MongoDB快速实战与基本原理-1

news2024/11/18 1:25:57

一、MongoDB介绍

1、什么是MongoDB

MongoDB是 一个文档数据库(以 JSON 为数据模型) ,由C++语言编写,旨在
WEB应用提供可扩展的高性能数据存储解决方案。
文档来自于“
JSON Document”,并非我们一般理解的 PDF,WORD 文档。
MongoDB是 一个介于关系数据库和非关系数据库之间的产品 ,是非关系数据库当中功
能最丰富,最像关系数据库的。它支持的数据结构非常松散, 数据格式是BSON,一种类似
JSON的二进制形式的存储格式 ,简称Binary JSON , 和JSON一样支持内嵌的文档对象和
数组对象 ,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非
常强大,其 语法有点类似于面向对象的查询语言 ,几乎可以实现类似关系数据库单表查询的
绝大部分功能,而且 还支持对数据建立索引。原则上 Oracle 和 MySQL 能做的事情,
MongoDB 都能做(包括 ACID 事务)。
MongoDB是 一个开源OLTP数据库 ,它灵活的文档模型(
JSON)非常适合敏捷式开
发、高可用和水平扩展的大数据应用。
OLTP:on-line Transaction Processing,联机(在线)事务处理
OLAP:on-line Analytical Processing,联机(在线)分析处理
MongoDB在数据库总排名第5,仅次于Oracle、MySQL等RDBMS,在NoSQL数据库
排名首位。从诞生以来,其项目应用广度、社区活跃指数持续上升。

2、MongoDB 版本变迁 

 3、MongoDB vs 关系型数据库 概念

数据库(database) :最外层的概念,可以理解为逻辑上的名称空间,一个数
据库包含多个不同名称的集合。
集合(collection) :相当于SQL中的表,一个集合可以存放多个不同的文档。
文档(document) :一个文档相当于数据表中的一行,由多个不同的字段组 成。
字段(field):文档中的一个属性,等同于列(column)。
索引(index):独立的检索式数据结构,与SQL概念一致。
_id:每个文档中都拥有一个唯一的_id字段,相当于SQL中的主键(primary
key)。
视图(view):可以看作一种虚拟的(非真实存在的)集合,与SQL中的视图类
似。从MongoDB 3.4版本开始提供了视图功能,其通过聚合管道技术实现。
聚合操作($lookup):MongoDB用于实现“类似”表连接(tablejoin)的 聚合操作符

尽管这些概念大多与SQL标准定义类似,但MongoDB与传统RDBMS仍然存在不少差异,
包括:
半结构化 ,在一个集合中,文档所拥有的字段并不需要是相同的,而且也不需要
对所用的字段进行声明。因此,MongoDB具有很明显的半结构化特点。除了松散的
表结构,文档还可以支持多级的嵌套、数组等灵活的数据类型,非常契合面向对象的
编程模型。
弱关系 ,MongoDB没有外键的约束,也没有非常强大的表连接能力。类似的功
能需要使用聚合管道技术来弥补。

4、MongoDB技术优势 

MongoDB基于灵活的JSON文档模型,非常适合敏捷式的快速开发。与此同时,其与生俱
来的高可用、高水平扩展能力使得它在处理海量、高并发的数据应用时颇具优势。
JSON 结构和对象模型接近,开发代码量低
JSON的动态模型意味着更容易响应新的业务需求
复制集提供99.999%高可用
分片架构支持海量数据和无缝扩容
简单直观:从错综复杂的关系模型到一目了然的对象模型

 

快速:最简单快速的开发方式

灵活:快速响应业务变化

MongoDB优势:原生的高可用

MongoDB优势:横向扩展能力

5、MongoDB应用场景

从目前阿里云 MongoDB 云数据库上的用户看,MongoDB 的应用已经渗透到各个领 域:
游戏场景,使用 MongoDB 存储游戏用户信息,用户的装备、 积分 等直接以内
嵌文档的形式存储,方便查询、更新;
物流场景,使用 MongoDB 存储订单信息,订单状态在运送过程中会不断更 新,以MongoDB 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出 来;
社交场景,使用 MongoDB 存储存储用户信息,以及用户发表的朋友圈信息, 通过地理位置索引实现附近的人、地点等功能;
物联网场景,使用 MongoDB 存储所有接入的智能设备信息,以及设备汇报的 日志信息,并对这些信息进行多维度的分析;
视频直播,使用 MongoDB 存储用户信息、礼物信息等;
大数据应用,使用云数据库MongoDB作为大数据的云存储系统,随时进行数据
提取分析,掌握行业动态。|
国内外知名互联网公司都在使用MongoDB:
如何考虑是否选择MongoDB?
没有某个业务场景必须要使用MongoDB才能解决,但使用MongoDB通常能让你以更低的
成本解决问题。如果你不清楚 当前业务是否适合使用MongoDB,可以通过做几道选择题来
辅助决策。

只要有一项需求满足就可以考虑使用MongoDB,匹配越多,选择MongoDB越合适

二、MongoDB快速开始 

1、linux安装MongoDB

环境准备:
linux系统: centos7
安装MongoDB社区版
下载MongoDB Community Server
下载地址: https://www.mongodb.com/try/download/community
#下载MongoDB
 wget https://fastdl.mongodb.org/linux/mongodb‐linux‐x86_64‐rhel70‐4.4.9.tgz
tar ‐zxvf mongodb‐linux‐x86_64‐rhel70‐4.4.9.tgz

