小波变换之pycwt (python)

news2024/11/18 1:36:15

小波变换之pycwt

PyCWT是用于连续小波谱分析的Python模块,它包括小波变换和FFT算法统计分析的常规操作的集合。此外,该模块还包括交叉小波变换、小波相干性测试和样例脚本。

该模块需要NumPy和SciPy,matplotlib模块。

pip安装:

pip install pycwt

conda安装:

conda install -c conda-forge/label/gcc7 pycwt

示例

基于小波的时间谱分析 Time-series spectral analysis using wavelets

在本例中,我们将采用Torrence和Compo(1998)[1]提出的方法,使用1871年至1996年的NINO3海面温度异常数据集。

[1] Torrence, C. and Compo, G. P… A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, American Meteorological Society, 1998, 79, 61-78. DOI.

我们从导入相关库开始。请确保PyCWT已正确安装在您的系统中。

from __future__ import division
import numpy
from matplotlib import pyplot

import pycwt as wavelet
from pycwt.helpers import find

注意:
from _ _ future _ _ import division必须在文件导包的第一行,即:

# -*- coding: utf-8 -*-

from __future__ import division

否则会出现如下错误:

在这里插入图片描述

然后,我们加载数据集并定义一些与数据相关的参数。在这种情况下,数据文件的前19行包含我们忽略的元数据,因为我们需手动设置它们(即标题,单位)。

url = 'http://paos.colorado.edu/research/wavelets/wave_idl/nino3sst.txt'
dat = numpy.genfromtxt(url, skip_header=19)
title = 'NINO3 Sea Surface Temperature'
label = 'NINO3 SST'
units = 'degC'
t0 = 1871.0
dt = 0.25  # In years

我们还创建了一个以年为单位的时间数组:

N = dat.size
t = numpy.arange(0, N) * dt + t0

接下来,通过标准差对输入数据进行去趋势化和标准化。有时不需要去趋势化,简单地去掉平均值就足够了。但是,如果您的数据集具有明确的趋势,例如上述网站上提供的莫纳罗亚 CO2 数据集,则强烈建议去趋势。在这里,我们拟合一个一次多项式函数,然后从原始数据中减去它。

p = numpy.polyfit(t - t0, dat, 1)
dat_notrend = dat - numpy.polyval(p, t - t0)
std = dat_notrend.std()  # Standard deviation
var = std ** 2  # Variance
dat_norm = dat_notrend / std  # Normalized dataset

原始数据dat长这样:
在这里插入图片描述

去趋势后dat_notrend:黄色线
在这里插入图片描述

标准化后dat_norm:
在这里插入图片描述
肉眼好像没看出啥太大区别。。。

下一步是定义小波分析的一些参数。我们选择了morlet母小波,在本例中是ω0=6的Morlet小波。

mother = wavelet.Morlet(6)
s0 = 2 * dt  # Starting scale, in this case 2 * 0.25 years = 6 months
dj = 1 / 12  # Twelve sub-octaves per octaves
J = 7 / dj  # Seven powers of two with dj sub-octaves
alpha, _, _ = wavelet.ar1(dat)  # Lag-1 autocorrelation for red noise

下面的例程使用上面定义的参数执行小波变换和逆小波变换。由于我们对输入时间序列进行了归一化,我们将逆变换乘以标准差。

wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(dat_norm, dt, dj, s0, J, mother)
iwave = wavelet.icwt(wave, scales, dt, dj, mother) * std

我们计算了归一化小波和傅立叶功率谱,以及每个小波尺度的傅立叶等效周期。

power = (numpy.abs(wave)) ** 2
fft_power = numpy.abs(fft) ** 2
period = 1 / freqs

我们也可以根据Liu等人(2007)提出的建议对功率谱进行校正。[2]

[2] Liu, Y., Liang, X. S. and Weisberg, R. H. Rectification of the bias in the wavelet power spectrum. Journal of Atmospheric and Oceanic Technology, 2007, 24, 2093-2102. DOI.

power /= scales[:, None]

我们可以在这里停下来,画出结果。当比值power / sig95 > 1时,功率是显著的。

在这里插入图片描述

画出power:
在这里插入图片描述

signif, fft_theor = wavelet.significance(1.0, dt, scales, 0, alpha,
                                         significance_level=0.95,
                                         wavelet=mother)
sig951 = numpy.ones([1, N]) * signif[:, None]
sig95 = power / sig951

在这里插入图片描述

画出sig95看看:
在这里插入图片描述

sig951的85个尺度上,每个尺度的值都是一样的。
在这里插入图片描述

画出来如下:
在这里插入图片描述

然后计算全局小波谱并确定其显著性水平。

glbl_power = power.mean(axis=1)
dof = N - scales  # Correction for padding at edges
glbl_signif, tmp = wavelet.significance(var, dt, scales, 1, alpha,
                                        significance_level=0.95, dof=dof,
                                        wavelet=mother)

