: 预测数据对应的样本标签
        :return: 评估得分metric
        """
        preds = preds.double()
        labels = labels[:, :(self.n_points*2)]
        l2_distance = torch.mean(torch.sum((preds-labels)**2, dim=1))
        return l2_distance


if __name__ == '__main__':
    # 自定义输入张量,验证网络可以正常跑通,并计算loss,调试用
    x = torch.zeros(5,3,448,448)
    net = MyNet()
    a = net(x)
    labels = torch.zeros(5, 30, 7, 7)
    loss = net.calculate_loss(labels)
    print(loss)
    print(a.shape)

train.py

import os
import datetime
import time
import torch
from torch.utils.data import DataLoader

from model import MyNet
from data import MyDataset
from my_arguments import Args
from prepare_data import GL_CLASSES, GL_NUMBBOX, GL_NUMGRID
from util import labels2bbox


class TrainInterface(object):
    """
    网络训练接口,
    __train(): 训练过程函数
    __validate(): 验证过程函数
    __save_model(): 保存模型函数
    main(): 训练网络主函数
    """
    def __init__(self, opts):
        """
        :param opts: 命令行参数
        """
        self.opts = opts
        print("=======================Start training.=======================")

    @staticmethod
    def __train(model, train_loader, optimizer, epoch, num_train, opts):
        """
        完成一个epoch的训练
        :param model: torch.nn.Module, 需要训练的网络
        :param train_loader: torch.utils.data.Dataset, 训练数据集对应的类
        :param optimizer: torch.optim.Optimizer, 优化网络参数的优化器
        :param epoch: int, 表明当前训练的是第几个epoch
        :param num_train: int, 训练集数量
        :param opts: 命令行参数
        """
        model.train()
        device = opts.GPU_id
        avg_metric = 0.  # 平均评价指标
        avg_loss = 0.  # 平均损失数值
        # log_file是保存网络训练过程信息的文件,网络训练信息会以追加的形式打印在log.txt里,不会覆盖原有log文件
        log_file = open(os.path.join(opts.checkpoints_dir, "log.txt"), "a+")
        localtime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")  # 打印训练时间
        log_file.write(localtime)
        log_file.write("\n======================training epoch %d======================\n"%epoch)
        for i,(imgs, labels) in enumerate(train_loader):
            labels = labels.view(1, GL_NUMGRID, GL_NUMGRID, 30)
            labels = labels.permute(0,3,1,2)
            if opts.use_GPU:
                imgs = imgs.to(device)
                labels = labels.to(device)
            preds = model(imgs)  # 前向传播
            loss = model.calculate_loss(labels)  # 计算损失
            optimizer.zero_grad()  # 梯度清零
            loss.backward()  # 反向传播
            optimizer.step()  # 优化网络参数
            # metric = model.calculate_metric(preds, labels)  # 计算评价指标
            # avg_metric = (avg_metric*i+metric)/(i+1)
            avg_loss = (avg_loss*i+loss.item())/(i+1)
            if i % opts.print_freq == 0:  # 根据打印频率输出log信息和训练信息
                print("Epoch %d/%d | Iter %d/%d | training loss = %.3f, avg_loss = %.3f" %
                      (epoch, opts.epoch, i, num_train//opts.batch_size, loss.item(), avg_loss))
                log_file.write("Epoch %d/%d | Iter %d/%d | training loss = %.3f, avg_loss = %.3f\n" %
                      (epoch, opts.epoch, i, num_train//opts.batch_size, loss.item(), avg_loss))
                log_file.flush()
        log_file.close()

    @staticmethod
    def __validate(model, val_loader, epoch, num_val, opts):
        """
        完成一个epoch训练后的验证任务
        :param model: torch.nn.Module, 需要训练的网络
        :param _loader: torch.utils.data.Dataset, 验证数据集对应的类
        :param epoch: int, 表明当前训练的是第几个epoch
        :param num_val: int, 验证集数量
        :param opts: 命令行参数
        """
        model.eval()
        log_file = open(os.path.join(opts.checkpoints_dir, "log.txt"), "a+")
        log_file.write("======================validate epoch %d======================\n"%epoch)
        preds = None
        gts = None
        avg_metric = 0.
        with torch.no_grad():  # 加上这个可以减少在validation过程时的显存占用,提高代码的显存利用率
            for i,(imgs, labels) in enumerate(val_loader):
                if opts.use_GPU:
                    imgs = imgs.to(opts.GPU_id)
                pred = model(imgs).cpu().squeeze(dim=0).permute(1,2,0)
                pred_bbox = labels2bbox(pred)  # 将网络输出经过NMS后转换为shape为(-1, 6)的bbox
            metric = model.calculate_metric(preds, gts)
            print("Evaluation of validation result: average L2 distance = %.5f"%(metric))
            log_file.write("Evaluation of validation result: average L2 distance = %.5f\n"%(metric))
            log_file.flush()
            log_file.close()
        return metric

    @staticmethod
    def __save_model(model, epoch, opts):
        """
        保存第epoch个网络的参数
        :param model: torch.nn.Module, 需要训练的网络
        :param epoch: int, 表明当前训练的是第几个epoch
        :param opts: 命令行参数
        """
        model_name = "epoch%d.pth" % epoch
        save_dir = os.path.join(opts.checkpoints_dir, model_name)
        torch.save(model, save_dir)


    def main(self):
        """
        训练接口主函数,完成整个训练流程
        1. 创建训练集和验证集的DataLoader类
        2. 初始化带训练的网络
        3. 选择合适的优化器
        4. 训练并验证指定个epoch,保存其中评价指标最好的模型,并打印训练过程信息
        5. TODO: 可视化训练过程信息
        """
        opts = self.opts
        if not os.path.exists(opts.checkpoints_dir):
            os.mkdir(opts.checkpoints_dir)
        random_seed = opts.random_seed
        train_dataset = MyDataset(opts.dataset_dir, seed=random_seed, mode="train", train_val_ratio=0.9)
        val_dataset = MyDataset(opts.dataset_dir, seed=random_seed, mode="val", train_val_ratio=0.9)
        train_loader = DataLoader(train_dataset, opts.batch_size, shuffle=True, num_workers=opts.num_workers)
        val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=opts.num_workers)
        num_train = len(train_dataset)
        num_val = len(val_dataset)

        if opts.pretrain is None:
            model = MyNet()
        else:
            model = torch.load(opts.pretrain)
        if opts.use_GPU:
            model.to(opts.GPU_id)
        optimizer = torch.optim.SGD(model.parameters(), lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
        # optimizer = torch.optim.Adam(model.parameters(), lr=opts.lr, weight_decay=opts.weight_decay)

        best_metric=1000000
        for e in range(opts.start_epoch, opts.epoch+1):
            t = time.time()
            self.__train(model, train_loader, optimizer, e, num_train, opts)
            t2 = time.time()
            print("Training consumes %.2f second\n" % (t2-t))
            with open(os.path.join(opts.checkpoints_dir, "log.txt"), "a+") as log_file:
                log_file.write("Training consumes %.2f second\n" % (t2-t))
            if e % opts.save_freq==0 or e == opts.epoch+1:
                # t = time.time()
                # metric = self.__validate(model, val_loader, e, num_val, opts)
                # t2 = time.time()
                # print("Validation consumes %.2f second\n" % (t2 - t))
                # with open(os.path.join(opts.checkpoints_dir, "log.txt"), "a+") as log_file:
                #     log_file.write("Validation consumes %.2f second\n" % (t2 - t))
                # if best_metric>metric:
                #     best_metric = metric
                #     print("Epoch %d is now the best epoch with metric %.4f\n"%(e, best_metric))
                #     with open(os.path.join(opts.checkpoints_dir, "log.txt"), "a+") as log_file:
                #         log_file.write("Epoch %d is now the best epoch with metric %.4f\n"%(e, best_metric))
                self.__save_model(model, e, opts)


if __name__ == '__main__':
    # 训练网络代码
    args = Args()
    args.set_train_args()  # 获取命令行参数
    train_interface = TrainInterface(args.get_opts())
    train_interface.main()  # 调用训练接口

 utils.py

import torch
import torch.nn as nn
import numpy as np

class DepthwiseConv(nn.Module):
    """
    深度可分离卷积层
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding=0, bias=True):
        super(DepthwiseConv, self).__init__()
        self.layers = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride,
                      padding=padding, groups=in_channels, bias=bias),
            nn.BatchNorm2d(num_features=in_channels),
            nn.ReLU(),
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias),
            nn.BatchNorm2d(num_features=out_channels),
            nn.ReLU()
        )

    def forward(self, inputs):
        outputs = self.layers(inputs)
        return outputs


class InvertedBottleneck(nn.Module):
    """
    MobileNet v2 的InvertedBottleneck
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, t_factor, padding=0, bias=True):
        super(InvertedBottleneck, self).__init__()
        mid_channels = t_factor*in_channels
        self.layers = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, bias=bias),
            nn.BatchNorm2d(num_features=mid_channels),
            nn.ReLU(),
            nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride,
                      padding=padding, bias=bias),
            nn.BatchNorm2d(num_features=mid_channels),
            nn.ReLU(),
            nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, bias=bias)
        )

    def forward(self, inputs):
        outputs = self.layers(inputs)
        return outputs

class Flatten(nn.Module):
    """
    将三维张量拉平的网络层
    (n,c,h,w) -> (n, c*h*w)
    """
    def __init__(self):
        super(Flatten, self).__init__()

    def forward(self, x):
        n_samples = x.shape[0]
        x = x.reshape(n_samples, -1)
        return x


def calculate_iou(bbox1, bbox2):
    """计算bbox1=(x1,y1,x2,y2)和bbox2=(x3,y3,x4,y4)两个bbox的iou"""
    if bbox1[2]<=bbox1[0] or bbox1[3]<=bbox1[1] or bbox2[2]<=bbox2[0] or bbox2[3]<=bbox2[1]:
        return 0  # 如果bbox1或bbox2没有面积,或者输入错误,直接返回0

    intersect_bbox = [0., 0., 0., 0.]  # bbox1和bbox2的重合区域的(x1,y1,x2,y2)

    intersect_bbox[0] = max(bbox1[0],bbox2[0])
    intersect_bbox[1] = max(bbox1[1],bbox2[1])
    intersect_bbox[2] = min(bbox1[2],bbox2[2])
    intersect_bbox[3] = min(bbox1[3],bbox2[3])

    w = max(intersect_bbox[2] - intersect_bbox[0], 0)
    h = max(intersect_bbox[3] - intersect_bbox[1], 0)
    area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])  # bbox1面积
    area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])  # bbox2面积
    area_intersect = w * h  # 交集面积
    iou = area_intersect / (area1 + area2 - area_intersect + 1e-6)  # 防止除0
    # print(bbox1,bbox2)
    # print(intersect_bbox)
    # input()
    return iou