 启动MongoDB Server

#创建dbpath和logpath
mkdir ‐p /mongodb/data /mongodb/log
#进入mongodb目录,启动mongodb服务
bin/mongod ‐‐port=27017 ‐‐dbpath=/mongodb/data ‐‐logpath=/mongodb/log/mon
godb.log \ ‐‐bind_ip=0.0.0.0 ‐‐fork
--dbpath :指定数据文件存放目录
--logpath :指定日志文件,注意是指定文件不是目录
--logappend :使用追加的方式记录日志
--port:指定端口,默认为27017
--bind_ip:默认只监听localhost网卡
--fork: 后台启动
--auth: 开启认证模式

添加环境变量
修改/etc/profile,添加环境变量,方便执行MongoDB命令
export MONGODB_HOME=/usr/local/soft/mongodb
PATH=$PATH:$MONGODB_HOME/bi
然后执行source /etc/profile 重新加载环境变量
利用配置文件启动服务
编辑/mongodb/conf/mongo.conf文件,内容如下:
systemLog:
 destination: file
 path: /mongodb/log/mongod.log # log path
 logAppend: true
storage:
 dbPath: /mongodb/data # data directory
 engine: wiredTiger #存储引擎
 journal: #是否启用journal日志
 enabled: true
net:
 bindIp: 0.0.0.0
 port: 27017 # port
 processManagement:
 fork: true
注意:一定要yaml格式
启动mongod
mongod ‐f /mongodb/conf/mongo.conf
-f 选项表示将使用配置文件启动mongodb
关闭MongoDB服务
方式1:
mongod ‐‐port=27017 ‐‐dbpath=/mongodb/data ‐‐shutdown

方式2:
进入mongo shell
use admin
db.shutdownServer()

2、Mongo shell使用

mongo是MongoDB的交互式JavaScript Shell界面,它为系统管理员提供了强大的界面,
并为开发人员提供了直接测试数据库查询和操作的方法。
bin/mongo ‐‐port=27017
bin/mongo localhost:27017

mongo shell常用命令

show dbs | show databases

显示数据库列表

use  数据库名

切换数据 ,如果不存在创建数据库

db.dropDatabase()

删除数据库

show collections | show tables

显示当前数据库的集合列表

db.集合名.stats()

查看集合详情

db.集合名.drop()

删除集

show users

显示当前数据库的用户列表

show roles

显示当前数据库的角色列表

show profile

显示最近发生的操作

load("xxx.js")

执行一个JavaScript脚本文件

exit  |  quit()

退出当前shell

help

查看mongodb支持哪些命令

db.help()

查询当前数据库支持的方法

db.集合名.help()

显示集合的帮助信息

db.version()

查看数据库版本

数据库操作

#查看所有库
show dbs
# 切换到指定数据库,不存在则创建
use test
# 删除当前数据库
db.dropDatabase()
集合操作
#查看集合
 show collections
 #创建集合
 db.createCollection("emp")
#删除集合
 db.emp.drop()
创建集合语法
db.createCollection(name, options)
options参数

字段

capped

(可选)  如果为true ,则创建固定集合。固定集合是指有着固定大小的 集合 ,当达到最大值时 ,它会自动覆盖最早的文档。

size

数值

(可选)  为固定集合指定一个最大值  (以字节计)  。

如果 capped  true ,也需要指定该字段。

max

数值

(可选)  指定固定集合中包含文档的最大数量。

 意:   当集合不存在时,向集合中插入文档也会创建集合

3、安全认证

建管理员账号

# 设置管理员用户名密码需要切换到admin库
 use admin
 #创建管理员
 db.createUser({user:"yanqiuxiang",pwd:"yanqiuxiang",roles:["root"]})
 # 查看当前数据库所有用户信息
 show users
 #显示可设置权限
 show roles
 #显示所有用户
 db.system.users.find()