并计算了2 ~ 8年的量表平均值及其显著性水平。

sel = find((period >= 2) & (period < 8))
Cdelta = mother.cdelta
scale_avg = (scales * numpy.ones((N, 1))).transpose()
scale_avg = power / scale_avg  # As in Torrence and Compo (1998) equation 24
scale_avg = var * dj * dt / Cdelta * scale_avg[sel, :].sum(axis=0)
scale_avg_signif, tmp = wavelet.significance(var, dt, scales, 2, alpha,
                                             significance_level=0.95,
                                             dof=[scales[sel[0]],
                                                  scales[sel[-1]]],
                                             wavelet=mother)

最后,我们将结果绘制成包含(i)原始序列异常和逆小波变换的四个不同子图;(ii)小波功率谱(iii)全局小波和傅立叶谱;(iv)范围平均小波谱。在所有子图中,显著性水平要么包含为虚线,要么包含为填充等高线。

# Prepare the figure
pyplot.close('all')
pyplot.ioff()
figprops = dict(figsize=(11, 8), dpi=72)
fig = pyplot.figure(**figprops)

# First sub-plot, the original time series anomaly and inverse wavelet
# transform.
ax = pyplot.axes([0.1, 0.75, 0.65, 0.2])
ax.plot(t, iwave, '-', linewidth=1, color=[0.5, 0.5, 0.5])
ax.plot(t, dat, 'k', linewidth=1.5)
ax.set_title('a) {}'.format(title))
ax.set_ylabel(r'{} [{}]'.format(label, units))

# Second sub-plot, the normalized wavelet power spectrum and significance
# level contour lines and cone of influece hatched area. Note that period
# scale is logarithmic.
bx = pyplot.axes([0.1, 0.37, 0.65, 0.28], sharex=ax)
levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
bx.contourf(t, numpy.log2(period), numpy.log2(power), numpy.log2(levels),
            extend='both', cmap=pyplot.cm.viridis)
extent = [t.min(), t.max(), 0, max(period)]
bx.contour(t, numpy.log2(period), sig95, [-99, 1], colors='k', linewidths=2,
           extent=extent)
bx.fill(numpy.concatenate([t, t[-1:] + dt, t[-1:] + dt,
                           t[:1] - dt, t[:1] - dt]),
        numpy.concatenate([numpy.log2(coi), [1e-9], numpy.log2(period[-1:]),
                           numpy.log2(period[-1:]), [1e-9]]),
        'k', alpha=0.3, hatch='x')
bx.set_title('b) {} Wavelet Power Spectrum ({})'.format(label, mother.name))
bx.set_ylabel('Period (years)')
#
Yticks = 2 ** numpy.arange(numpy.ceil(numpy.log2(period.min())),
                           numpy.ceil(numpy.log2(period.max())))
bx.set_yticks(numpy.log2(Yticks))
bx.set_yticklabels(Yticks)

# Third sub-plot, the global wavelet and Fourier power spectra and theoretical
# noise spectra. Note that period scale is logarithmic.
cx = pyplot.axes([0.77, 0.37, 0.2, 0.28], sharey=bx)
cx.plot(glbl_signif, numpy.log2(period), 'k--')
cx.plot(var * fft_theor, numpy.log2(period), '--', color='#cccccc')
cx.plot(var * fft_power, numpy.log2(1./fftfreqs), '-', color='#cccccc',
        linewidth=1.)
cx.plot(var * glbl_power, numpy.log2(period), 'k-', linewidth=1.5)
cx.set_title('c) Global Wavelet Spectrum')
cx.set_xlabel(r'Power [({})^2]'.format(units))
cx.set_xlim([0, glbl_power.max() + var])
cx.set_ylim(numpy.log2([period.min(), period.max()]))
cx.set_yticks(numpy.log2(Yticks))
cx.set_yticklabels(Yticks)
pyplot.setp(cx.get_yticklabels(), visible=False)

# Fourth sub-plot, the scale averaged wavelet spectrum.
dx = pyplot.axes([0.1, 0.07, 0.65, 0.2], sharex=ax)
dx.axhline(scale_avg_signif, color='k', linestyle='--', linewidth=1.)
dx.plot(t, scale_avg, 'k-', linewidth=1.5)
dx.set_title('d) {}--{} year scale-averaged power'.format(2, 8))
dx.set_xlabel('Time (year)')
dx.set_ylabel(r'Average variance [{}]'.format(units))
ax.set_xlim([t.min(), t.max()])

pyplot.show()

