【Python文本处理】基于运动路线记录GPX的文件解析,及对经纬度坐标的数学模型运动速度求解

news2025/1/10 3:00:59

【Python文本处理】基于运动路线记录GPX的文件解析,及对经纬度坐标的数学模型运动速度求解

解析

GPX文件格式

GPX文件本身其实就是坐标、海拔、时间、心率等综合性的xml文件
如图:
在这里插入图片描述
海拔:ele
时间:time
心率:heartrate
功率:power
踏频:cadence
距离:distance
一般不用距离distance 但可以根据距离求瞬时速度(前提是时间间隔均匀 最小精度不低于1s) 不过如果距离和坐标之差相差太远 则不太好确定 Strava等软件通过这个来计算瞬时速度和距离 但不用于计算赛段速度(赛段时间)

某一时刻的数据就看trkpt部分
以trkpt 为始 到 /trkpt 为止
比如:

<trkpt lat="30.3940883" lon="112.2400167">
        <ele>34</ele>
        <time>2023-05-12T12:26:13Z</time>
        <extensions>
          <heartrate>167</heartrate>
          <distance>26698</distance>
        </extensions>
      </trkpt>

代码实现

首先借助time库 求出每个时刻的参数 并且转换为"%Y-%m-%d %H:%M:%S"格式
而后对海拔 经纬度进行获取
最后获取关键词

import time

keywords_list=["heartrate","cadence","power","distance"]

def read_gpx(gpx):
    first_time=0
    first_str_time=""
    trkpt_flag=0
    j=0
    
    num_list=[0]
    time_list=[None]
    ele_list=[None]
    lat_list=[None]
    lon_list=[None]
    key_list=[]
    
    gpx_dict={}
    key_dict={}
    
    for i in keywords_list:
        key_list.append([None])
        
    for i in range(len(gpx)):        
        try:
            ti=str((gpx[i].split("<time>")[1]).split("</time>")[0])
            now_time = time.mktime(time.strptime(ti, "%Y-%m-%dT%H:%M:%SZ"))
            first_time=now_time                
            first_str_time=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(first_time))  
            break
        except:
            pass
    time_list[0]=first_str_time
    
    for i in range(len(gpx)):
        if gpx[i].count('<trkpt'):
            trkpt_flag=1      
            j=j+1
            num_list.append(j)
            time_list.append(j)
            ele_list.append(j)
            lat_list.append(j)
            lon_list.append(j)            
            for k in range(len(keywords_list)):
                key_list[k].append(j)

        if trkpt_flag==1:
            try:
                ti=str((gpx[i].split("<time>")[1]).split("</time>")[0])
                now_time = time.mktime(time.strptime(ti, "%Y-%m-%dT%H:%M:%SZ"))
                now_str_time=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(now_time))  
                time_list[j]=now_str_time
            except:
                pass
            
            if gpx[i].count('<trkpt'):
                lat_list[j]=float(gpx[i].split('"')[1])
                lon_list[j]=float(gpx[i].split('"')[3])
                
            try:
                ele_list[j]=float(str((gpx[i].split("<ele>")[1]).split("</ele>")[0]))
            except:
                pass
            
            for k in range(len(keywords_list)):           
                try:
                    dat=str((gpx[i].split("<"+keywords_list[k]+">")[1]).split("</"+keywords_list[k]+">")[0])
                    key_list[k][j]=float(dat)
                except:
                    pass

        if gpx[i].count('</trkpt>'):
            trkpt_flag=0
        
        if gpx[i].count('</trkseg>'):
            break
        
    gpx_dict["num"]=num_list    
    gpx_dict["time"]=time_list       
    gpx_dict["lat"]=lat_list
    gpx_dict["lon"]=lon_list
    gpx_dict["ele"]=ele_list 
    for k in range(len(keywords_list)):
        key_dict[keywords_list[k]]=key_list[k]
    
    gpx_dict["key"]=key_dict
    return gpx_dict

最后保存为字典集合
输出结果:

{'num': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184], 'time': ['2023-06-01 09:58:22', '2023-06-01 09:58:41', '2023-06-01 09:58:42', '2023-06-01 09:58:43', '2023-06-01 09:58:44', '2023-06-01 09:58:45', '2023-06-01 09:58:46', '2023-06-01 09:58:47', '2023-06-01 09:58:48', '2023-06-01 09:58:49', '2023-06-01 09:58:50', '2023-06-01 09:58:51', '2023-06-01 09:58:52', '2023-06-01 09:58:53', '2023-06-01 09:58:54', '2023-06-01 09:58:55', '2023-06-01 09:58:56', '2023-06-01 09:58:57', '2023-06-01 09:58:58', '2023-06-01 09:58:59', '2023-06-01 09:59:00', '2023-06-01 09:59:01', '2023-06-01 09:59:02', '2023-06-01 09:59:03', '2023-06-01 09:59:04', '2023-06-01 09:59:05', '2023-06-01 09:59:06', '2023-06-01 09:59:07', '2023-06-01 09:59:08', '2023-06-01 09:59:09', '2023-06-01 09:59:10', '2023-06-01 09:59:11', '2023-06-01 09:59:12', '2023-06-01 09:59:13', '2023-06-01 09:59:14', '2023-06-01 09:59:15', '2023-06-01 09:59:16', '2023-06-01 09:59:17', '2023-06-01 09:59:18', '2023-06-01 09:59:19', '2023-06-01 09:59:20', '2023-06-01 09:59:21', '2023-06-01 09:59:22', '2023-06-01 09:59:23', '2023-06-01 09:59:24', '2023-06-01 09:59:25', '2023-06-01 09:59:26', '2023-06-01 09:59:27', '2023-06-01 09:59:28', '2023-06-01 09:59:29', '2023-06-01 09:59:30', '2023-06-01 09:59:31', '2023-06-01 09:59:32', '2023-06-01 09:59:33', '2023-06-01 09:59:34', '2023-06-01 09:59:35', '2023-06-01 09:59:36', '2023-06-01 09:59:37', '2023-06-01 09:59:38', '2023-06-01 09:59:39', '2023-06-01 09:59:40', '2023-06-01 09:59:41', '2023-06-01 09:59:42', '2023-06-01 09:59:43', '2023-06-01 09:59:44', '2023-06-01 09:59:45', '2023-06-01 09:59:46', '2023-06-01 09:59:47', '2023-06-01 09:59:48', '2023-06-01 09:59:49', '2023-06-01 09:59:50', '2023-06-01 09:59:51', '2023-06-01 09:59:52', '2023-06-01 09:59:53', '2023-06-01 09:59:54', '2023-06-01 09:59:55', '2023-06-01 09:59:56', '2023-06-01 09:59:57', '2023-06-01 09:59:58', '2023-06-01 09:59:59', '2023-06-01 10:00:00', '2023-06-01 10:00:01', '2023-06-01 10:00:02', '2023-06-01 10:00:03', '2023-06-01 10:00:04', '2023-06-01 10:00:05', '2023-06-01 10:00:06', '2023-06-01 10:00:07', '2023-06-01 10:00:08', '2023-06-01 10:00:09', '2023-06-01 10:00:10', '2023-06-01 10:00:11', '2023-06-01 10:00:12', '2023-06-01 10:00:13', '2023-06-01 10:00:14', '2023-06-01 10:00:15', '2023-06-01 10:00:16', '2023-06-01 10:00:17', '2023-06-01 10:00:18', '2023-06-01 10:00:19', '2023-06-01 10:00:20', '2023-06-01 10:00:21', '2023-06-01 10:00:22', '2023-06-01 10:00:23', '2023-06-01 10:00:24', '2023-06-01 10:00:25', '2023-06-01 10:00:26', '2023-06-01 10:00:27', '2023-06-01 10:00:28', '2023-06-01 10:00:29', '2023-06-01 10:00:30', '2023-06-01 10:00:31', '2023-06-01 10:00:32', '2023-06-01 10:00:33', '2023-06-01 10:00:34', '2023-06-01 10:00:35', '2023-06-01 10:00:36', '2023-06-01 10:00:37', '2023-06-01 10:00:38', '2023-06-01 10:00:39', '2023-06-01 10:00:40', '2023-06-01 10:00:41', '2023-06-01 