# 注意检查一下输入数据的格式,到底是xywh还是xyxy
def labels2bbox(matrix):
    """
    将网络输出的7*7*30的数据转换为bbox的(98,25)的格式,然后再将NMS处理后的结果返回
    :param matrix: 注意,输入的数据中,bbox坐标的格式是(px,py,w,h),需要转换为(x1,y1,x2,y2)的格式再输入NMS
    :return: 返回NMS处理后的结果,bboxes.shape = (-1, 6), 0:4是(x1,y1,x2,y2), 4是conf, 5是cls
    """
    if matrix.size()[0:2]!=(7,7):
        raise ValueError("Error: Wrong labels size: ", matrix.size(), " != (7,7)")
    matrix = matrix.numpy()
    bboxes = np.zeros((98, 6))
    # 先把7*7*30的数据转变为bbox的(98,25)的格式,其中,bbox信息格式从(px,py,w,h)转换为(x1,y1,x2,y2),方便计算iou
    matrix = matrix.reshape(49,-1)
    bbox = matrix[:, :10].reshape(98, 5)
    r_grid = np.array(list(range(7)))
    r_grid = np.repeat(r_grid, repeats=14, axis=0)  # [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
    c_grid = np.array(list(range(7)))
    c_grid = np.repeat(c_grid, repeats=2, axis=0)[np.newaxis, :]
    c_grid = np.repeat(c_grid, repeats=7, axis=0).reshape(-1)  # [0 0 1 1 2 2 3 3 4 4 5 5 6 6 0 0 1 1 2 2 3 3 4 4 5 5 6 6...]
    bboxes[:, 0] = np.maximum((bbox[:, 0] + c_grid) / 7.0 - bbox[:, 2] / 2.0, 0)
    bboxes[:, 1] = np.maximum((bbox[:, 1] + r_grid) / 7.0 - bbox[:, 3] / 2.0, 0)
    bboxes[:, 2] = np.minimum((bbox[:, 0] + c_grid) / 7.0 + bbox[:, 2] / 2.0, 1)
    bboxes[:, 3] = np.minimum((bbox[:, 1] + r_grid) / 7.0 + bbox[:, 3] / 2.0, 1)
    bboxes[:, 4] = bbox[:, 4]
    cls = np.argmax(matrix[:, 10:], axis=1)
    cls = np.repeat(cls, repeats=2, axis=0)
    bboxes[:, 5] = cls
    # 对所有98个bbox执行NMS算法,清理cls-specific confidence score较低以及iou重合度过高的bbox
    keepid = nms_multi_cls(bboxes, thresh=0.1, n_cls=20)
    ids = []
    for x in keepid:
        ids = ids + list(x)
    ids = sorted(ids)
    return bboxes[ids, :]


def nms_1cls(dets, thresh):
    """
    单类别NMS
    :param dets: ndarray,nx5,dets[i,0:4]分别是bbox坐标;dets[i,4]是置信度score
    :param thresh: NMS算法设置的iou阈值
    """
    # 从检测结果dets中获得x1,y1,x2,y2和scores的值
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    # 计算每个检测框的面积
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    # 按照置信度score的值降序排序的下标序列
    order = scores.argsort()[::-1]

    # keep用来保存最后保留的检测框的下标
    keep = []
    while order.size > 0:
        # 当前置信度最高bbox的index
        i = order[0]
        # 添加当前剩余检测框中得分最高的index到keep中
        keep.append(i)
        # 得到此bbox和剩余其他bbox的相交区域,左上角和右下角
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        # 计算相交的面积,不重叠时面积为0
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        # 计算IoU:重叠面积/(面积1+面积2-重叠面积)
        iou = inter / (areas[i] + areas[order[1:]] - inter)
        # 保留IoU小于阈值的bbox
        inds = np.where(iou <= thresh)[0]
        order = order[inds+1]
    return keep


def nms_multi_cls(dets, thresh, n_cls):
    """
    多类别的NMS算法
    :param dets:ndarray,nx6,dets[i,0:4]是bbox坐标;dets[i,4]是置信度score;dets[i,5]是类别序号;
    :param thresh: NMS算法的阈值;
    :param n_cls: 是类别总数
    """
    # 储存结果的列表,keeps_index[i]表示第i类保留下来的bbox下标list
    keeps_index = []
    for i in range(n_cls):
        order_i = np.where(dets[:,5]==i)[0]
        det = dets[dets[:, 5] == i, 0:5]
        if det.shape[0] == 0:
            keeps_index.append([])
            continue
        keep = nms_1cls(det, thresh)
        keeps_index.append(order_i[keep])
    return keeps_index


if __name__ == '__main__':
    a = torch.randn((7,7,30))
    print(a)
    labels2bbox(a)

 该函数首先将labels转换为(98,6)格式,其中前四个表示坐标,第五个表示置信度,第六个表示类别。然后执行NMS算法去掉重叠较高的边界框。

test.py

import os
from my_arguments import Args
import torch
from torch.utils.data import DataLoader

from model import MyNet
from data import MyDataset
from util import labels2bbox
from prepare_data import GL_CLASSES
import torchvision.transforms as transforms
from PIL import Image
import cv2


COLOR = [(255,0,0),(255,125,0),(255,255,0),(255,0,125),(255,0,250),
         (255,125,125),(255,125,250),(125,125,0),(0,255,125),(255,0,0),
         (0,0,255),(125,0,255),(0,125,255),(0,255,255),(125,125,255),
         (0,255,0),(125,255,125),(255,255,255),(100,100,100),(0,0,0),]  # 用来标识20个类别的bbox颜色,可自行设定


class TestInterface(object):
    """
    网络测试接口,
    main(): 网络测试主函数
    """
    def __init__(self, opts):
        self.opts = opts
        print("=======================Start inferring.=======================")

    def main(self):
        """
        具体测试流程根据不同项目有较大区别,需要自行编写代码,主要流程如下:
        1. 获取命令行参数
        2. 获取测试集
        3. 加载网络模型
        4. 用网络模型对测试集进行测试,得到测试结果
        5. 根据不同项目,计算测试集的评价指标, 或者可视化测试结果
        """
        opts = self.opts
        img_list = os.listdir(opts.dataset_dir)
        trans = transforms.Compose([
            # transforms.Resize((112, 112)),
            transforms.ToTensor(),
        ])
        model = torch.load(opts.weight_path)
        if opts.use_GPU:
            model.to(opts.GPU_id)
        for img_name in img_list:
            img_path = os.path.join(opts.dataset_dir, img_name)
            img = Image.open(img_path).convert('RGB')
            img = trans(img)
            img = torch.unsqueeze(img, dim=0)
            print(img_name, img.shape)
            if opts.use_GPU:
                img = img.to(opts.GPU_id)
            preds = torch.squeeze(model(img), dim=0).detach().cpu()
            preds = preds.permute(1,2,0)
            bbox = labels2bbox(preds)
            draw_img = cv2.imread(img_path)
            self.draw_bbox(draw_img, bbox)

    def draw_bbox(self, img, bbox):
        """
        根据bbox的信息在图像上绘制bounding box
        :param img: 绘制bbox的图像
        :param bbox: 是(n,6)的尺寸,0:4是(x1,y1,x2,y2), 4是conf, 5是cls
        """
        h, w = img.shape[0:2]
        n = bbox.shape[0]
        for i in range(n):
            confidence = bbox[i, 4]
            if confidence<0.2:
                continue
            p1 = (int(w * bbox[i, 0]), int(h * bbox[i, 1]))
            p2 = (int(w * bbox[i, 2]), int(h * bbox[i, 3]))
            cls_name = GL_CLASSES[int(bbox[i, 5])]
            print(cls_name, p1, p2)
            cv2.rectangle(img, p1, p2, COLOR[int(bbox[i, 5])])
            cv2.putText(img, cls_name, p1, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
            cv2.putText(img, str(confidence), (p1[0],p1[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
        cv2.imshow("bbox", img)
        cv2.waitKey(0)


if __name__ == '__main__':
    # 网络测试代码
    args = Args()
    args.set_test_args()  # 获取命令行参数
    test_interface = TestInterface(args.get_opts())
    test_interface.main()  # 调用测试接口

参考文献:

睿智的目标检测5——yolo1、yolo2、yolo3和SSD的网络结构汇总对比_睿智的网络csdn_Bubbliiiing的博客-CSDN博客

【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)_路人贾'ω'的博客-CSDN博客

YOLOV2

YOLOv1: 使用全连接层来直接预测边界框(x,y,w,h,c)其中边界框的坐标是相对于cell的,宽与高是相对于整张图片。由于各个图片中存在不同尺度和长宽比的物体,YOLOv1在训练过程中学习适应不同物体的形状是比较困难的,这也导致YOLOv1在精确定位方面表现较差。

Faster R-CNN: 不是直接预测目标边界框,而是使用手工挑选的先验Anchor Boxes。利用RPN预测的边界框是相对于Anchor Boxes的坐标和高宽的偏移offset。RPN在特征图的每个位置预测Anchor Box偏移量而不是坐标,简化了问题,使网络更容易学习。

Anchor Box的构成

  • 使用CNN提取的Feature Map的点,来定位目标的位置。
  • 使用Anchor Box的Scale来表示目标的大小。
  • 使用Anchor Box的Aspect Ratio来表示目标的形状。

 使用Kmean聚类来自动找到更好的boxes。

 RPN网络的位置预测

方法: 预测相对于Anchor Box的坐标的偏移,和相对于Anchor Box高宽的偏移。

计算公式: 预测框中心坐标= 输出的偏移量×Anchor宽高+Anchor中心坐标

YOLOv2的改进
方法: 预测边界框中心点相对于对应cell左上角位置的相对偏移值。将网格归一化为1×1,坐标控制在每个网格内,同时配合sigmod函数将预测值转换到0~1之间的办法,做到每一个Anchor只负责检测周围正负一个单位以内的目标box。