得到如下结果:
在这里插入图片描述
NINO3海表温度记录的小波分析:(a)时间序列(黑色实线)和小波逆变换(灰色实线),(b) Morlet小波(ω0=6)作为时间和傅里叶等效波周期(年)函数的归一化小波功率谱。黑色实线包围了相对于红噪声随机过程(α=0.77)置信度超过95%的区域。交叉孵化和阴影区域表示在母小波的影响锥的影响。(iii)全局小波功率谱(黑色实线)和傅立叶功率谱(灰色实线)。虚线表示95%置信水平。(iv) 28年波段尺度平均小波功率(黑色实线)、功率趋势(灰色实线)和95%置信水平(黑色虚线)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/654691.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SSMP整合案例(1) 构建 Spring Boot Vue MySql项目环境

前面 我们通过 java springboot整合MyBatis做数据库查询操作 java springboot整合MyBatis-Plus 多用点Plus支持一下国人开发的东西吧 java springboot整合Druid数据源配置 大体熟悉了springboot正好第三方应用的操作 那么 我们就来写一个 基于springboot的SSMP整合案例 其实就…

MongoDB快速实战与基本原理-1

一、MongoDB介绍 1、什么是MongoDB MongoDB是 一个文档数据库&#xff08;以 JSON 为数据模型&#xff09; &#xff0c;由C语言编写&#xff0c;旨在 为 WEB应用提供可扩展的高性能数据存储解决方案。 文档来自于“ JSON Document”&#xff0c;并非我们一般理解的 PDF&am…

人机交互学习-8 交互设计模型与理论

交互设计模型与理论 预测模型GOMS模型GOMS全称GoalsOperatorsMethodsSelection Rules 举例GOMS方法步骤GOMS模型分析 击键层次模型操作符使用方法放置M操作符的启发规则KLM分析KLM应用 Fitts定律三个指标a,b的确定说明Fitts定律建议Fitts定律应用 动态特性建模状态转移网三态模…

牛客网基础语法61~70题

牛客网基础语法61~70题&#x1f618;&#x1f618;&#x1f618; &#x1f4ab;前言&#xff1a;今天是咱们第七期刷牛客网上的题目。 &#x1f4ab;目标&#xff1a;可以掌握循环嵌套&#xff0c;逻辑思维更加清晰&#xff0c;对循环知识掌握熟练。 &#x1f4ab;鸡汤&#xf…

dp算法篇Day5

"生予希望&#xff0c;生予微光&#xff0c;生予一切无常" 21、乘积最大子数组 (1) 题目解析 一个正数&#xff0c;需要和正数相乘才能得到一个大的乘积&#xff0c;反之一个负数&#xff0c;需要和一个负数做乘积&#xff0c;才能 得到一个大的乘积。 解决子数组问…

Springboot程序开启远程DEBUG

一、远程debug的原理 Spring Boot程序远程debug的原理主要是通过在启动时指定JVM参数来启用远程调试模式&#xff0c;并在调试器中连接到程序所在的调试地址&#xff0c;从而实现对程序的远程调试。 具体步骤如下&#xff1a; 在运行Spring Boot程序时&#xff0c;在启动命令…

强化学习DDPG:Deep Deterministic Policy Gradient解读

1. DDPG DDPG方法相比于传统的PG算法&#xff0c;主要有三点改进&#xff1a; A. off-policy策略 传统PG算法一般是采用on-policy方法&#xff0c;其将整体强化学习过程分为多个epoch&#xff0c;在每个epoch完成一次policy模型和value模型更新&#xff0c;同时在每轮epoch都…

【Java高级语法】(五)字符串操作类String:几乎每天都会用到的String类,你还在踩坑吗?~

Java高级语法详解之字符串操作类String :one: 概念:two: 使用2.1 创建字符串对象2.2 字符串的比较2.3 字符串长度2.4 字符串连接2.5 字符串截取2.6 字符串的查找和替换2.7 字符串的切割和拆分2.8 字符串和其他类型的转换2.9 字符串的格式化2.10 字符串的判断2.11 手动入池2.12 …

202319读书笔记|《春之海终日优哉游哉:谢芜村俳句300》——远山峡谷间樱花绽放,宇宙在其中

202319读书笔记&#xff5c;《春之海终日优哉游哉&#xff1a;谢芜村俳句300》——远山峡谷间樱花绽放&#xff0c;宇宙在其中 与谢芜村&#xff0c;小林一茶&#xff0c;芭蕉&#xff0c;与谢野晶子&#xff0c;俳句都很赞&#xff0c;虽多本书中略有重复&#xff0c;但多多观…