10:00:42', '2023-06-01 10:00:43', '2023-06-01 10:00:44', '2023-06-01 10:00:45', '2023-06-01 10:00:46', '2023-06-01 10:00:47', '2023-06-01 10:00:48', '2023-06-01 10:00:49', '2023-06-01 10:00:50', '2023-06-01 10:00:51', '2023-06-01 10:00:52', '2023-06-01 10:00:53', '2023-06-01 10:00:54', '2023-06-01 10:00:55', '2023-06-01 10:00:56', '2023-06-01 10:00:57', '2023-06-01 10:00:58', '2023-06-01 10:00:59', '2023-06-01 10:01:00', '2023-06-01 10:01:01', '2023-06-01 10:01:02', '2023-06-01 10:01:03', '2023-06-01 10:01:04', '2023-06-01 10:01:05', '2023-06-01 10:01:06', '2023-06-01 10:01:07', '2023-06-01 10:01:08', '2023-06-01 10:01:09', '2023-06-01 10:01:10', '2023-06-01 10:01:11', '2023-06-01 10:01:12', '2023-06-01 10:01:13', '2023-06-01 10:01:14', '2023-06-01 10:01:15', '2023-06-01 10:01:16', '2023-06-01 10:01:17', '2023-06-01 10:01:18', '2023-06-01 10:01:19', '2023-06-01 10:01:20', '2023-06-01 10:01:21', '2023-06-01 10:01:22', '2023-06-01 10:01:23', '2023-06-01 10:01:24', '2023-06-01 10:01:25', '2023-06-01 10:01:26', '2023-06-01 10:01:27', '2023-06-01 10:01:28', '2023-06-01 10:01:29', '2023-06-01 10:01:30', '2023-06-01 10:01:31', '2023-06-01 10:01:32', '2023-06-01 10:01:33', '2023-06-01 10:01:34', '2023-06-01 10:01:54', '2023-06-01 10:01:55', '2023-06-01 10:01:56', '2023-06-01 10:01:57', '2023-06-01 10:02:13', '2023-06-01 10:02:14', '2023-06-01 10:02:15', '2023-06-01 10:02:16', '2023-06-01 10:02:17', '2023-06-01 10:02:18'], 'lat': [None, 30.452805, 30.4528125, 30.4528189, 30.4528247, 30.4528287, 30.4528306, 30.4528274, 30.4528185, 30.4528061, 30.4527819, 30.4527605, 30.4527407, 30.4527255, 30.4527165, 30.4527105, 30.4527043, 30.4527002, 30.4526961, 30.4526878, 30.4526799, 30.4526724, 30.4526653, 30.4526585, 30.4526511, 30.4526432, 30.4526382, 30.4526364, 30.4526347, 30.4526313, 30.4526268, 30.4526225, 30.4526161, 30.4526085, 30.4526009, 30.4525931, 30.452585, 30.4525761, 30.4525672, 30.4525573, 30.4525471, 30.4525388, 30.4525315, 30.4525241, 30.4525176, 30.4525106, 30.4525042, 30.4524992, 30.4524957, 30.4524939, 30.4524964, 30.4525027, 30.4525095, 30.4525144, 30.4525146, 30.4525092, 30.4525001, 30.452491, 30.4524821, 30.4524735, 30.4524656, 30.4524585, 30.4524522, 30.4524467, 30.4524397, 30.4524306, 30.4524212, 30.4524128, 30.4524072, 30.4524037, 30.4523976, 30.452387, 30.4523743, 30.4523626, 30.4523544, 30.4523475, 30.4523411, 30.4523334, 30.4523246, 30.4523151, 30.4523058, 30.4522994, 30.4522931, 30.452284, 30.4522709, 30.4522573, 30.4522449, 30.4522331, 30.4522227, 30.4522135, 30.4522036, 30.4521941, 30.4521846, 30.4521749, 30.452165, 30.4521557, 30.4521475, 30.4521407, 30.452135, 30.4521298, 30.4521242, 30.4521187, 30.4521134, 30.4521077, 30.452099, 30.4520891, 30.4520801, 30.4520722, 30.4520656, 30.4520581, 30.4520494, 30.4520406, 30.4520326, 30.4520258, 30.4520207, 30.4520166, 30.4520156, 30.4520157, 30.4520148, 30.4520109, 30.4520021, 30.4519891, 30.451975, 