> db.createUser({user:"yanqiuxiang",pwd:"yanqiuxiang",roles:["root"]})
Successfully added user: { "user" : "yanqiuxiang", "roles" : [ "root" ] }
> show users
{
	"_id" : "admin.yanqiuxiang",
	"userId" : UUID("c9c757be-22a4-4f90-89f3-48070ed3e688"),
	"user" : "yanqiuxiang",
	"db" : "admin",
	"roles" : [
		{
			"role" : "root",
			"db" : "admin"
		}
	],
	"mechanisms" : [
		"SCRAM-SHA-1",
		"SCRAM-SHA-256"
	]
}
删除用户
db.dropUser("yanqiuxiang")
 #删除当前数据库所有用户
 db.dropAllUser()
用户认证,返回1表示认证成功
db.auth("yanqiuxiang","yanqiuxiang")
1
创建应用数据库用户r
use appdb
db.createUser({user:"appdb",pwd:"yanqiuxiang",roles:["dbOwner"]})
Successfully added user: { "user" : "appdb", "roles" : [ "dbOwner" ] }
默认情况下,MongoDB不会启用鉴权,以鉴权模式启动MongoDB
mongod ‐f /mongodb/conf/mongo.conf ‐‐auth
启用鉴权之后,连接MongoDB的相关操作都需要提供身份认证。
mongo 192.168.65.174:27017 ‐u yanqiuxiang ‐p yanqiuxiang ‐‐authenticationDatabase=admin
[root@192 bin]# mongo 127.0.0.1:27017 -u yanqiuxiang -p yanqiuxiang --authenticationDatabase=admin
MongoDB shell version v4.4.9
connecting to: mongodb://127.0.0.1:27017/test?authSource=admin&compressors=disabled&gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("132ab311-b2ec-4aae-a50c-70a4d8742ec0") }
MongoDB server version: 4.4.9
---
The server generated these startup warnings when booting: 
        2023-06-16T21:35:20.012+08:00: Access control is not enabled for the database. Read and write access to data and configuration is unrestricted
        2023-06-16T21:35:20.012+08:00: You are running this process as the root user, which is not recommended
        2023-06-16T21:35:20.013+08:00: /sys/kernel/mm/transparent_hugepage/enabled is 'always'. We suggest setting it to 'never'
        2023-06-16T21:35:20.013+08:00: /sys/kernel/mm/transparent_hugepage/defrag is 'always'. We suggest setting it to 'never'
        2023-06-16T21:35:20.013+08:00: Soft rlimits too low
        2023-06-16T21:35:20.013+08:00:         currentValue: 1024
        2023-06-16T21:35:20.013+08:00:         recommendedMinimum: 64000
---
---
        Enable MongoDB's free cloud-based monitoring service, which will then receive and display
        metrics about your deployment (disk utilization, CPU, operation statistics, etc).

        The monitoring data will be available on a MongoDB website with a unique URL accessible to you
        and anyone you share the URL with. MongoDB may use this information to make product
        improvements and to suggest MongoDB products and deployment options to you.

        To enable free monitoring, run the following command: db.enableFreeMonitoring()
        To permanently disable this reminder, run the following command: db.disableFreeMonitoring()
---
> 

三、MongoDB文档操作

1、插入文档

新增单个文档  insertOne
db.collection.insertOne(
 <document>,
 {
 writeConcern: <document>
 }
 )
writeConcern 决定一个写操作落到多少个节点上才算成功。 writeConcern 的取值包括:
0:发起写操作,不关心是否成功;
1~集群最大数据节点数:写操作需要被复制到指定节点数才算成功;
majority:写操作需要被复制到大多数节点上才算成功。
insert: 若插入的数据主键已经存在,则会抛 DuplicateKeyException 异常,提
示主键重复,不保存当前数据。
save: 如果 _id 主键存在则更新数据,如果不存在就插入数据。
批量新增文档
insertMany:向指定集合中插入多条文档数据

 

db.collection.insertMany(
 [ <document 1> , <document 2>, ... ],
 {
 writeConcern: <document>,
 ordered: <boolean>
 }
 )

测试:批量插入50条随机数据
编辑脚本book.js

 

var tags = ["nosql","mongodb","document","developer","popular"];
var types = ["technology","sociality","travel","novel","literature"];
var books=[];
for(var i=0;i<50;i++){
var typeIdx = Math.floor(Math.random()*types.length);
var tagIdx = Math.floor(Math.random()*tags.length);
var favCount = Math.floor(Math.random()*100);
var book = {
title: "book‐"+i,
type: types[typeIdx],
tag: tags[tagIdx],
 favCount: favCount,
 author: "xxx"+i
 };
 books.push(book)
 }
 db.books.insertMany(books);
进入mongo shell,执行
load("books.js")
查询文档
find 查询集合中的若干文档。 语法格式如下:
db.collection.find(query, projection)
query :可选,使用查询操作符指定查询条件
projection :可选,使用投影操作符指定返回的键。查询时返回文档中所有键值, 只需省略该参数即可(默认省略)。投影时,_id为1的时候,其他字段必须是1;_id是0的时候,其他字段可以是0;如果没有_id字段约束,多个其他字段必须同为0或同为1

如果查询返回的条目数量较多,mongo shell则会自动实现分批显示。默认情况下每次只显
示20条,可以输入it命令读取下一批。
findOne查询集合中的第一个文档。 语法格式如下:
db.collection.findOne(query, projection)

如果你需要以易读的方式来读取数据,可以使用pretty)方法,语法格式如下:

db.collection.find().pretty()

 注意:pretty()方法以格式化的方式来显示所有文档

条件查询
指定条件查询

 

#查询带有nosql标签的book文档:
 db.books.find({tag:"nosql"})
 #按照id查询单个book文档:
 db.books.find({_id:ObjectId("61caa09ee0782536660494d9")})
 #查询分类为“travel”、收藏数超过60个的book文档:
 db.books.find({type:"travel",favCount:{$gt:60}})

查询条件对照表

SQL

MQL

a= 1

{a: 1}

a < > 1

{a: {$ne: 1}}

a > 1

{a: {$gt: 1}}

a > = 1

{a: {$gte: 1}}

a < 1

{a: {$lt: 1}}

a < = 1

{a: {$lte: 1}}

查询逻辑对照表

SQL

MQL

a = 1 AND b = 1

{a: 1, b: 1}或{$and: [{a: 1}, {b: 1}]}

a = 1 OR b = 1

{$or: [{a: 1}, {b: 1}]}

a IS NULL

{a: {$exists: false}}

a IN (1, 2, 3)