计算公式: 一个网格相对于图片左上角的偏移量是cx,cy。先验框的宽度和高度分别是pw和ph,则预测的边界框相对于特征图的中心坐标(bx,by)和宽高bw、bh

代码

voc0712.py

读取voc图片和注释,其中注释的格式是(x,y,w,h,cls)

"""VOC Dataset Classes

Original author: Francisco Massa
https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py

Updated by: Ellis Brown, Max deGroot
"""
import os
import os.path as osp
import sys
import torch
import torch.utils.data as data
import cv2
import numpy as np
import random
import xml.etree.ElementTree as ET


VOC_CLASSES = (  # always index 0
    'aeroplane', 'bicycle', 'bird', 'boat',
    'bottle', 'bus', 'car', 'cat', 'chair',
    'cow', 'diningtable', 'dog', 'horse',
    'motorbike', 'person', 'pottedplant',
    'sheep', 'sofa', 'train', 'tvmonitor')


class VOCAnnotationTransform(object):
    """Transforms a VOC annotation into a Tensor of bbox coords and label index
    Initilized with a dictionary lookup of classnames to indexes

    Arguments:
        class_to_ind (dict, optional): dictionary lookup of classnames -> indexes
            (default: alphabetic indexing of VOC's 20 classes)
        keep_difficult (bool, optional): keep difficult instances or not
            (default: False)
        height (int): height
        width (int): width
    """

    def __init__(self, class_to_ind=None, keep_difficult=False):
        self.class_to_ind = class_to_ind or dict(
            zip(VOC_CLASSES, range(len(VOC_CLASSES))))
        self.keep_difficult = keep_difficult

    def __call__(self, target, width, height):
        """
        Arguments:
            target (annotation) : the target annotation to be made usable
                will be an ET.Element
        Returns:
            a list containing lists of bounding boxes  [bbox coords, class name]
        """
        res = []
        for obj in target.iter('object'):
            difficult = int(obj.find('difficult').text) == 1
            if not self.keep_difficult and difficult:
                continue
            name = obj.find('name').text.lower().strip()
            bbox = obj.find('bndbox')

            pts = ['xmin', 'ymin', 'xmax', 'ymax']
            bndbox = []
            for i, pt in enumerate(pts):
                cur_pt = int(bbox.find(pt).text) - 1
                # scale height or width
                cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height
                bndbox.append(cur_pt)
            label_idx = self.class_to_ind[name]
            bndbox.append(label_idx)
            res += [bndbox]  # [xmin, ymin, xmax, ymax, label_ind]
            # img_id = target.find('filename').text[:-4]

        return res  # [[xmin, ymin, xmax, ymax, label_ind], ... ]


class VOCDetection(data.Dataset):
    """VOC Detection Dataset Object

    input is image, target is annotation

    Arguments:
        root (string): filepath to VOCdevkit folder.
        image_set (string): imageset to use (eg. 'train', 'val', 'test')
        transform (callable, optional): transformation to perform on the
            input image
        target_transform (callable, optional): transformation to perform on the
            target `annotation`
            (eg: take in caption string, return tensor of word indices)
        dataset_name (string, optional): which dataset to load
            (default: 'VOC2007')
    """

    def __init__(self, 
                 data_dir=None,
                 image_sets=[('2007', 'trainval')],
                 transform=None, 
                 target_transform=VOCAnnotationTransform(),
                 dataset_name='VOC0712'):
        self.root = data_dir
        self.image_set = image_sets
        self.transform = transform
        self.target_transform = target_transform
        self.name = dataset_name
        self.annopath = osp.join('%s', 'Annotations', '%s.xml')
        self.imgpath = osp.join('%s', 'JPEGImages', '%s.jpg')
        self.ids = list()
        for (year, name) in image_sets:
            rootpath = osp.join(self.root, 'VOC' + year)
            for line in os.listdir(os.path.join(rootpath,'JPEGImages')):
                line=line.split('.')[0]
                self.ids.append((rootpath,line))
            # for line in open(osp.join(rootpath, 'ImageSets', 'Main', name + '.txt')):
            #     self.ids.append((rootpath, line.strip()))


    def __getitem__(self, index):
        index=index%len(self.ids)
        im, gt, h, w = self.pull_item(index)

        return im, gt


    def __len__(self):
        return len(self.ids)


    def pull_item(self, index):
        # load an image
        index=index%len(self.ids)
        img_id = self.ids[index]
        img = cv2.imread(self.imgpath % img_id)
        height, width, channels = img.shape

        # load a target
        target = ET.parse(self.annopath % img_id).getroot()
        if self.target_transform is not None:
            target = self.target_transform(target, width, height)

        # check target
        if len(target) == 0:
            target = np.zeros([1, 5])
        else:
            target = np.array(target)
        # transform
        if self.transform is not None:
            img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
            # to rgb
            img = img[:, :, (2, 1, 0)]
            # to tensor
            img = torch.from_numpy(img).permute(2, 0, 1).float()
            # target
            target = np.hstack((boxes, np.expand_dims(labels, axis=1)))

        return img, target, height, width


    def pull_image(self, index):
        '''Returns the original image object at index in PIL form

        Note: not using self.__getitem__(), as any transformations passed in
        could mess up this functionality.

        Argument:
            index (int): index of img to show
        Return:
            PIL img
        '''
        img_id = self.ids[index]
        return cv2.imread(self.imgpath % img_id, cv2.IMREAD_COLOR), img_id


    def pull_anno(self, index):
        '''Returns the original annotation of image at index

        Note: not using self.__getitem__(), as any transformations passed in
        could mess up this functionality.

        Argument:
            index (int): index of img to get annotation of
        Return:
            list:  [img_id, [(label, bbox coords),...]]
                eg: ('001718', [('dog', (96, 13, 438, 332))])
        '''
        img_id = self.ids[index]
        anno = ET.parse(self.annopath % img_id).getroot()
        gt = self.target_transform(anno, 1, 1)
        return img_id[1], gt


    def pull_tensor(self, index):
        '''Returns the original image at an index in tensor form

        Note: not using self.__getitem__(), as any transformations passed in
        could mess up this functionality.

        Argument:
            index (int): index of img to show
        Return:
            tensorized version of img, squeezed
        '''
        return torch.Tensor(self.pull_image(index)).unsqueeze_(0)


if __name__ == "__main__":
    def base_transform(image, size, mean):
        x = cv2.resize(image, (size, size)).astype(np.float32)
        x -= mean
        x = x.astype(np.float32)
        return x

    class BaseTransform:
        def __init__(self, size, mean):
            self.size = size
            self.mean = np.array(mean, dtype=np.float32)

        def __call__(self, image, boxes=None, labels=None):
            return base_transform(image, self.size, self.mean), boxes, labels

    img_size = 640
    # dataset
    dataset = VOCDetection(data_dir='../VOCdevkit/',
                           image_sets=[('2007', 'trainval')],
                           transform=BaseTransform(img_size, (0, 0, 0)))

    for i in range(1000):
        # im, gt, h, w = dataset.pull_item(i)
        im,gt=dataset[i]
        img = im.permute(1,2,0).numpy()[:, :, (2, 1, 0)].astype(np.uint8)
        img = img.copy()
        for box in gt:
            xmin, ymin, xmax, ymax, _ = box
            xmin *= img_size
            ymin *= img_size
            xmax *= img_size
            ymax *= img_size
            img = cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0,0,255), 2)
        cv2.imshow('gt', img)
        cv2.waitKey(0)

tools.py

import numpy as np
from data import *
import torch.nn as nn
import torch.nn.functional as F

# We use ignore thresh to decide which anchor box can be kept.
ignore_thresh = 0.5


class MSEWithLogitsLoss(nn.Module):
    def __init__(self, reduction='mean'):
        super(MSEWithLogitsLoss, self).__init__()
        self.reduction = reduction

    def forward(self, logits, targets, mask):
        inputs = torch.sigmoid(logits)

        # We ignore those whose tarhets == -1.0. 
        pos_id = (mask==1.0).float()
        neg_id = (mask==0.0).float()
        pos_loss = pos_id * (inputs - targets)**2
        neg_loss = neg_id * (inputs)**2
        loss = 5.0*pos_loss + 1.0*neg_loss

        if self.reduction == 'mean':
            batch_size = logits.size(0)
            loss = torch.sum(loss) / batch_size

            return loss

        else:
            return loss


def compute_iou(anchor_boxes, gt_box):
    """
    Input:
        anchor_boxes : ndarray -> [[c_x_s, c_y_s, anchor_w, anchor_h], ..., [c_x_s, c_y_s, anchor_w, anchor_h]].
        gt_box : ndarray -> [c_x_s, c_y_s, anchor_w, anchor_h].
    Output:
        iou : ndarray -> [iou_1, iou_2, ..., iou_m], and m is equal to the number of anchor boxes.
    """
    # compute the iou between anchor box and gt box
    # First, change [c_x_s, c_y_s, anchor_w, anchor_h] ->  [xmin, ymin, xmax, ymax]
    # anchor box :
    ab_x1y1_x2y2 = np.zeros([len(anchor_boxes), 4])
    ab_x1y1_x2y2[:, 0] = anchor_boxes[:, 0] - anchor_boxes[:, 2] / 2  # xmin
    ab_x1y1_x2y2[:, 1] = anchor_boxes[:, 1] - anchor_boxes[:, 3] / 2  # ymin
    ab_x1y1_x2y2[:, 2] = anchor_boxes[:, 0] + anchor_boxes[:, 2] / 2  # xmax
    ab_x1y1_x2y2[:, 3] = anchor_boxes[:, 1] + anchor_boxes[:, 3] / 2  # ymax
    w_ab, h_ab = anchor_boxes[:, 2], anchor_boxes[:, 3]
    
    # gt_box : 
    # We need to expand gt_box(ndarray) to the shape of anchor_boxes(ndarray), in order to compute IoU easily. 
    gt_box_expand = np.repeat(gt_box, len(anchor_boxes), axis=0)

    gb_x1y1_x2y2 = np.zeros([len(anchor_boxes), 4])
    gb_x1y1_x2y2[:, 0] = gt_box_expand[:, 0] - gt_box_expand[:, 2] / 2 # xmin
    gb_x1y1_x2y2[:, 1] = gt_box_expand[:, 1] - gt_box_expand[:, 3] / 2 # ymin
    gb_x1y1_x2y2[:, 2] = gt_box_expand[:, 0] + gt_box_expand[:, 2] / 2 # xmax
    gb_x1y1_x2y2[:, 3] = gt_box_expand[:, 1] + gt_box_expand[:, 3] / 2 # ymin
    w_gt, h_gt = gt_box_expand[:, 2], gt_box_expand[:, 3]