30.4519647, 30.4519547, 30.4519429, 30.4519314, 30.4519224, 30.4519173, 30.4519121, 30.451905, 30.4518969, 30.4518886, 30.4518795, 30.45187, 30.4518607, 30.4518506, 30.451841, 30.451832, 30.4518227, 30.4518112, 30.4517992, 30.451789, 30.4517806, 30.4517714, 30.4517642, 30.4517577, 30.4517519, 30.4517441, 30.4517381, 30.4517355, 30.4517277, 30.4517154, 30.451696, 30.4516821, 30.4516804, 30.4516841, 30.4516871, 30.4516861, 30.4516817, 30.4516731, 30.4516592, 30.4516392, 30.4516241, 30.4515869, 30.4515576, 30.4515302, 30.4515145, 30.4514761, 30.4514449, 30.4514142, 30.4513832, 30.451353, 30.4513262, 30.4513047, 30.4512268, 30.4512039, 30.4511808, 30.4511591, 30.4510384, 30.4510348, 30.4510312, 30.4510243, 30.4510148, 30.4509683], 'lon': [None, 114.42341, 114.4234075, 114.4234007, 114.4233901, 114.4233757, 114.4233531, 114.4233333, 114.4233105, 114.4232842, 114.4232355, 114.4231986, 114.4231621, 114.4231234, 114.42308, 114.4230341, 114.4229862, 114.4229577, 114.4229293, 114.4228785, 114.4228315, 114.4227793, 114.4227282, 114.4226775, 114.4226272, 114.422577, 114.4225274, 114.4224779, 114.4224276, 114.4223772, 114.4223269, 114.4222768, 114.4222261, 114.4221743, 114.422121, 114.4220673, 114.4220143, 114.4219619, 114.4219094, 114.4218565, 114.4218039, 114.4217506, 114.421697, 114.4216435, 114.4215901, 114.4215373, 114.4214851, 114.4214326, 114.4213798, 114.4213273, 114.421277, 114.4212281, 114.4211797, 114.4211314, 114.4210826, 114.4210331, 114.4209821, 114.4209311, 114.4208804, 114.4208289, 114.420777, 114.4207252, 114.4206734, 114.4206211, 114.4205688, 114.4205168, 114.420465, 114.4204133, 114.4203623, 114.4203093, 114.4202557, 114.4202033, 114.4201521, 114.4201022, 114.4200552, 114.4200083, 114.419961, 114.4199125, 114.4198619, 114.4198099, 114.4197569, 114.4197042, 114.4196513, 114.4195989, 114.4195456, 114.4194927, 114.4194397, 114.4193878, 114.4193369, 114.419286, 114.4192341, 114.4191815, 114.419129, 114.4190763, 114.4190232, 114.4189688, 114.418915, 114.418861, 114.4188058, 114.4187511, 114.418697, 114.4186434, 114.4185905, 114.4185378, 114.4184854, 114.4184328, 114.4183798, 114.4183267, 114.4182727, 114.4182176, 114.4181623, 114.4181082, 114.4180579, 114.4180111, 114.4179664, 114.4179228, 114.4178808, 114.41784, 114.4177991, 114.4177536, 114.4177059, 114.4176574, 114.4176081, 114.4175565, 114.4175062, 114.4174569, 114.4174089, 114.4173598, 114.4173088, 114.4172565, 114.4172029, 114.4171484, 114.4170935, 114.4170372, 114.4169823, 114.4169284, 114.4168755, 114.4168227, 114.4167703, 114.416719, 114.4166684, 114.4166182, 114.4165688, 114.41652, 114.4164722, 114.4164238, 114.4163759, 114.4163279, 114.4162817, 114.4162345, 114.4161873, 114.416144, 114.4161079, 114.4160834, 114.4160621, 114.4160486, 114.4160213, 114.4159636, 114.4159197, 114.4158811, 114.415848, 114.4158204, 114.4157996, 114.4157916, 114.4157787, 114.4157734, 114.4157721, 114.4157722, 114.4157734, 114.4157742, 114.4157747, 114.4157775, 114.4157841, 114.4157923, 114.415801, 114.415851, 114.4158589, 114.4158646, 114.4158705, 114.4158796, 114.4158809, 114.4158822, 114.4158852, 114.4158888, 114.4159033], 'ele': [None, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], 'key': {'heartrate': [None, 99.0, 101.0, 101.