{a: {$in: [1, 2, 3]}}

查询逻辑运算符

$lt: 存在并小于

$lte: 存在并小于等于

$gt: 存在并大于

$gte: 存在并大于等于

$ne: 不存在或存在但不等于

$in: 存在并在指定数组中

$nin: 不存在或不在指定数组中

$or: 匹配两个或多个条件中的一个

$and: 匹配全部条件

 

序&分页

指定排

MongoDB 中使用 sort() 方法对数据进行排

#指定按收藏数(favCount)降序返回
 db.books.find({type:"travel"}).sort({favCount:‐1})

      1 为升序排列 ,而 -1 是用于降序排列

 

分页查询

skip用于指定跳过记录数 ,  limit则用于限定返回结果数量。可以在执行find命令的同时指定 skip、  limit参数 以此实现分页的功能。比如 ,假定每页大小为8条 ,查询第3页的book文 档:

 db.books.find().skip(8).limit(4)

处理分页问题  巧分页

数据量大的时候 ,应该避免使用skip/limit形式的分页。

替代方案:使用查询条件+唯一排序条件;

如:

第一页:db.posts.find({}).sort({_id: 1}).limit(20);

第二页:db.posts.find({_id: {$gt: <第一页最后一个_id>}}).sort({_id: 1}).limit(20); 第三页:db.posts.find({_id: {$gt: <第二页最后一个_id>}}).sort({_id: 1}).limit(20);

处理分页问题  避免使用 count

尽可能不要计算总页数 ,特别是数据量大和查询条件不能完整命中索引时。

考虑以下场景:假设集合总共有 1000w 条数据 ,在没有索引的情况下考虑以下查询:

db.coll.find({x: 100}).limit(50);
db.coll.count({x: 100});

前者只需要遍历前 n 条 ,直到找到 50 条 x =100 的文档即可结束;后者需要遍历完 1000w 条找到所有符合要求的文档才能得到结果。   为了计算总

页数而进行的 count() 往往是拖慢页面整体加载速度的原因

正则表达式匹配查询

MongoDB 使用 $regex 操作符来设置匹配字符串的正则表达式

1  //使用正则表达式查找type包含 so 字符串的book

2  db.books.find({type:{$regex:"so"}})

3  //或者

4  db.books.find({type:/so/})

更新文档
可以用update命令对指定的数据进行更新,命令的格式如下:
1 db . collection . update ( query , update , options )
query:描述更新的查询条件; update:描述更新的动作及新的内容;
options:描述更新的选项
upsert: 可选,如果不存在update的记录,是否插入新的记
录。默认false,不插入
multi: 可选,是否按条件查询出的多条记录全部更新。 默认
false,只更新找到的第一条记录
writeConcern :可选,决定一个写操作落到多少个节点上才算
成功
更新操作符

操作符

$set

{$set:{field:value}}

指定个键并更新值 ,若键不存在则创建

$unset

{$unset : {field : 1 }}

删除一个键

$inc

{$inc : {field : value } }

对数值类型进行增减

$rename

{$rename : {old_field_name :

new_field_name } }

修改字段名称

$push

{ $push : {field : value } }

将数值追加到数组中 ,若数组不存在则会进 初始

$pushAll

{$pushAll : {field : value_array }}

追加多个值到一个数组字段内

$pull

{$pull : {field : _value } }

数组中删除指定的元素

$addToSet

{$addToSet : {field : value } }

添加元素到数组中 ,具有排重功能

$pop

{$pop : {field : 1 }}

删除数组的第一个或最后一个元素

更新单个文档

某个book文档被收藏了 ,则需要将该文档的favCount字段自增

db.books.update({_id:ObjectId("61caa09ee0782536660494d9")},{$inc:{favCoun t:1}}

更新多个文档

默认情况下,update命令只在更新第一个文档之后返回,如果需要更新多个文档,则可以
使用multi选项。
将分类为“novel”的文档的增加发布时间(publishedDate)
  db . books . update ({ type : "novel" },{ $ set :{ publishedDate : new Date ()}},
{ "multi" : true })
multi : 可选,mongodb 默认是false,只更新找到的第一条记录,如果这个参数为true,就把按条件
查出来多条记录全部更新

 

update命令选项配置较多 ,为了简化使用还可以使用一些快捷命令:

updateOne更新单个文档。

updateMany:更新多个文档。

replaceOne替换单个文档。

使upsert命令

upsert是一种特殊的更新 ,其表现为果目标文档不存在 ,则执行插入命令。

1  db.books.update(

  2   {title:"my book"},

  3   {$set:{tags:["nosql","mongodb"],type:"none",author:"fox"}},   4   {upsert:true}

5  )

nMatched、  nModified都为0 ,表示没有文档被匹配及更新 ,  nUpserted=1提示执行了 upsert动作

replace语义

update命令中的更新描述  (update)  通常由操作符描述 ,如果更新描述中不包含任何操作 符 ,那么MongoDB会实现文档的replace语义

findAndModify命令

findAndModify兼容了查询和修改指定文档的功能 findAndModify只能更新单个文档

1

//将某个book文档的收藏数 (favCount) 加1

2

3

4

db.books.findAndModify({

query:{_id:ObjectId("61caa09ee0782536660494dd")},

update:{$inc:{favCount:1}}

5

})