    # Then we compute IoU between anchor_box and gt_box
    S_gt = w_gt * h_gt
    S_ab = w_ab * h_ab
    I_w = np.minimum(gb_x1y1_x2y2[:, 2], ab_x1y1_x2y2[:, 2]) - np.maximum(gb_x1y1_x2y2[:, 0], ab_x1y1_x2y2[:, 0])
    I_h = np.minimum(gb_x1y1_x2y2[:, 3], ab_x1y1_x2y2[:, 3]) - np.maximum(gb_x1y1_x2y2[:, 1], ab_x1y1_x2y2[:, 1])
    S_I = I_h * I_w
    U = S_gt + S_ab - S_I + 1e-20
    IoU = S_I / U
    
    return IoU


def set_anchors(anchor_size):
    """
    Input:
        anchor_size : list -> [[h_1, w_1], [h_2, w_2], ..., [h_n, w_n]].
    Output:
        anchor_boxes : ndarray -> [[0, 0, anchor_w, anchor_h],
                                   [0, 0, anchor_w, anchor_h],
                                   ...
                                   [0, 0, anchor_w, anchor_h]].
    """
    anchor_number = len(anchor_size)
    anchor_boxes = np.zeros([anchor_number, 4])
    for index, size in enumerate(anchor_size): 
        anchor_w, anchor_h = size
        anchor_boxes[index] = np.array([0, 0, anchor_w, anchor_h])
    
    return anchor_boxes


def generate_txtytwth(gt_label, w, h, s, all_anchor_size):
    xmin, ymin, xmax, ymax = gt_label[:-1]
    # compute the center, width and height
    c_x = (xmax + xmin) / 2 * w
    c_y = (ymax + ymin) / 2 * h
    box_w = (xmax - xmin) * w
    box_h = (ymax - ymin) * h

    if box_w < 1. or box_h < 1.:
        # print('A dirty data !!!')
        return False    

    # map the center, width and height to the feature map size
    c_x_s = c_x / s
    c_y_s = c_y / s
    box_ws = box_w / s
    box_hs = box_h / s
    
    # the grid cell location
    grid_x = int(c_x_s)
    grid_y = int(c_y_s)
    # generate anchor boxes
    anchor_boxes = set_anchors(all_anchor_size)
    gt_box = np.array([[0, 0, box_ws, box_hs]])
    # compute the IoU
    iou = compute_iou(anchor_boxes, gt_box)
    # We consider those anchor boxes whose IoU is more than ignore thresh,
    iou_mask = (iou > ignore_thresh)

    result = []
    if iou_mask.sum() == 0:
        # We assign the anchor box with highest IoU score.
        index = np.argmax(iou)
        p_w, p_h = all_anchor_size[index]
        tx = c_x_s - grid_x
        ty = c_y_s - grid_y
        tw = np.log(box_ws / p_w)
        th = np.log(box_hs / p_h)
        weight = 2.0 - (box_w / w) * (box_h / h)
        
        result.append([index, grid_x, grid_y, tx, ty, tw, th, weight, xmin, ymin, xmax, ymax])
        
        return result
    
    else:
        # There are more than one anchor boxes whose IoU are higher than ignore thresh.
        # But we only assign only one anchor box whose IoU is the best(objectness target is 1) and ignore other 
        # anchor boxes whose(we set their objectness as -1 which means we will ignore them during computing obj loss )
        # iou_ = iou * iou_mask
        
        # We get the index of the best IoU
        best_index = np.argmax(iou)
        for index, iou_m in enumerate(iou_mask):
            if iou_m:
                if index == best_index:
                    p_w, p_h = all_anchor_size[index]
                    tx = c_x_s - grid_x
                    ty = c_y_s - grid_y
                    tw = np.log(box_ws / p_w)
                    th = np.log(box_hs / p_h)
                    weight = 2.0 - (box_w / w) * (box_h / h)
                    
                    result.append([index, grid_x, grid_y, tx, ty, tw, th, weight, xmin, ymin, xmax, ymax])
                else:
                    # we ignore other anchor boxes even if their iou scores all higher than ignore thresh
                    result.append([index, grid_x, grid_y, 0., 0., 0., 0., -1.0, 0., 0., 0., 0.])

        return result 


def gt_creator(input_size, stride, label_lists, anchor_size):
    """
    Input:
        input_size : list -> the size of image in the training stage.
        stride : int or list -> the downSample of the CNN, such as 32, 64 and so on.
        label_list : list -> [[[xmin, ymin, xmax, ymax, cls_ind], ... ], [[xmin, ymin, xmax, ymax, cls_ind], ... ]],  
                        and len(label_list) = batch_size;
                            len(label_list[i]) = the number of class instance in a image;
                            (xmin, ymin, xmax, ymax) : the coords of a bbox whose valus is between 0 and 1;
                            cls_ind : the corresponding class label.
    Output:
        gt_tensor : ndarray -> shape = [batch_size, anchor_number, 1+1+4, grid_cell number ]
    """

    # prepare the all empty gt datas
    batch_size = len(label_lists)
    h = w = input_size
    
    # We  make gt labels by anchor-free method and anchor-based method.
    ws = w // stride
    hs = h // stride
    s = stride

    # We use anchor boxes to build training target.
    all_anchor_size = anchor_size
    anchor_number = len(all_anchor_size)

    gt_tensor = np.zeros([batch_size, hs, ws, anchor_number, 1+1+4+1+4])

    for batch_index in range(batch_size):
        for gt_label in label_lists[batch_index]:
            # get a bbox coords
            gt_class = int(gt_label[-1])
            results = generate_txtytwth(gt_label, w, h, s, all_anchor_size)
            if results:
                for result in results:
                    index, grid_x, grid_y, tx, ty, tw, th, weight, xmin, ymin, xmax, ymax = result
                    if weight > 0.:
                        if grid_y < gt_tensor.shape[1] and grid_x < gt_tensor.shape[2]:
                            gt_tensor[batch_index, grid_y, grid_x, index, 0] = 1.0
                            gt_tensor[batch_index, grid_y, grid_x, index, 1] = gt_class
                            gt_tensor[batch_index, grid_y, grid_x, index, 2:6] = np.array([tx, ty, tw, th])
                            gt_tensor[batch_index, grid_y, grid_x, index, 6] = weight
                            gt_tensor[batch_index, grid_y, grid_x, index, 7:] = np.array([xmin, ymin, xmax, ymax])
                    else:
                        gt_tensor[batch_index, grid_y, grid_x, index, 0] = -1.0
                        gt_tensor[batch_index, grid_y, grid_x, index, 6] = -1.0

    gt_tensor = gt_tensor.reshape(batch_size, hs * ws * anchor_number, 1+1+4+1+4)

    return gt_tensor


def multi_gt_creator(input_size, strides, label_lists, anchor_size):
    """creator multi scales gt"""
    # prepare the all empty gt datas
    batch_size = len(label_lists)
    h = w = input_size
    num_scale = len(strides)
    gt_tensor = []
    all_anchor_size = anchor_size
    anchor_number = len(all_anchor_size) // num_scale

    for s in strides:
        gt_tensor.append(np.zeros([batch_size, h//s, w//s, anchor_number, 1+1+4+1+4]))
        
    # generate gt datas    
    for batch_index in range(batch_size):
        for gt_label in label_lists[batch_index]:
            # get a bbox coords
            gt_class = int(gt_label[-1])
            xmin, ymin, xmax, ymax = gt_label[:-1]
            # compute the center, width and height
            c_x = (xmax + xmin) / 2 * w
            c_y = (ymax + ymin) / 2 * h
            box_w = (xmax - xmin) * w
            box_h = (ymax - ymin) * h

            if box_w < 1. or box_h < 1.:
                # print('A dirty data !!!')
                continue    

            # compute the IoU
            anchor_boxes = set_anchors(all_anchor_size)
            gt_box = np.array([[0, 0, box_w, box_h]])
            iou = compute_iou(anchor_boxes, gt_box)

            # We only consider those anchor boxes whose IoU is more than ignore thresh,
            iou_mask = (iou > ignore_thresh)

            if iou_mask.sum() == 0:
                # We assign the anchor box with highest IoU score.
                index = np.argmax(iou)
                # s_indx, ab_ind = index // num_scale, index % num_scale
                s_indx = index // anchor_number
                ab_ind = index - s_indx * anchor_number
                # get the corresponding stride
                s = strides[s_indx]
                # get the corresponding anchor box
                p_w, p_h = anchor_boxes[index, 2], anchor_boxes[index, 3]
                # compute the gride cell location
                c_x_s = c_x / s
                c_y_s = c_y / s
                grid_x = int(c_x_s)
                grid_y = int(c_y_s)
                # compute gt labels
                tx = c_x_s - grid_x
                ty = c_y_s - grid_y
                tw = np.log(box_w / p_w)
                th = np.log(box_h / p_h)
                weight = 2.0 - (box_w / w) * (box_h / h)

                if grid_y < gt_tensor[s_indx].shape[1] and grid_x < gt_tensor[s_indx].shape[2]:
                    gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 0] = 1.0
                    gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 1] = gt_class
                    gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 2:6] = np.array([tx, ty, tw, th])
                    gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 6] = weight
                    gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 7:] = np.array([xmin, ymin, xmax, ymax])
            
            else:
                # There are more than one anchor boxes whose IoU are higher than ignore thresh.
                # But we only assign only one anchor box whose IoU is the best(objectness target is 1) and ignore other 
                # anchor boxes whose(we set their objectness as -1 which means we will ignore them during computing obj loss )
                # iou_ = iou * iou_mask
                