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 101.0, 101.0, 101.0, 101.0, 102.0, 102.0, 102.0, 102.0, 101.0, 101.0, 101.0, 101.0, 100.0, 99.0, 99.0, 100.0, 100.0, 100.0, 100.0, 100.0, 102.0, 102.0, 104.0, 104.0, 103.0, 103.0, 104.0, 104.0, 105.0, 107.0, 108.0, 108.0, 108.0, 108.0, 108.0, 108.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 109.0, 108.0, 108.0, 108.0, 109.0, 109.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 109.0, 110.0, 110.0, 110.0, 110.0, 109.0, 109.0, 110.0, 109.0, 110.0, 109.0, 109.0, 109.0, 109.0, 110.0, 109.0, 109.0, 109.0, 109.0, 110.0, 110.0, 110.0, 110.0, 111.0, 111.0, 112.0, 114.0, 114.0, 114.0, 113.0, 114.0, 114.0, 113.0, 113.0, 113.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 113.0, 113.0, 113.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 114.0, 113.0, 113.0, 114.0, 114.0, 114.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 113.0, 115.0, 115.0, 115.0, 118.0, 118.0, 118.0, 118.0, 118.0, 118.0, 118.0, 117.0, 118.0, 118.0, 118.0, 118.0, 118.0, 117.0, 118.0, 118.0, 118.0, 118.0, 117.0, 117.0, 117.0, 112.0, 112.0, 112.0, 112.0, 113.0, 113.0, 113.0, 112.0, 112.0, 112.0], 'cadence': [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184], 'power': [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184], 'distance': [None, 0.0, 0.0, 0.0, 0.0, 4.0, 9.0, 12.0, 15.0, 19.0, 23.0, 27.0, 31.0, 36.0, 40.0, 44.0, 49.0, 54.0, 60.0, 65.0, 70.0, 75.0, 80.0, 84.0, 89.0, 94.0, 99.0, 104.0, 109.0, 114.0, 118.0, 124.0, 129.0, 134.0, 139.0, 144.0, 149.0, 154.0, 160.0, 165.0, 170.0, 175.0, 180.0, 186.0, 191.0, 196.0, 201.0, 206.0, 211.0, 216.0, 220.0, 224.0, 229.0, 234.0, 239.0, 244.0, 249.0, 254.0, 259.0, 264.0, 269.0, 274.0, 279.0, 284.0, 290.0, 295.0, 300.0, 305.0, 310.0, 315.0, 320.0, 325.0, 330.0, 334.0, 339.0, 344.0, 348.0, 354.0, 359.0, 364.0, 369.0, 374.0, 379.0, 384.0, 390.0, 395.0, 400.0, 405.0, 410.0, 416.0, 421.0, 426.0, 431.0, 436.0, 442.0, 447.0, 452.0, 458.0, 463.0, 468.0, 473.0, 478.0, 483.0, 488.0, 494.0, 499.0, 504.0, 510.0, 515.0, 520.0, 525.0, 530.0, 534.0, 538.0, 542.0, 546.0, 550.0, 554.0, 559.0, 564.0, 569.0, 574.0, 579.0, 584.0, 589.0, 594.0, 598.0, 603.0, 608.0, 614.0, 619.0, 624.0, 630.0, 636.0, 641.0, 646.0, 651.0, 656.0, 661.0, 666.0, 671.0, 676.0, 680.0, 685.0, 690.0, 694.0, 699.0, 704.0, 708.0, 712.0, 716.0, 719.0, 722.0, 724.0, 726.0, 731.0, 736.0, 740.0, 743.0, 746.0, 748.0, 752.0, 755.0, 758.0, 761.0, 764.0, 767.0, 770.0, 774.0, 778.0, 781.0, 784.0, 787.0, 788.0, 790.0, 803.0, 806.0, 808.0, 809.0, 820.0, 820.0, 820.0, 820.0, 821.0, 821.0]}}