该操作会返回符合查询条件的文档数据 ,并完成对文档的修改。

默认情况下 ,findAndModify会返回修改前的“旧”数据。如果希望返回修改后的数据, 则可以指定new选项

1

db.books.findAndModify({

2

3

4

query:{_id:ObjectId("61caa09ee0782536660494dd")},

update:{$inc:{favCount:1}},

new: true

5

})

findAndModify语义相近的命令如下:

findOneAndUpdate:更新单个文档并返回更新前  (或更新后)  的文档

findOneAndReplace:替换单个文档并返回替换前  (或替换后)  的文档

 

3.4 删除文档

使 remove 删除文档

remove 命令需要配合查询条件使用;

配查询条件的文档会被删除;

指定一个空文档条件会删除所有文档;

例:

1  db.user.remove({age:28})// 删除age 28的记录                              

  2  db.user.remove({age:{$lt:25}}) // 删除age 小于25的记录

  3  db.user.remove( { } ) // 删除所有记录

4  db.user.remove() //报错                                                       

remove命令会删除配条件的全部文档 ,如果希望明确限定只删除一个文档 ,则需要指定 justOne参数 ,命令格式如下:

1  db.collection.remove(query,justOne)                                      

例如:删除满足type:novel条件的首条

使用 delete 删除文

官方推荐使用 deleteOne() 和 deleteMany() 方法删除文档 ,语法格式如下:

1  db.books.deleteMany ({}) //删除集合下全部文档

  2  db.books.deleteMany ({ type:"novel" }) //删除 type等于 novel 的全部文档

3  db.books.deleteOne ({ type:"novel" }) //删除 type等于novel 的一个文档

意:   remove、deleteMany等命令需要对查询范围内的文档逐个删除 ,如果希望删除整 个集合 ,则使用drop命令会更加高效

返回被删除文档

removedeleteOne等命令在删除文档后只会返回确认性的信息 ,如果希望获得被删除的 文档 ,则可以使用findOneAndDelete命令

 

除了在结果中返回删除文档 ,findOneAndDelete命令还允许定义“删除的顺序” ,即按照 指定顺序删除找到的第一个文档

remove、deleteOne等命令只能按默认顺序删除 ,利用这个特性 ,findOneAndDelete 以实现队列的先进先出。

文档操作最佳实践

关于文档结构

防止使用太长的字段名  (浪费空间)

防止使用太深的数组嵌套  (超过2层操作比较复杂)

不使用中文 ,标点符号等非拉丁字母作为字段名

关于写操作

update 语句里只包括需要更新的字段

尽可能使用批量插入来提升写入性能

使用TTL自动过期日志类型的数据

4. MongoDB数据模型

考:  MongoDB为什么会使用BSON?

4.1 BSON协议与数据类

JSON

JSON是当今非常通用的一种跨语言Web据交互格式 ,属于ECMAScript标准规范的 一个子集。JSON  (JavaScript Object Notation, JS对象简谱)  即JavaScript对象表示法, 它是JavaScript对象的一种文本表现形式。

为一种轻量级的数据交换格式 ,JSON的可读性非常好 ,而且非常便于系统生成和解

,这些优势也让它逐渐取代了XML标准在Web领域的地位 ,当今许多流行的Web应用开 发框架 ,如SpringBoot都选择了JSON作为默认的数据编/解码格式。

 

JSON只定义了6种数据类型:

string:  字符串

number :  数值

object:  JS的对象形式 ,用{key:value}表示 ,可嵌套

array:  数组 ,JS的表示方式[value] ,可嵌套

true/false:  布尔类型

null:  空值

多数情况下 ,使用JSON作为数据交互格式已经是理想的选择 ,但是JSON基于文本 的解析效率并不是最好的 ,在某些场景下往往会考虑选择更合适的编/解码格式 ,一些做如:

     在微服务架构中 ,使用gRPC  (基于GoogleProtobuf)  可以获得更好的网络 用率。

     分布式中间件、数据库 ,使用私有定制的TCP数据包格式来提供高性能、低延时 的计算能力。

BSON

BSON由10gen团队设计并开源 ,  目前主要用于MongoDB数据库。  BSON  ( Binary    JSON)  是二进制版本的JSON ,其在性能方面有更优的表现。  BSON在许多方面和JSON保 持一致 ,其同样也支持内嵌的文档对象和数组结构。二者最大的区别在于JSON是基于文本 的 ,而BSON则是二进制  (字节流)  编/解码的形式。在空间的使用上 ,  BSON相比JSON并 没有明显的优势。

MongoDB在文档存储、命令协议上都采用了BSON作为编/解码格式 ,主要具有如下 势:

      类JSON的轻量级语义 ,支持简单清晰的嵌套、数组层次结构 ,以实现模式灵

的文档结构。

     更高效的遍历 ,  BSON在编码时会记录每个元素的长度 ,可以直接通过seek操作 进行元素内容读取 ,相对JSON解析来说 ,遍历速度更快。

     更丰富的数据类型 ,除了JSON的基本数据类型 ,  BSON还提供了               MongoDB所需的一些扩展类型 ,比如日期、二进制数据等 ,这更加方便数据的表示 操作。

BSON的数据类型

MongoDB中 ,一个BSON文档最大大小为16M ,文档嵌套的级别不超过100

BSON Types — MongoDB Manual

Type

Number

Alias

Notes

Double

1

"double"

String

2

"string"

Object

3

"object"

Array

4

"array"

Binary data

5

"binData"

进制数据

Undefined

6

"undefined"

Deprecated.