                # We get the index of the best IoU
                best_index = np.argmax(iou)
                for index, iou_m in enumerate(iou_mask):
                    if iou_m:
                        if index == best_index:
                            # s_indx, ab_ind = index // num_scale, index % num_scale
                            s_indx = index // anchor_number
                            ab_ind = index - s_indx * anchor_number
                            # get the corresponding stride
                            s = strides[s_indx]
                            # get the corresponding anchor box
                            p_w, p_h = anchor_boxes[index, 2], anchor_boxes[index, 3]
                            # compute the gride cell location
                            c_x_s = c_x / s
                            c_y_s = c_y / s
                            grid_x = int(c_x_s)
                            grid_y = int(c_y_s)
                            # compute gt labels
                            tx = c_x_s - grid_x
                            ty = c_y_s - grid_y
                            tw = np.log(box_w / p_w)
                            th = np.log(box_h / p_h)
                            weight = 2.0 - (box_w / w) * (box_h / h)

                            if grid_y < gt_tensor[s_indx].shape[1] and grid_x < gt_tensor[s_indx].shape[2]:
                                gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 0] = 1.0
                                gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 1] = gt_class
                                gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 2:6] = np.array([tx, ty, tw, th])
                                gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 6] = weight
                                gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 7:] = np.array([xmin, ymin, xmax, ymax])
            
                        else:
                            # we ignore other anchor boxes even if their iou scores are higher than ignore thresh
                            # s_indx, ab_ind = index // num_scale, index % num_scale
                            s_indx = index // anchor_number
                            ab_ind = index - s_indx * anchor_number
                            s = strides[s_indx]
                            c_x_s = c_x / s
                            c_y_s = c_y / s
                            grid_x = int(c_x_s)
                            grid_y = int(c_y_s)
                            gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 0] = -1.0
                            gt_tensor[s_indx][batch_index, grid_y, grid_x, ab_ind, 6] = -1.0

    gt_tensor = [gt.reshape(batch_size, -1, 1+1+4+1+4) for gt in gt_tensor]
    gt_tensor = np.concatenate(gt_tensor, 1)
    
    return gt_tensor


def iou_score(bboxes_a, bboxes_b):
    """
        bbox_1 : [B*N, 4] = [x1, y1, x2, y2]
        bbox_2 : [B*N, 4] = [x1, y1, x2, y2]
    """
    tl = torch.max(bboxes_a[:, :2], bboxes_b[:, :2])
    br = torch.min(bboxes_a[:, 2:], bboxes_b[:, 2:])
    area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
    area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)

    en = (tl < br).type(tl.type()).prod(dim=1)
    area_i = torch.prod(br - tl, 1) * en  # * ((tl < br).all())
    return area_i / (area_a + area_b - area_i + 1e-14)


def loss(pred_conf, pred_cls, pred_txtytwth, pred_iou, label):
    # loss func
    conf_loss_function = MSEWithLogitsLoss(reduction='mean')
    cls_loss_function = nn.CrossEntropyLoss(reduction='none')
    txty_loss_function = nn.BCEWithLogitsLoss(reduction='none')
    twth_loss_function = nn.MSELoss(reduction='none')
    iou_loss_function = nn.SmoothL1Loss(reduction='none')

    # pred
    pred_conf = pred_conf[:, :, 0]
    pred_cls = pred_cls.permute(0, 2, 1)
    pred_txty = pred_txtytwth[:, :, :2]
    pred_twth = pred_txtytwth[:, :, 2:]
    pred_iou = pred_iou[:, :, 0]

    # gt    
    gt_conf = label[:, :, 0].float()
    gt_obj = label[:, :, 1].float()
    gt_cls = label[:, :, 2].long()
    gt_txty = label[:, :, 3:5].float()
    gt_twth = label[:, :, 5:7].float()
    gt_box_scale_weight = label[:, :, 7].float()
    gt_iou = (gt_box_scale_weight > 0.).float()
    gt_mask = (gt_box_scale_weight > 0.).float()

    batch_size = pred_conf.size(0)
    # objectness loss
    conf_loss = conf_loss_function(pred_conf, gt_conf, gt_obj)
    
    # class loss
    cls_loss = torch.sum(cls_loss_function(pred_cls, gt_cls) * gt_mask) / batch_size
    
    # box loss
    txty_loss = torch.sum(torch.sum(txty_loss_function(pred_txty, gt_txty), dim=-1) * gt_box_scale_weight * gt_mask) / batch_size
    twth_loss = torch.sum(torch.sum(twth_loss_function(pred_twth, gt_twth), dim=-1) * gt_box_scale_weight * gt_mask) / batch_size
    bbox_loss = txty_loss + twth_loss

    # iou loss
    iou_loss = torch.sum(iou_loss_function(pred_iou, gt_iou) * gt_mask) / batch_size

    return conf_loss, cls_loss, bbox_loss, iou_loss


if __name__ == "__main__":
    gt_box = np.array([[0.0, 0.0, 10, 10]])
    anchor_boxes = np.array([[0.0, 0.0, 10, 10], 
                             [0.0, 0.0, 4, 4], 
                             [0.0, 0.0, 8, 8], 
                             [0.0, 0.0, 16, 16]
                             ])
    iou = compute_iou(anchor_boxes, gt_box)
    print(iou)

train.py

from __future__ import division

import os
import random
import argparse
import time
import cv2
import numpy as np
from copy import deepcopy

import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

from data.voc0712 import VOCDetection
from data.coco2017 import COCODataset
from data import config
from data import BaseTransform, detection_collate

import tools

from utils import distributed_utils
from utils.com_paras_flops import FLOPs_and_Params
from utils.augmentations import SSDAugmentation, ColorAugmentation
from utils.cocoapi_evaluator import COCOAPIEvaluator
from utils.vocapi_evaluator import VOCAPIEvaluator
from utils.modules import ModelEMA


def parse_args():
    parser = argparse.ArgumentParser(description='YOLO Detection')
    # basic
    parser.add_argument('--cuda', action='store_true', default=False,
                        help='use cuda.')
    parser.add_argument('-bs', '--batch_size', default=16, type=int, 
                        help='Batch size for training')
    parser.add_argument('--lr', default=1e-3, type=float, 
                        help='initial learning rate')
    parser.add_argument('--wp_epoch', type=int, default=2,
                        help='The upper bound of warm-up')
    parser.add_argument('--start_epoch', type=int, default=0,
                        help='start epoch to train')
    parser.add_argument('-r', '--resume', default=None, type=str, 
                        help='keep training')
    parser.add_argument('--momentum', default=0.9, type=float, 
                        help='Momentum value for optim')
    parser.add_argument('--weight_decay', default=5e-4, type=float, 
                        help='Weight decay for SGD')
    parser.add_argument('--num_workers', default=8, type=int, 
                        help='Number of workers used in dataloading')
    parser.add_argument('--num_gpu', default=1, type=int, 
                        help='Number of GPUs to train')
    parser.add_argument('--eval_epoch', type=int,
                            default=10, help='interval between evaluations')
    parser.add_argument('--tfboard', action='store_true', default=False,
                        help='use tensorboard')
    parser.add_argument('--save_folder', default='weights/', type=str, 
                        help='Gamma update for SGD')
    parser.add_argument('--vis', action='store_true', default=False,
                        help='visualize target.')

    # model
    parser.add_argument('-v', '--version', default='yolov2_d19',
                        help='yolov2_d19, yolov2_r50, yolov2_slim, yolov3, yolov3_spp, yolov3_tiny')
    
    # dataset
    parser.add_argument('-root', '--data_root', default='./',
                        help='dataset root')
    parser.add_argument('-d', '--dataset', default='voc',
                        help='voc or coco')
    
    # train trick
    parser.add_argument('--no_warmup', action='store_true', default=False,
                        help='do not use warmup')
    parser.add_argument('-ms', '--multi_scale', action='store_true', default=False,
                        help='use multi-scale trick')      
    parser.add_argument('--mosaic', action='store_true', default=False,
                        help='use mosaic augmentation')
    parser.add_argument('--ema', action='store_true', default=False,
                        help='use ema training trick')

    # DDP train
    parser.add_argument('-dist', '--distributed', action='store_true', default=False,
                        help='distributed training')
    parser.add_argument('--dist_url', default='env://', 
                        help='url used to set up distributed training')
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--sybn', action='store_true', default=False, 
                        help='use sybn.')

    return parser.parse_args()


def train():
    args = parse_args()
    print("Setting Arguments.. : ", args)
    print("----------------------------------------------------------")

    # set distributed
    print('World size: {}'.format(distributed_utils.get_world_size()))
    if args.distributed:
        distributed_utils.init_distributed_mode(args)
        print("git:\n  {}\n".format(distributed_utils.get_sha()))

    # cuda
    if args.cuda:
        print('use cuda')
        # cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    model_name = args.version
    print('Model: ', model_name)

    # load model and config file
    if model_name == 'yolov2_d19':
        from models.yolov2_d19 import YOLOv2D19 as yolo_net
        cfg = config.yolov2_d19_cfg

    elif model_name == 'yolov2_r50':
        from models.yolov2_r50 import YOLOv2R50 as yolo_net
        cfg = config.yolov2_r50_cfg

    elif model_name == 'yolov3':
        from models.yolov3 import YOLOv3 as yolo_net
        cfg = config.yolov3_d53_cfg

    elif model_name == 'yolov3_spp':
        from models.yolov3_spp import YOLOv3Spp as yolo_net
        cfg = config.yolov3_d53_cfg

    elif model_name == 'yolov3_tiny':
        from models.yolov3_tiny import YOLOv3tiny as yolo_net
        cfg = config.yolov3_tiny_cfg
    else:
        print('Unknown model name...')
        exit(0)

    # path to save model
    path_to_save = os.path.join(args.save_folder, args.dataset, args.version)
    os.makedirs(path_to_save, exist_ok=True)
    
    # multi-scale
    if args.multi_scale:
        print('use the multi-scale trick ...')
        train_size = cfg['train_size']
        val_size = cfg['val_size']
    else:
        train_size = val_size = cfg['train_size']

    # Model ENA
    if args.ema:
        print('use EMA trick ...')

    # dataset and evaluator
    if args.dataset == 'voc':
        data_dir = os.path.join(args.data_root, 'VOCdevkit/')
        num_classes = 20
        dataset = VOCDetection(data_dir=data_dir, 
                                transform=SSDAugmentation(train_size))

        evaluator = VOCAPIEvaluator(data_root=data_dir,
                                    img_size=val_size,
                                    device=device,
                                    transform=BaseTransform(val_size))

    elif args.dataset == 'coco':
        data_dir = os.path.join(args.data_root, 'COCO')
        num_classes = 80
        dataset = COCODataset(
                    data_dir=data_dir,
                    transform=SSDAugmentation(train_size))

        evaluator = COCOAPIEvaluator(
                        data_dir=data_dir,
                        img_size=val_size,
                        device=device,
                        transform=BaseTransform(val_size))
    
    else:
        print('unknow dataset !! Only support voc and coco !!')
        exit(0)
    
    print('Training model on:', dataset.name)
    print('The dataset size:', len(dataset))
    print("----------------------------------------------------------")