【备战秋招】每日一题:4月15日美团春招第一题:题面+题目思路 + C++/python/js/Go/java带注释

为了更好的阅读体检&#xff0c;为了更好的阅读体检&#xff0c;&#xff0c;可以查看我的算法学习博客第一题-字符串前缀 在线评测链接:P1235 题目内容 塔子哥是一名优秀的软件工程师&#xff0c;他的公司最近接到了一个新项目&#xff0c;需要在短时间内实现一个新的字符串…

微服务 springcloud 09.整合feign到项目一个子服务中

01.项目结构如下&#xff1a; 02.修改sp04-orderservice项目&#xff0c;添加feign&#xff0c;调用item service和user service 1.sp04-orderservice项目的pom.xml 添加以下依赖: actuator feign hystrix <?xml version"1.0" encoding"UTF-8"?>…

全链路压测演进之迭代式压测

目录 1.背景原因 2.压测流程改进分析 3.迭代式压测流程 4.全流程压测模式演进 5.压测模式对比 6.迭代式压测反馈效果 7.总结 1.背景原因 !! 做系统服务压测都是比较耗时耗人力的&#xff0c;特别是在生产环境上做压测&#xff0c;压测的时间都是在晚上23点后&#xff0c…

Linux之线程安全(上)

文章目录 前言一、预备知识1.线程的ID2.局部存储的验证3.线程的封装 二、线程安全问题1.抢票程序2.问题分析 三、Linux线程互斥1.概念临界资源临界区互斥原子性 2.互斥量概念接口 3.mutex的使用全局锁的使用局部锁的使用 总结 前言 本文从一个模拟生活中的抢票程序的例子引入线…

经典的设计模式22——职责链模式

文章目录 职责链模式 老感觉职责链模式和状态模式有点像&#xff0c;好像都能实现请假流程。百度来一波。 真是巧了&#xff0c;职责链&#xff0c;状态&#xff0c;策略&#xff0c;则三个长得好像。 职责链模式 定义&#xff1a; 使多个对象都有机会处理请求&#xff0c;从…

循环神经网络RNN用于分类任务

RNN是一类拥有隐藏状态&#xff0c;允许以前的输出可用于当前输入的神经网络&#xff0c; 输入一个序列&#xff0c;对于序列中的每个元素与前一个元素的隐藏状态一起作为RNN的输入&#xff0c;通过计算当前的输出和隐藏状态。当前的影藏状态作为下一个单元的输入... RNN的种类…

AMEYA:如何设计好DC-DC电源,注意事项有哪些

DC-DC变换器&#xff08;DC-DC converter&#xff09;是指在直流电路中将一个电压值的电能变为另一个电压值的电能的装置。DC-DC的layout非常重要&#xff0c;会直接影响到产品的稳定性与EMI效果。 DC-DC电源几点经验以及规则 1、处理好反馈环&#xff0c;反馈线不要走肖特基下…

基于JavaWeb的体育赛事平台的设计与实现

摘要 体育是随着社会生产力的发展而产生和发展的&#xff0c;在其漫长的历史中&#xff0c;由于社会、政治和经济发展的影响&#xff0c;其内容、形式、功能和操作方法不断变化。奥运会和世界杯等大型体育赛事代表着体育发展的顶峰&#xff0c;因为它们不仅给组织者带来了巨大…

【考研复习】李春葆新编C语言习题与解析(错误答案订正)持续更新

新编C语言习题与解析 做习题时发现有些错误答案&#xff0c;写篇博客进行改正记录。不对地方欢迎指正&#xff5e; 第二章 C. 其中b的表达形式错误&#xff0c;若加上0x1e2b则正确。所以C错误。 D. e后为整数。指数命名规则&#xff1a;e前有数&#xff0c;后有整数。所以D错…

实验篇(7.2) 15. 站对站安全隧道 - 多条隧道聚合(FortiGate-IPsec) ❀ 远程访问

【简介】虽然隧道冗余可以解决连接问题&#xff0c;但是当大量数据访问或要求访问不能中断时&#xff0c;隧道冗余就力不从心了。这种情况就要用到隧道聚合。但是对宽带的要求也高了&#xff0c;双端都至少需要二条宽带。 实验要求与环境 OldMei集团深圳总部部署了域服务器和ER…

C语言复合类型之结构(struct)篇(结构指针)

结构相关知识总结 什么是结构&#xff1f;结构的声明与简单使用结构的初始化结构中成员变量的访问结构的初始化器结构数组结构数组的声明结构数组的成员标识 结构的嵌套结构指针结构作为参数在函数中传递将结构成员作为参数进行传递将结构地址(指向结构的指针)作为参数进行传递…