ObjectId

7

"objectId"

对象ID ,用于创建文档ID

Boolean

8

"bool"

Date

9

"date"

Null

10

"null"

Regular Expression

11

"regex"

正则表达式

DBPointer

12

"dbPointer"

Deprecated.

JavaScript

13

"javascript"

Symbol

14

"symbol"

Deprecated.

JavaScript code with

scope

15

"javascriptWithScope"

Deprecated in MongoDB 4.4.

32-bit integer

16

"int"

Timestamp

17

"timestamp"

64-bit integer

18

"long"

Decimal128

19

"decimal"

New in version 3.4.

Min key

-1

"minKey"

表示一个最小值

Max key

127

"maxKey"

表示一个最大值

$type操作

$type操作符基于BSON类型来检索集合中匹配的数据类型 ,并返回果。

1  db.books.find({"title" : {$type : 2}}) 2  //或者

3  db.books.find({"title" : {$type : "string"}})

 

MongoDB的日期类型使用UTC  ( Coordinated Universal Time)  进行存储 ,也就是+0时 的时间

使new DateISODate最终都会生成ISODate类型的字段  (对应于UTC时间)

4.3 ObjectId生成

MongoDB集合中所有的文档都有一个唯一的_id字段 ,作为集合的主键。在默认情况

 ,_id字段使用ObjectId类型 ,采用16进制编码形式 ,共12个字节。

了避免文档的_id字段出现重复 ,ObjectId被定义为3个部分:

4字节表示Unix时间戳  (秒)  。

5字节表示随机数  (机器号+进程号唯一)  。

3字节表示计数器  (初始化时随机)  。

大多数客户端驱动都会自行生成这个字段 ,比如MongoDB Java Driver会根据插入的 文档是否包含_id字段来自动补充ObjectId对象。这样做不但提高了离散性 ,还可以降低   MongoDB服务器端的计算压力。在ObjectId的组成中 ,  5字节的随机数并没有明确定义, 客户端可以采用机器号、进程号来实现:

属性/方法

str

返回对象的十六进制字符串表示。

ObjectId.getTimestamp()

将对象的时间戳部分作为日期返回。

ObjectId.toString()

以字符串文字“”的形式返回 JavaScript 表示ObjectId(...)

ObjectId.valueOf()

将对象的表示形式返回为十六进制字符串。返回的字符串是str属性。

成一个新的 ObjectId

4.4 内嵌文档和数组

嵌文档

文档中可以包含作者的信息 ,包括作者名称、性别、家乡所在地 ,一个显著的优点是, 当我们查询book文档的信息时 ,作者的信息也会一并返回。

1  db.books.insert({

  2   title: "撒哈拉的故事",

  3   author: {

  4   name:"三毛",

  5   gender:"",

  6   hometown:"重庆"

  7   }

8  })

查询三毛的作品

db . books . find ({ "author.name" : " 三毛 " })

修改三毛的家乡所在地

db . books . updateOne ({ "author.name" : " 三毛 " },{ $ set :{ "author.hometown" : " 重庆 /
台湾 " }})

数组

除了作者信息 ,文档中还包含了若干个标签 ,这些标签可以用来表示文档所包含的一些特 征 ,如豆瓣读书中的标签  (tag)

 

增加tags标签

db . books . updateOne ({ "author.name" : " 三毛 " },{ $ set :{ tags :[ " 旅行 " , " 随笔 " , "
" , " 爱情 " , " 文学 " ]}})

 

查询数组元素

  db.books.find({"author.name":"三毛"},{title:1,tags:1}) 3  #利用$slice获取最后一个tag

 db.books.find({"author.name":"三毛"},{title:1,tags:{$slice: 1}})

$silice是一个查询操作符 ,用于指定数组的切片方式

 

数组末尾追加元素 ,可以使用$push操作符

db . books . updateOne ({ "author.name" : " 三毛 " },{ $push :{ tags : " 猎奇 " }})

$push操作符可以配合其他操作符 ,一起实现不同的数组修改操作 ,比如和$each操作符配 合可以用于添加多个元素

db . books . updateOne ({ "author.name" : " 三毛 " },{ $push :{ tags :{ $each :[ " 伤感 " , "
象力 " ]}}})

如果加上$slice作符 ,那么只会保留经过切片后的元素

db . books . updateOne ({ "author.name" : " 三毛 " },{ $push :{ tags :{ $each :[ " 伤感 " , "
象力 " ], $slice : 3 }}})

 

根据元素查询

  #会查出所有包含伤感的文档

 db.books.find({tags:"伤感"})

  # 会查出所有同时包含"伤感","想象力"的文档

db . books . find ({ tags :{ $all :[ " 伤感 " , " 想象力 " ]}})

嵌套型的数

数组元素可以是基本类型 ,也可以是内嵌的文档结构

  {

     tags:[

    {tagKey:xxx,tagValue:xxxx},

    {tagKey:xxx,tagValue:xxxx}

    ]

  }

这种结构非常灵活 ,一个很适合的场景就是商品的多属性表示

 