    # build model
    anchor_size = cfg['anchor_size_voc'] if args.dataset == 'voc' else cfg['anchor_size_coco']
    net = yolo_net(device=device, 
                   input_size=train_size, 
                   num_classes=num_classes, 
                   trainable=True, 
                   anchor_size=anchor_size)
    model = net
    model = model.to(device).train()

    # SyncBatchNorm
    if args.sybn and args.distributed:
        print('use SyncBatchNorm ...')
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    # DDP
    model_without_ddp = model
    if args.distributed:
        model = DDP(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    # compute FLOPs and Params
    if distributed_utils.is_main_process:
        model_copy = deepcopy(model_without_ddp)
        model_copy.trainable = False
        model_copy.eval()
        FLOPs_and_Params(model=model_copy, 
                         size=train_size, 
                         device=device)
        model_copy.trainable = True
        model_copy.train()
    if args.distributed:
        # wait for all processes to synchronize
        dist.barrier()

    # dataloader
    batch_size = args.batch_size * distributed_utils.get_world_size()
    if args.distributed and args.num_gpu > 1:
        dataloader = torch.utils.data.DataLoader(
                        dataset=dataset, 
                        batch_size=batch_size, 
                        collate_fn=detection_collate,
                        num_workers=args.num_workers,
                        pin_memory=True,
                        drop_last=True,
                        sampler=torch.utils.data.distributed.DistributedSampler(dataset)
                        )

    else:
        # dataloader
        dataloader = torch.utils.data.DataLoader(
                        dataset=dataset, 
                        shuffle=True,
                        batch_size=batch_size, 
                        collate_fn=detection_collate,
                        num_workers=args.num_workers,
                        pin_memory=True,
                        drop_last=True
                        )

    # keep training
    if args.resume is not None:
        print('keep training model: %s' % (args.resume))
        model.load_state_dict(torch.load(args.resume, map_location=device))

    # EMA
    ema = ModelEMA(model) if args.ema else None

    # use tfboard
    if args.tfboard:
        print('use tensorboard')
        from torch.utils.tensorboard import SummaryWriter
        c_time = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
        log_path = os.path.join('log/', args.dataset, c_time)
        os.makedirs(log_path, exist_ok=True)

        tblogger = SummaryWriter(log_path)
    
    # optimizer setup
    base_lr = (args.lr / 16) * batch_size
    tmp_lr = base_lr
    optimizer = optim.SGD(model.parameters(), 
                            lr=base_lr, 
                            momentum=args.momentum,
                            weight_decay=args.weight_decay
                            )

    max_epoch = cfg['max_epoch']
    epoch_size = len(dataloader)
    best_map = -1.
    warmup = not args.no_warmup

    t0 = time.time()
    # start training loop
    for epoch in range(args.start_epoch, max_epoch):
        if args.distributed:
            dataloader.sampler.set_epoch(epoch)        

        # use step lr
        if epoch in cfg['lr_epoch']:
            tmp_lr = tmp_lr * 0.1
            set_lr(optimizer, tmp_lr)
    
        for iter_i, (images, targets) in enumerate(dataloader):
            # WarmUp strategy for learning rate
            ni = iter_i + epoch * epoch_size
            # warmup
            if epoch < args.wp_epoch and warmup:
                nw = args.wp_epoch * epoch_size
                tmp_lr = base_lr * pow(ni / nw, 4)
                set_lr(optimizer, tmp_lr)

            elif epoch == args.wp_epoch and iter_i == 0 and warmup:
                # warmup is over
                warmup = False
                tmp_lr = base_lr
                set_lr(optimizer, tmp_lr)

            # multi-scale trick
            if iter_i % 10 == 0 and iter_i > 0 and args.multi_scale:
                # randomly choose a new size
                r = cfg['random_size_range']
                train_size = random.randint(r[0], r[1]) * 32
                model.set_grid(train_size)
            if args.multi_scale:
                # interpolate
                images = torch.nn.functional.interpolate(images, size=train_size, mode='bilinear', align_corners=False)
            
            targets = [label.tolist() for label in targets]
            # visualize labels
            if args.vis:
                vis_data(images, targets, train_size)
                continue

            # label assignment
            if model_name in ['yolov2_d19', 'yolov2_r50']:
                targets = tools.gt_creator(input_size=train_size, 
                                           stride=net.stride, 
                                           label_lists=targets, 
                                           anchor_size=anchor_size
                                           )
            else:
                targets = tools.multi_gt_creator(input_size=train_size, 
                                                 strides=net.stride, 
                                                 label_lists=targets, 
                                                 anchor_size=anchor_size
                                                 )

            # to device
            images = images.float().to(device)
            targets = torch.tensor(targets).float().to(device)

            # forward
            conf_loss, cls_loss, box_loss, iou_loss = model(images, target=targets)

            # compute loss
            total_loss = conf_loss + cls_loss + box_loss + iou_loss

            loss_dict = dict(conf_loss=conf_loss,
                             cls_loss=cls_loss,
                             box_loss=box_loss,
                             iou_loss=iou_loss,
                             total_loss=total_loss
                            )

            loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)

            # check NAN for loss
            if torch.isnan(total_loss):
                print('loss is nan !!')
                continue

            # backprop
            total_loss.backward()        
            optimizer.step()
            optimizer.zero_grad()

            # ema
            if args.ema:
                ema.update(model)

            # display
            if distributed_utils.is_main_process() and iter_i % 10 == 0:
                if args.tfboard:
                    # viz loss
                    tblogger.add_scalar('conf loss',  loss_dict_reduced['conf_loss'].item(),  iter_i + epoch * epoch_size)
                    tblogger.add_scalar('cls loss',  loss_dict_reduced['cls_loss'].item(),  iter_i + epoch * epoch_size)
                    tblogger.add_scalar('box loss',  loss_dict_reduced['box_loss'].item(),  iter_i + epoch * epoch_size)
                    tblogger.add_scalar('iou loss',  loss_dict_reduced['iou_loss'].item(),  iter_i + epoch * epoch_size)
                
                t1 = time.time()
                cur_lr = [param_group['lr']  for param_group in optimizer.param_groups]
                # basic infor
                log =  '[Epoch: {}/{}]'.format(epoch+1, max_epoch)
                log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
                log += '[lr: {:.6f}]'.format(cur_lr[0])
                # loss infor
                for k in loss_dict_reduced.keys():
                    log += '[{}: {:.2f}]'.format(k, loss_dict[k])

                # other infor
                log += '[time: {:.2f}]'.format(t1 - t0)
                log += '[size: {}]'.format(train_size)

                # print log infor
                print(log, flush=True)
                
                t0 = time.time()

        if distributed_utils.is_main_process():
            # evaluation
            if (epoch % args.eval_epoch) == 0 or (epoch == max_epoch - 1):
                if args.ema:
                    model_eval = ema.ema
                else:
                    model_eval = model_without_ddp

                # check evaluator
                if evaluator is None:
                    print('No evaluator ... save model and go on training.')
                    print('Saving state, epoch: {}'.format(epoch + 1))
                    weight_name = '{}_epoch_{}.pth'.format(args.version, epoch + 1)
                    checkpoint_path = os.path.join(path_to_save, weight_name)
                    torch.save(model_eval.state_dict(), checkpoint_path)                      
            
                else:
                    print('eval ...')
                    # set eval mode
                    model_eval.trainable = False
                    model_eval.set_grid(val_size)
                    model_eval.eval()

                    # evaluate
                    evaluator.evaluate(model_eval)

                    cur_map = evaluator.map
                    if cur_map > best_map:
                        # update best-map
                        best_map = cur_map
                        # save model
                        print('Saving state, epoch:', epoch + 1)
                        weight_name = '{}_epoch_{}_{:.2f}.pth'.format(args.version, epoch + 1, best_map*100)
                        checkpoint_path = os.path.join(path_to_save, weight_name)
                        torch.save(model_eval.state_dict(), checkpoint_path)  

                    if args.tfboard:
                        if args.dataset == 'voc':
                            tblogger.add_scalar('07test/mAP', evaluator.map, epoch)
                        elif args.dataset == 'coco':
                            tblogger.add_scalar('val/AP50_95', evaluator.ap50_95, epoch)
                            tblogger.add_scalar('val/AP50', evaluator.ap50, epoch)

                    # set train mode.
                    model_eval.trainable = True
                    model_eval.set_grid(train_size)
                    model_eval.train()

                # wait for all processes to synchronize
                if args.distributed:
                    dist.barrier()

    if args.tfboard:
        tblogger.close()


def set_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def vis_data(images, targets, input_size):
    # vis data
    mean=(0.406, 0.456, 0.485)
    std=(0.225, 0.224, 0.229)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)

    img = images[0].permute(1, 2, 0).cpu().numpy()[:, :, ::-1]
    img = ((img * std + mean)*255).astype(np.uint8)
    img = img.copy()

    for box in targets[0]:
        xmin, ymin, xmax, ymax = box[:-1]
        # print(xmin, ymin, xmax, ymax)
        xmin *= input_size
        ymin *= input_size
        xmax *= input_size
        ymax *= input_size
        cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 0, 255), 2)

    cv2.imshow('img', img)
    cv2.waitKey(0)


if __name__ == '__main__':
    train()

 model.py

import numpy as np
import torch
import torch.nn as nn
from utils.modules import Conv, reorg_layer

from backbone import build_backbone
import tools


class YOLOv2D19(nn.Module):
    def __init__(self, device, input_size=None, num_classes=20, trainable=False, conf_thresh=0.001, nms_thresh=0.5, anchor_size=None):
        super(YOLOv2D19, self).__init__()
        self.device = device
        self.input_size = input_size
        self.num_classes = num_classes
        self.trainable = trainable
        self.conf_thresh = conf_thresh
        self.nms_thresh = nms_thresh
        self.anchor_size = torch.tensor(anchor_size)
        self.num_anchors = len(anchor_size)
        self.stride = 32
        self.grid_cell, self.all_anchor_wh = self.create_grid(input_size)