速度求解

速度=位移/时间
所以最先要做的就是算出两个经纬度坐标点的距离(弧长)

数学模型

首先 地球的平均半径为6371393米
近视地球为一个球体 则经纬度坐标就是一个球坐标方程

球坐标和直角坐标转换用到这两个方程组:
在这里插入图片描述
其中 φ为经度 90°-θ为纬度(这里有个坑需要注意):
标准球坐标为:
在这里插入图片描述
在这里插入图片描述

可以看到 θ是90°-纬度
所以如果带入经纬度的话 就是:

(theta是经度 phi是纬度)

df['r'] = 6371393+df['ele']# radius of the Earth in meters
df['theta'] = np.deg2rad(df['lon'])
df['phi'] = np.deg2rad(df['lat'])
df['x'] = df['r']*np.cos(df['theta'])*np.cos(df['phi'])
df['y'] = df['r']*np.sin(df['theta'])*np.cos(df['phi'])
df['z'] = df['r']*np.sin(df['phi'])

df['x2'] = df['x'].shift()
df['y2'] = df['y'].shift()
df['z2'] = df['z'].shift()

df['distance'] = np.sqrt((df['x2']-df['x'])**2 + (df['y2']-df['y'])**2 + (df['z2']-df['z'])**2)

df['central_angle'] = np.arccos((df['x']*df['x2'] + df['y']*df['y2'] + df['z']*df['z2'])/df['r']**2)

df['arclength'] = df['central_angle']*df['r']

df['elapsed_time'] = (df.index.to_series().diff() / pd.Timedelta(seconds=1))

df['speed'] = df['arclength'] / df['elapsed_time']*3.6  # km/h
df = df[columns + ['speed']]

通过三角函数计算出两个坐标点的弧长,则可以算出该时间段的速度

但物理里面学过:
若要精确计算速度 则应该求两个连续弧长/两个经过的时间

但也可以不这么麻烦:

弧长公式在球坐标中更容易求得 而且如果转成直角坐标 则可能把角度弄错(我第一次就把90°-θ踩坑了 导致我的弧长求反三角函数时 居然大于1)

计算经纬度坐标距离的原理就是就算球面两点间的距离,经纬度表示法实际是用角度描述的坐标。纬度上下一共180度,经度360度。

假设地球是标准的球形,计算距离就等于计算一个截面圆的弧长。计算弧长的话需要先求出两点相对于球芯的夹角。然后根据半径就可以求出弧长了,也就是距离。

假设A点纬度lat1,精度lng1.B点纬度lat2, 经度lng2, 地球半径为R

求这个夹角之前,先把坐标转换为直角空间坐标系的点,并让地心为坐标中心点,即
A(Rcos(lat1)cos(lng1),  Rcos(lat1)sin(lng1), Rsin(lat1))
B(Rcos(lat2)cos(lng2),  Rcos(lat2)sin(lng2), Rsin(lat2))

然后算夹角,这里用向量的夹角计算方法,可以求出夹角余弦值,那么夹角COS为
COS = (向量A*向量B) / (向量A的模 * 向量B的模)

令A为(x,y,z),B(a,b,c)
COS = (xa+yb+zc)/[√(x2+y2+z2)*√(a2+b2+c2)]

把经纬度的坐标代进去
COS = cos(lat2) * cos(lat1) * cos(lng1-lng2) + sin(lat2)*sin(lat1)

得到夹角的余弦值可得角度,然后就可以算出弧长了,即得距离(arccos 为反余弦函数,这里反余弦的结果得到的是弧度)
d = 2PI*R * (arccos(COS) / 2 * PI)
d = R * arccos(COS)
最终
d = R * arccos( cos(lat2) * cos(lat1) * cos(lng2-lng1) + sin(lat2)*sin(lat1))

代码:

df['arclength'] = df['r'] * np.arccos(np.cos(df['phi']) * np.cos(df['phi2']) * np.cos(df['theta2']-df['theta']) + np.sin(df['phi'])*np.sin(df['phi2']))