个商品可以同时包含多个维度的属性 ,比如尺码、颜色、风格等 ,使用文档可以表示为:

db.goods.insertMany([{
 name:"羽绒服",
 tags:[
 {tagKey:"size",tagValue:["M","L","XL","XXL","XXXL"]},
 {tagKey:"color",tagValue:["黑色","宝蓝"]},
 {tagKey:"style",tagValue:"韩风"}
 ]
 },{
 name:"羊毛衫",
 tags:[
 {tagKey:"size",tagValue:["L","XL","XXL"]},
 {tagKey:"color",tagValue:["蓝色","杏色"]},
 {tagKey:"style",tagValue:"韩风"}
 ]

以上的设计是种常见的多值属性的做法 ,当我们需要根据属性进行检索时 ,需要用到

$elementMatch操作符

1  #筛选出color=黑色的商品信息

  2  db.goods.find({

  3   tags:{

  4   $elemMatch:{tagKey:"color",tagValue:"黑色"}

  5   }

6  })

如果进行组合式的条件检索 ,则可以使用多个$elemMatch操作符:

1  # 筛选出color=蓝色,并且size=XL的商品信

  2  db.goods.find({

  3   tags:{

  4   $all:[

  5   {$elemMatch:{tagKey:"color",tagValue:"黑色"}},

  6   {$elemMatch:{tagKey:"size",tagValue:"XL"}}

  7   ]

  8   }

9  })

4.5 固定集合

固定集合  (capped collection)  是一种限定大小的集合 ,其中capped是覆盖、限额的意   思。跟普通的集合相比 ,数据在写入这种集合时遵循FIFO原则。可以将这种集合想象为一   个环状的队列 新文档在写入时会被插入队列的末尾 ,如果队列已满 ,那么之前的文档就会 被新写入的文档所覆盖。通过固定集合的大小 ,我们可以保证数据库只会存储“限额”的数

据 ,超过该额的旧数据都会被丢弃。

 

使用示例

建固定集合

db.createCollection("logs",{capped:true,size:4096,max:10})

 max:指集合的文档数量最大值 ,这里是10

size:指集合的空间占用最大值 ,这里是4096字节  (4KB)

这两个参数会同时对集合的上限产生影响。也就是说 ,只要任一条件达到阈值都会认为 集合已经写满。其中size是必选的 ,而max则是可选的。

可以使用collection.stats命令查看文档的占用空

db.logs.stats()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/654689.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人机交互学习-8 交互设计模型与理论

交互设计模型与理论 预测模型GOMS模型GOMS全称GoalsOperatorsMethodsSelection Rules 举例GOMS方法步骤GOMS模型分析 击键层次模型操作符使用方法放置M操作符的启发规则KLM分析KLM应用 Fitts定律三个指标a,b的确定说明Fitts定律建议Fitts定律应用 动态特性建模状态转移网三态模…

牛客网基础语法61~70题

牛客网基础语法61~70题&#x1f618;&#x1f618;&#x1f618; &#x1f4ab;前言&#xff1a;今天是咱们第七期刷牛客网上的题目。 &#x1f4ab;目标&#xff1a;可以掌握循环嵌套&#xff0c;逻辑思维更加清晰&#xff0c;对循环知识掌握熟练。 &#x1f4ab;鸡汤&#xf…

dp算法篇Day5

"生予希望&#xff0c;生予微光&#xff0c;生予一切无常" 21、乘积最大子数组 (1) 题目解析 一个正数&#xff0c;需要和正数相乘才能得到一个大的乘积&#xff0c;反之一个负数&#xff0c;需要和一个负数做乘积&#xff0c;才能 得到一个大的乘积。 解决子数组问…

Springboot程序开启远程DEBUG

一、远程debug的原理 Spring Boot程序远程debug的原理主要是通过在启动时指定JVM参数来启用远程调试模式&#xff0c;并在调试器中连接到程序所在的调试地址&#xff0c;从而实现对程序的远程调试。 具体步骤如下&#xff1a; 在运行Spring Boot程序时&#xff0c;在启动命令…

强化学习DDPG:Deep Deterministic Policy Gradient解读

1. DDPG DDPG方法相比于传统的PG算法&#xff0c;主要有三点改进&#xff1a; A. off-policy策略 传统PG算法一般是采用on-policy方法&#xff0c;其将整体强化学习过程分为多个epoch&#xff0c;在每个epoch完成一次policy模型和value模型更新&#xff0c;同时在每轮epoch都…

【Java高级语法】(五)字符串操作类String:几乎每天都会用到的String类,你还在踩坑吗?~

Java高级语法详解之字符串操作类String :one: 概念:two: 使用2.1 创建字符串对象2.2 字符串的比较2.3 字符串长度2.4 字符串连接2.5 字符串截取2.6 字符串的查找和替换2.7 字符串的切割和拆分2.8 字符串和其他类型的转换2.9 字符串的格式化2.10 字符串的判断2.11 手动入池2.12 …

202319读书笔记|《春之海终日优哉游哉:谢芜村俳句300》——远山峡谷间樱花绽放,宇宙在其中

202319读书笔记&#xff5c;《春之海终日优哉游哉&#xff1a;谢芜村俳句300》——远山峡谷间樱花绽放&#xff0c;宇宙在其中 与谢芜村&#xff0c;小林一茶&#xff0c;芭蕉&#xff0c;与谢野晶子&#xff0c;俳句都很赞&#xff0c;虽多本书中略有重复&#xff0c;但多多观…