        # backbone darknet-19
        self.backbone = build_backbone(model_name='darknet19', pretrained=trainable)
        
        # detection head
        self.convsets_1 = nn.Sequential(
            Conv(1024, 1024, k=3, p=1),
            Conv(1024, 1024, k=3, p=1)
        )

        self.route_layer = Conv(512, 64, k=1)
        self.reorg = reorg_layer(stride=2)

        self.convsets_2 = Conv(1280, 1024, k=3, p=1)
        
        # prediction layer
        self.pred = nn.Conv2d(1024, self.num_anchors*(1 + 4 + self.num_classes), kernel_size=1)


    def create_grid(self, input_size):
        w, h = input_size, input_size
        # generate grid cells
        ws, hs = w // self.stride, h // self.stride
        grid_y, grid_x = torch.meshgrid([torch.arange(hs), torch.arange(ws)])
        grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()
        grid_xy = grid_xy.view(1, hs*ws, 1, 2).to(self.device)

        # generate anchor_wh tensor
        anchor_wh = self.anchor_size.repeat(hs*ws, 1, 1).unsqueeze(0).to(self.device)

        return grid_xy, anchor_wh


    def set_grid(self, input_size):
        self.input_size = input_size
        self.grid_cell, self.all_anchor_wh = self.create_grid(input_size)


    def decode_xywh(self, txtytwth_pred):
        """
            Input: \n
                txtytwth_pred : [B, H*W, anchor_n, 4] \n
            Output: \n
                xywh_pred : [B, H*W*anchor_n, 4] \n
        """
        B, HW, ab_n, _ = txtytwth_pred.size()
        # b_x = sigmoid(tx) + gride_x
        # b_y = sigmoid(ty) + gride_y
        xy_pred = torch.sigmoid(txtytwth_pred[..., :2]) + self.grid_cell
        # b_w = anchor_w * exp(tw)
        # b_h = anchor_h * exp(th)
        wh_pred = torch.exp(txtytwth_pred[..., 2:]) * self.all_anchor_wh
        # [B, H*W, anchor_n, 4] -> [B, H*W*anchor_n, 4]
        xywh_pred = torch.cat([xy_pred, wh_pred], -1).view(B, -1, 4) * self.stride

        return xywh_pred
    

    def decode_boxes(self, txtytwth_pred):
        """
            Input: \n
                txtytwth_pred : [B, H*W, anchor_n, 4] \n
            Output: \n
                x1y1x2y2_pred : [B, H*W*anchor_n, 4] \n
        """
        # txtytwth -> cxcywh
        xywh_pred = self.decode_xywh(txtytwth_pred)

        # cxcywh -> x1y1x2y2
        x1y1x2y2_pred = torch.zeros_like(xywh_pred)
        x1y1_pred = xywh_pred[..., :2] - xywh_pred[..., 2:] * 0.5
        x2y2_pred = xywh_pred[..., :2] + xywh_pred[..., 2:] * 0.5
        x1y1x2y2_pred = torch.cat([x1y1_pred, x2y2_pred], dim=-1)
        
        return x1y1x2y2_pred


    def nms(self, dets, scores):
        """"Pure Python NMS baseline."""
        x1 = dets[:, 0]  #xmin
        y1 = dets[:, 1]  #ymin
        x2 = dets[:, 2]  #xmax
        y2 = dets[:, 3]  #ymax

        areas = (x2 - x1) * (y2 - y1)
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])

            w = np.maximum(1e-10, xx2 - xx1)
            h = np.maximum(1e-10, yy2 - yy1)
            inter = w * h

            # Cross Area / (bbox + particular area - Cross Area)
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            #reserve all the boundingbox whose ovr less than thresh
            inds = np.where(ovr <= self.nms_thresh)[0]
            order = order[inds + 1]

        return keep


    def postprocess(self, bboxes, scores):
        """
        bboxes: (HxW, 4), bsize = 1
        scores: (HxW, num_classes), bsize = 1
        """

        cls_inds = np.argmax(scores, axis=1)
        scores = scores[(np.arange(scores.shape[0]), cls_inds)]
        
        # threshold
        keep = np.where(scores >= self.conf_thresh)
        bboxes = bboxes[keep]
        scores = scores[keep]
        cls_inds = cls_inds[keep]

        # NMS
        keep = np.zeros(len(bboxes), dtype=np.int)
        for i in range(self.num_classes):
            inds = np.where(cls_inds == i)[0]
            if len(inds) == 0:
                continue
            c_bboxes = bboxes[inds]
            c_scores = scores[inds]
            c_keep = self.nms(c_bboxes, c_scores)
            keep[inds[c_keep]] = 1

        keep = np.where(keep > 0)
        bboxes = bboxes[keep]
        scores = scores[keep]
        cls_inds = cls_inds[keep]

        return bboxes, scores, cls_inds


    @ torch.no_grad()
    def inference(self, x):
        # backbone
        feats = self.backbone(x)

        # reorg layer
        p5 = self.convsets_1(feats['layer3'])
        p4 = self.reorg(self.route_layer(feats['layer2']))
        p5 = torch.cat([p4, p5], dim=1)

        # head
        p5 = self.convsets_2(p5)

        # pred
        pred = self.pred(p5)

        B, abC, H, W = pred.size()

        # [B, num_anchor * C, H, W] -> [B, H, W, num_anchor * C] -> [B, H*W, num_anchor*C]
        pred = pred.permute(0, 2, 3, 1).contiguous().view(B, H*W, abC)

        # [B, H*W*num_anchor, 1]
        conf_pred = pred[:, :, :1 * self.num_anchors].contiguous().view(B, H*W*self.num_anchors, 1)
        # [B, H*W, num_anchor, num_cls]
        cls_pred = pred[:, :, 1 * self.num_anchors : (1 + self.num_classes) * self.num_anchors].contiguous().view(B, H*W*self.num_anchors, self.num_classes)
        # [B, H*W, num_anchor, 4]
        reg_pred = pred[:, :, (1 + self.num_classes) * self.num_anchors:].contiguous()
        # decode box
        reg_pred = reg_pred.view(B, H*W, self.num_anchors, 4)
        box_pred = self.decode_boxes(reg_pred)

        # batch size = 1
        conf_pred = conf_pred[0]
        cls_pred = cls_pred[0]
        box_pred = box_pred[0]

        # score
        scores = torch.sigmoid(conf_pred) * torch.softmax(cls_pred, dim=-1)

        # normalize bbox
        bboxes = torch.clamp(box_pred / self.input_size, 0., 1.)

        # to cpu
        scores = scores.to('cpu').numpy()
        bboxes = bboxes.to('cpu').numpy()

        # post-process
        bboxes, scores, cls_inds = self.postprocess(bboxes, scores)

        return bboxes, scores, cls_inds


    def forward(self, x, target=None):
        if not self.trainable:
            return self.inference(x)
        else:
            # backbone
            feats = self.backbone(x)

            # reorg layer
            p5 = self.convsets_1(feats['layer3'])
            p4 = self.reorg(self.route_layer(feats['layer2']))
            p5 = torch.cat([p4, p5], dim=1)

            # head
            p5 = self.convsets_2(p5)

            # pred
            pred = self.pred(p5)

            B, abC, H, W = pred.size()

            # [B, num_anchor * C, H, W] -> [B, H, W, num_anchor * C] -> [B, H*W, num_anchor*C]
            pred = pred.permute(0, 2, 3, 1).contiguous().view(B, H*W, abC)

            # [B, H*W*num_anchor, 1]
            conf_pred = pred[:, :, :1 * self.num_anchors].contiguous().view(B, H*W*self.num_anchors, 1)
            # [B, H*W, num_anchor, num_cls]
            cls_pred = pred[:, :, 1 * self.num_anchors : (1 + self.num_classes) * self.num_anchors].contiguous().view(B, H*W*self.num_anchors, self.num_classes)
            # [B, H*W, num_anchor, 4]
            reg_pred = pred[:, :, (1 + self.num_classes) * self.num_anchors:].contiguous()
            reg_pred = reg_pred.view(B, H*W, self.num_anchors, 4)

            # decode bbox
            x1y1x2y2_pred = (self.decode_boxes(reg_pred) / self.input_size).view(-1, 4)
            x1y1x2y2_gt = target[:, :, 7:].view(-1, 4)
            reg_pred = reg_pred.view(B, H*W*self.num_anchors, 4)

            # set conf target
            iou_pred = tools.iou_score(x1y1x2y2_pred, x1y1x2y2_gt).view(B, -1, 1)
            gt_conf = iou_pred.clone().detach()

            # [obj, cls, txtytwth, x1y1x2y2] -> [conf, obj, cls, txtytwth]
            target = torch.cat([gt_conf, target[:, :, :7]], dim=2)

            # loss
            (
                conf_loss,
                cls_loss,
                bbox_loss,
                iou_loss
            ) = tools.loss(pred_conf=conf_pred,
                           pred_cls=cls_pred,
                           pred_txtytwth=reg_pred,
                           pred_iou=iou_pred,
                           label=target
                           )

            return conf_loss, cls_loss, bbox_loss, iou_loss   

if __name__=='__main__':
    import cv2
    from utils.vocapi_evaluator import VOCAPIEvaluator
    from utils.augmentations import SSDAugmentation
    from data import BaseTransform
    def vis_data(images, targets, input_size):
        # 可视化数据
        mean = (0.406, 0.456, 0.485)
        std = (0.225, 0.224, 0.229)
        mean = np.array(mean, dtype=np.float32)
        std = np.array(std, dtype=np.float32)

        img = images.permute(1, 2, 0).cpu().numpy()[:, :, ::-1]
        img = ((img * std + mean) * 255).astype(np.uint8)
        img = img.copy()

        for box in targets:
            xmin, ymin, xmax, ymax = box[:-1]
            # print(xmin, ymin, xmax, ymax)
            xmin *= input_size
            ymin *= input_size
            xmax *= input_size
            ymax *= input_size
            cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 0, 255), 2)

        cv2.imshow('img', img)
        cv2.waitKey(0)
    from data.voc0712 import VOCDetection