加上物理中求速度的公式 运动速度求解就成了:
其中elapsed_time_list为经过的时间列表

try:
    speed_list.append((df['arclength'][i]+df['arclength'][i+1])/ (elapsed_time_list[i]+elapsed_time_list[i+1]))  # km/h
except:
    speed_list.append(df['arclength'][i]/ elapsed_time_list[i])  # m/s

如果还想更加精确 则再延伸两个时间段 并且求出来的速度按权重去求平均值 这里就需要经验值了

代码实现

这里用到了numpy和pandas做数学计算
同时也要引入状态机考虑如果时间戳相同的结果(一般GPX是一秒钟更新一次 所以也没啥影响)

def calculate_speed(time_list,lat_list,lon_list,ele_list):
    if len(time_list)==len(lat_list) and len(time_list)==len(lon_list) and len(time_list)==len(ele_list):
        pass
    else:
        return 
    
    df = pd.DataFrame({'time': time_list, 'lat': lat_list, 'lon': lon_list, 'ele': ele_list})
    columns = df.columns.tolist()

    df['r'] = 6371393+df['ele'] # radius of the Earth in meters

    df['theta'] = np.deg2rad(df['lon'])
    df['phi'] = np.deg2rad(df['lat'])
    df['theta2']=df['theta'].shift()
    df['phi2']=df['phi'].shift()
    
    df['arclength'] = df['r'] * np.arccos(np.cos(df['phi']) * np.cos(df['phi2']) * np.cos(df['theta2']-df['theta']) + np.sin(df['phi'])*np.sin(df['phi2']))
    
    elapsed_time_list=[]
    stamp_list=[]
    speed_list=[]
    
    stamp_same_list=[]
    same_flag=0
    enable_flag=0
    exit_same_list=[]
    for i in range(len(time_list)):
        try:
            stamp_list.append(time.mktime(time.strptime(time_list[i], "%Y-%m-%d %H:%M:%S")))
            enable_flag=1
            if i>0 and enable_flag==1:
                if stamp_list[i]>stamp_list[i-1]:
                    elapsed_time_list.append(stamp_list[i]-stamp_list[i-1]) 
                    if same_flag==1:
                        same_flag=0
                        exit_same_list.append(i)
                else:
                    if same_flag==0:
                        stamp_same_list.append(i)
                    same_flag=1
                    elapsed_time_list.append(0.0)
            else:
                elapsed_time_list.append(None)
        except:
            if enable_flag==0:
                elapsed_time_list.append(None)
            else:
                if same_flag==0:
                    stamp_same_list.append(i)
                same_flag=1
                elapsed_time_list.append(0.0)
                
    if len(stamp_same_list)>len(exit_same_list):
        exit_same_list.append(0)  

    j=0
    displacement=0.0
    displacement_time=0.0
    end_displacement=0.0
    same_flag=0
    end_elapsed_time=0.0
    stamp_same_in_1st_flag=0
    
    if len(stamp_same_list)==0:
        for i in range(len(elapsed_time_list)):
            try:
                try:
                    speed_list.append((df['arclength'][i]+df['arclength'][i+1])/ (elapsed_time_list[i]+elapsed_time_list[i+1]))  # km/h
                except:
                    speed_list.append(df['arclength'][i]/ elapsed_time_list[i])  # m/s
            except:
                speed_list.append(None)
    else:  
        for i in range(len(elapsed_time_list)):
            try:
                if i>0:
                    try:
                        if i==stamp_same_list[j]-1:
                            same_flag=1
                                
                        if stamp_same_list[0]==1 and stamp_same_in_1st_flag==0:
                            stamp_same_in_1st_flag=1
                            same_flag=1
                        
                    except:
                        pass
       
                    if same_flag==0:
                        try:
                            speed_list.append((df['arclength'][i]+df['arclength'][i+1])/ (elapsed_time_list[i]+elapsed_time_list[i+1]))  # m/s
                        except:
                            speed_list.append(df['arclength'][i]/ elapsed_time_list[i])  # m/s
                    else:   
                        try:
                            displacement=displacement+df['arclength'][i]
                        except:
                            displacement=displacement+0.0
                        