【备战秋招】每日一题:4月15日美团春招第一题:题面+题目思路 + C++/python/js/Go/java带注释

为了更好的阅读体检&#xff0c;为了更好的阅读体检&#xff0c;&#xff0c;可以查看我的算法学习博客第一题-字符串前缀 在线评测链接:P1235 题目内容 塔子哥是一名优秀的软件工程师&#xff0c;他的公司最近接到了一个新项目&#xff0c;需要在短时间内实现一个新的字符串…

微服务 springcloud 09.整合feign到项目一个子服务中

01.项目结构如下&#xff1a; 02.修改sp04-orderservice项目&#xff0c;添加feign&#xff0c;调用item service和user service 1.sp04-orderservice项目的pom.xml 添加以下依赖: actuator feign hystrix <?xml version"1.0" encoding"UTF-8"?>…

全链路压测演进之迭代式压测

目录 1.背景原因 2.压测流程改进分析 3.迭代式压测流程 4.全流程压测模式演进 5.压测模式对比 6.迭代式压测反馈效果 7.总结 1.背景原因 !! 做系统服务压测都是比较耗时耗人力的&#xff0c;特别是在生产环境上做压测&#xff0c;压测的时间都是在晚上23点后&#xff0c…

Linux之线程安全(上)

文章目录 前言一、预备知识1.线程的ID2.局部存储的验证3.线程的封装 二、线程安全问题1.抢票程序2.问题分析 三、Linux线程互斥1.概念临界资源临界区互斥原子性 2.互斥量概念接口 3.mutex的使用全局锁的使用局部锁的使用 总结 前言 本文从一个模拟生活中的抢票程序的例子引入线…

经典的设计模式22——职责链模式

文章目录 职责链模式 老感觉职责链模式和状态模式有点像&#xff0c;好像都能实现请假流程。百度来一波。 真是巧了&#xff0c;职责链&#xff0c;状态&#xff0c;策略&#xff0c;则三个长得好像。 职责链模式 定义&#xff1a; 使多个对象都有机会处理请求&#xff0c;从…

循环神经网络RNN用于分类任务

RNN是一类拥有隐藏状态&#xff0c;允许以前的输出可用于当前输入的神经网络&#xff0c; 输入一个序列&#xff0c;对于序列中的每个元素与前一个元素的隐藏状态一起作为RNN的输入&#xff0c;通过计算当前的输出和隐藏状态。当前的影藏状态作为下一个单元的输入... RNN的种类…

AMEYA:如何设计好DC-DC电源,注意事项有哪些

DC-DC变换器&#xff08;DC-DC converter&#xff09;是指在直流电路中将一个电压值的电能变为另一个电压值的电能的装置。DC-DC的layout非常重要&#xff0c;会直接影响到产品的稳定性与EMI效果。 DC-DC电源几点经验以及规则 1、处理好反馈环&#xff0c;反馈线不要走肖特基下…

基于JavaWeb的体育赛事平台的设计与实现

摘要 体育是随着社会生产力的发展而产生和发展的&#xff0c;在其漫长的历史中&#xff0c;由于社会、政治和经济发展的影响&#xff0c;其内容、形式、功能和操作方法不断变化。奥运会和世界杯等大型体育赛事代表着体育发展的顶峰&#xff0c;因为它们不仅给组织者带来了巨大…

【考研复习】李春葆新编C语言习题与解析(错误答案订正)持续更新

新编C语言习题与解析 做习题时发现有些错误答案&#xff0c;写篇博客进行改正记录。不对地方欢迎指正&#xff5e; 第二章 C. 其中b的表达形式错误&#xff0c;若加上0x1e2b则正确。所以C错误。 D. e后为整数。指数命名规则&#xff1a;e前有数&#xff0c;后有整数。所以D错…

实验篇(7.2) 15. 站对站安全隧道 - 多条隧道聚合(FortiGate-IPsec) ❀ 远程访问

【简介】虽然隧道冗余可以解决连接问题&#xff0c;但是当大量数据访问或要求访问不能中断时&#xff0c;隧道冗余就力不从心了。这种情况就要用到隧道聚合。但是对宽带的要求也高了&#xff0c;双端都至少需要二条宽带。 实验要求与环境 OldMei集团深圳总部部署了域服务器和ER…

C语言复合类型之结构(struct)篇(结构指针)

结构相关知识总结 什么是结构&#xff1f;结构的声明与简单使用结构的初始化结构中成员变量的访问结构的初始化器结构数组结构数组的声明结构数组的成员标识 结构的嵌套结构指针结构作为参数在函数中传递将结构成员作为参数进行传递将结构地址(指向结构的指针)作为参数进行传递…

AI数字人之语音驱动人脸模型Wav2Lip

1 Wav2Lip模型介绍 2020年&#xff0c;来自印度海德拉巴大学和英国巴斯大学的团队&#xff0c;在ACM MM2020发表了的一篇论文《A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild 》&#xff0c;在文章中&#xff0c;他们提出一个叫做Wav2Lip的AI模…

面试题:完败的面试,被虐得体无完肤

经过上一轮的面试&#xff0c;我信心一下子就建立起来了&#xff0c;说巧不巧&#xff0c;前几周正好看到美团校招&#xff0c;想着试一下也不会怎样&#xff0c;就找了学长要了内推码&#xff0c;试着投递了一下&#xff0c;然后就通知周六参加笔试&#xff0c;结果惨不忍睹。…