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    dataset = VOCDetection(data_dir='../VOCdevkit/',transform=SSDAugmentation(416))
    evaluator = VOCAPIEvaluator(data_root='../VOCdevkit/',
                                img_size=416,
                                device=device,
                                transform=BaseTransform(416))
    image,label=dataset[0]

    anchor_size=[[1.19, 1.98], [2.79, 4.59], [4.53, 8.92], [8.06, 5.29], [10.32, 10.65]]
    model = YOLOv2D19(device=device,
                   input_size=640,
                   num_classes=20,
                   anchor_size=anchor_size)
    print(model)
    optimizer = torch.optim.SGD(model.parameters(),
                            lr=0.001,
                            momentum=0.99,
                            weight_decay=0.01
                            )
    for epoch in range(10):
        for image,labels in dataset:
            labels=[label.tolist() for label in labels]
            vis_data(image, labels, 416)

            # 标签对齐
            targets = tools.gt_creator(input_size=640,
                                       stride=model.stride,
                                       label_lists=labels,
                                       anchor_size=anchor_size
                                       )

            conf_loss, cls_loss, box_loss, iou_loss = model(image, target=targets)
            total_loss = conf_loss + cls_loss + box_loss + iou_loss

            total_loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            print('loss',total_loss.item)

            # 模型评估
            best_map = -1000
            model_eval = model
            # set eval mode
            model_eval.trainable = False
            model_eval.set_grid(416)
            model_eval.eval()

            # evaluate
            evaluator.evaluate(model_eval)

            cur_map = evaluator.map
            print('map', cur_map)
            if cur_map > best_map:
                # update best-map
                best_map = cur_map




参考文献:

yolov2-yolov3-PyTorch-master.zip资源-CSDN文库

【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记)_路人贾'ω'的博客-CSDN博客

YOLOV2详解_白鲸先神的博客-CSDN博客

tztztztztz/yolov2.pytorch: YOLOv2 algorithm reimplementation with pytorch (github.com)

longcw/yolo2-pytorch: YOLOv2 in PyTorch (github.com)

yjh0410/yolov2-yolov3_PyTorch (github.com)

YOLOV3

参考文献:

YOLOv3详解_yolov3是什么_wq_0708的博客-CSDN博客

睿智的目标检测26——Pytorch搭建yolo3目标检测平台_Bubbliiiing的博客-CSDN博客

yolov3模型训练——使用yolov3训练自己的模型_萝北村的枫子的博客-CSDN博客

YOLOv3原理详解(绝对通俗易懂)2021-07-01_YD-阿三的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/676671.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IOS工程使用OpenCV库完整步聚

1.打开Xcode15并点击Create New Project 2.引用编译好的opencv2.framework框架 选择添加其它库 选择Add Files ... 选择OpenCV源码编译生成输入的IOS平台的opencv2.framework库 opencv库要放在工程目录下,不然会找不到 成功添加opencv库的引用,现在可在工程中使用openc…

《网络安全0-100》多级安全

1.多级安全 建立安全模型的方法&#xff1a; 信息流模型 访问控制模型 1.1 BLP模型 1.1模型构建 不能下写、不能上读&#xff0c;保持数据的机密性。 例子&#xff1a;军事、商务、外交的机密性强场景。下级可以给上级进行汇报&#xff0c;但下级不能读取上级的作战计划…

【C++学习】C++入门 | 缺省参数 | 函数重载 | 探究C++为什么能够支持函数重载

写在前面&#xff1a; 上一篇文章我介绍了C该怎么学&#xff0c;什么是命名空间&#xff0c;以及C的输入输出&#xff0c; 这里是传送门&#xff1a;http://t.csdn.cn/Oi6V8 这篇文章我们继续来学习C的基础知识。 目录 写在前面&#xff1a; 1. 缺省参数 2. 函数重载 3…

浅谈【AI、算力赋能】“大算力”时代的到来

&#x1f53b;一、【&#x1f4a3; 话题引入&#xff1a;“AI算力最强龙头”&#xff0c;你怎么看&#xff1f;】 &#x1f648; AI人工智能是否可以取代人类&#xff1f;    &#x1f648; 应不应该限制人工智能的发展&#xff1f;      &#x1f648; AI研究及龙头行业迎…

011-从零搭建微服务-接口文档(一)

写在最前 如果这个项目让你有所收获&#xff0c;记得 Star 关注哦&#xff0c;这对我是非常不错的鼓励与支持。 源码地址&#xff08;后端&#xff09;&#xff1a;https://gitee.com/csps/mingyue 源码地址&#xff08;前端&#xff09;&#xff1a;https://gitee.com/csps…

【P2】VMware 下 docker 快速搭建漏洞靶场 DVWA

文章目录 一、docker 快速搭建漏洞靶场指南二、执行步骤三、为 kali 配置 docker 加速器四、访问 dockerhub 的 dvwa 镜像五、漏洞利用初探&#xff0c;修改 requests 请求参数远程执行命令六、vulhub 搭建漏洞复现 包括什么是 docker、docker 和虚拟机的的区别、docker 搭建 D…

阿里云服务器的虚拟化技术和资源隔离如何?是否支持私有云部署?

阿里云服务器的虚拟化技术和资源隔离如何&#xff1f;是否支持私有云部署&#xff1f;   一、阿里云服务器的虚拟化技术   阿里云服务器采用了业界领先的虚拟化技术&#xff0c;为用户提供了强大而灵活的计算性能。这主要体现在以下几个方面&#xff1a;   1.1 弹性伸缩 …

强化学习从基础到进阶-案例与实践[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战

【强化学习原理项目专栏】必看系列&#xff1a;单智能体、多智能体算法原理项目实战、相关技巧&#xff08;调参、画图等、趣味项目实现、学术应用项目实现 专栏详细介绍&#xff1a;【强化学习原理项目专栏】必看系列&#xff1a;单智能体、多智能体算法原理项目实战、相关技巧…

【CMake 入门与进阶(13)】 CMake如何设置交叉编译(附代码)

cmake如果不设置交叉编译&#xff0c;默认情况下&#xff0c;会使用主机系统&#xff08;运行 cmake 命令的操作系统&#xff09;的编译器来编译我们的工程&#xff0c;那么得到的可执行文件或库文件只能在 Ubuntu 系统运行&#xff0c;如果我们需要使得编译得到的可执行文件或…

javaWeb医药管理系统

一、引言 二、项目截图 2.1 首页设计 2.2一级页面设计 2.2-1注册界面 2.2-2管理员登录界面 2.3二级页面设计 药品信息模块 药品销售 用户信息 三、项目基本要求 1.主要功能 医药管理系统的主要功能为&#xff1a;、药品更新、药品查询 药品更新功能分为三部分&…

前端Vue自定义支付密码输入键盘Keyboard和支付设置输入框Input

前端Vue自定义支付密码输入键盘Keyboard和支付设置输入框Input&#xff0c; 下载完整代码请访问uni-app插件市场地址&#xff1a;https://ext.dcloud.net.cn/plugin?id13166 效果图如下&#xff1a; # cc-defineKeyboard #### 使用方法 使用方法 <!-- ref:唯一ref pas…

VMware vCenter Server 7.0 Update 3m 发布下载(重要安全更新)

VMware vCenter Server 7.0 Update 3m 发布下载&#xff08;重要安全更新&#xff09; 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-vcenter-7-u3/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org VMware vCente…

canvas详解07-裁剪

裁切路径 裁切路径和普通的 canvas 图形差不多,不同的是它的作用是遮罩,用来隐藏不需要的部分。如右图所示。红边五角星就是裁切路径,所有在路径以外的部分都不会在 canvas 上绘制出来。 如果和上面介绍的 globalCompositeOperation 属性作一比较,它可以实现与 source-in …

基于cycle of curves的Nova证明系统(2)

主要见斯坦福大学Wilson Nguyen、Dan Boneh和微软研究中心Srinath Setty 2023年论文《Revisiting the Nova Proof System on a Cycle of Curves》。 前序博客见&#xff1a; 基于cycle of curves的Nova证明系统&#xff08;1&#xff09; 5. IVC Proof进一步压缩 本文提出了…

【Rust】1、实战:语法和数据结构、生命周期-所有权-借用、自制 CPU、内存、文件

文章目录 零、Rust 好用的资源一、概述1.1 安全性1.1.1 垂悬指针1.1.2 数据竞争1.1.3 迭代器失效 1.2 性能1.3 vscode 設置 二、基础语法2.1 循环2.2 引用2.3 生命周期2.4 泛型2.5 实战grep项目2.6 数组2.6.1 数组和切片2.6.2 动态数组2.6.3 初始化 2.7 包含第三方库2.8 命令行…

深入理解深度学习——BERT(Bidirectional Encoder Representations from Transformers):输入表示

分类目录&#xff1a;《深入理解深度学习》总目录 相关文章&#xff1a; BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;&#xff1a;基础知识 BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09…

【Linux】MySQL 高级 SQL 语句 (一)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 MySQL 高级 SQL 语句 MySQL 高级(进阶) SQL 语句SELECT&#xff1a;显示表格中一个或数个字段的所有数据记录DISTINCT&#xff1a;不显示重复的数据记录WHERE&#xff1a;有条…

CVE-2022-25411

文章目录 CVE-2022-25411一、漏洞介绍二、渗透步骤1、打开网站2、目录扫描3、访问后台4、添加文件后缀5、上传shell6、查看flag值 CVE-2022-25411 一、漏洞介绍 Maxsite CMS文件上传漏洞。 MaxSite CMS是俄国MaxSite CMS开源项目的一款网站内容管理系统。马克斯程序(MaxCMS)以…

【Syncfusion系列】SfDataGrid 轻松实现分页和Excel导出

前言 Syncfusion 封装了一个控件 SfDataGrid &#xff0c;通过SfDataGrid我们只需要 极少量 代码就能分页和Excel导出。 效果展示 包安装 安装下面三个包 将表格绑定到数据库 这次我使用的是一个本地的小型数据库&#xff1a;sqlit 我通过 sqlit-net 这个包 进行访问 sqlit…

Dify 基于 ChatGPT 构建本地知识库问答应用

一、Dify 自从 ChatGPT 横空出世之后&#xff0c;其极高的语言理解和交互能力不仅让人惊呼&#xff0c;ChatGPT不仅能够处理事实性问题&#xff0c;还能理解和生成情感色彩更浓厚的对话内容&#xff0c;能够识别用户的情感倾向&#xff0c;并据此作出相应的回应。这么好的东西…