                        try:
                            displacement_time=displacement_time+elapsed_time_list[i]
                        except:
                            displacement_time=displacement_time+0.0
                        
    
                        if j==len(stamp_same_list)-1 and exit_same_list[j]==0:
                            if end_elapsed_time==0.0:
                                end_elapsed_time=elapsed_time_list[i]                                
                            end_displacement=end_displacement+df['arclength'][i]
                            if end_elapsed_time>0.0:
                                speed_list.append(end_displacement/end_elapsed_time)
                            else:
                                speed_list.append(end_displacement/1.0)
                        else:
                            speed_list.append(None)
    
                        if i==exit_same_list[j]: 
                            avg_speed=displacement/displacement_time
                            for k in range(stamp_same_list[j]-1,i+1):
                                speed_list[k]=avg_speed       
                            j=j+1
                            try:
                                if elapsed_time_list[j]-end_elapsed_time[j-1]<=1:
                                    pass
                                else:
                                    same_flag=0
                                    displacement=0.0
                                    displacement_time=0.0
                            except:
                                same_flag=0
                                displacement=0.0
                                displacement_time=0.0
                        
                else:
                    speed_list.append(None)
            except:
                speed_list.append(None)

    df['elapsed_time'] = elapsed_time_list

    df['speed'] = speed_list  # m/s
    df['speed'] = 3.6*df['speed'] # km/h
    df = df[columns + ['arclength']+['speed']]

    return df

输出结果:

                    time        lat    ...      arclength      speed
0    2023-06-01 09:58:22        NaN    ...            NaN        NaN
1    2023-06-01 09:58:41  30.452805    ...            NaN        NaN
2    2023-06-01 09:58:42  30.452813    ...       0.870153   3.309064
3    2023-06-01 09:58:43  30.452819    ...       0.968216   3.904454
4    2023-06-01 09:58:44  30.452825    ...       1.200925   4.775849
5    2023-06-01 09:58:45  30.452829    ...       1.452325   6.533599
6    2023-06-01 09:58:46  30.452831    ...       2.177452   7.392403
7    2023-06-01 09:58:47  30.452827    ...       1.929438   7.792940
8    2023-06-01 09:58:48  30.452818    ...       2.399973   9.492160
9    2023-06-01 09:58:49  30.452806    ...       2.873450  14.872643
10   2023-06-01 09:58:50  30.452782    ...       5.389130  17.373583
11   2023-06-01 09:58:51  30.452761    ...       4.262861  15.114427
12   2023-06-01 09:58:52  30.452741    ...       4.134043  14.777814
13   2023-06-01 09:58:53  30.452725    ...       4.075853  15.040074
14   2023-06-01 09:58:54  30.452717    ...       4.279743  15.715562
15   2023-06-01 09:58:55  30.452710    ...       4.451124  16.370151
16   2023-06-01 09:58:56  30.452704    ...       4.643404  13.346376
17   2023-06-01 09:58:57  30.452700    ...       2.771250   9.955965
18   2023-06-01 09:58:58  30.452696    ...       2.759842  13.890313
19   2023-06-01 09:58:59  30.452688    ...       4.956999  17.185842
20   2023-06-01 09:59:00  30.452680    ...       4.590692  17.396119
21   2023-06-01 09:59:01  30.452672    ...       5.073819  18.063651
22   2023-06-01 09:59:02  30.452665    ...       4.961543  17.782722
23   2023-06-01 09:59:03  30.452658    ...       4.917747  17.655921
24   2023-06-01 09:59:04  30.452651    ...       4.891098  17.607951
25   2023-06-01 09:59:05  30.452643    ...       4.891098  17.420183
26   2023-06-01 09:59:06  30.452638    ...       4.786782  17.164355
27   2023-06-01 09:59:07  30.452636    ...       4.748971  17.231882
28   2023-06-01 09:59:08  30.452635    ...       4.824296  17.407732
29   2023-06-01 09:59:09  30.452631    ...       4.846666  17.447997
..                   ...        ...    ...            ...        ...
155  2023-06-01 10:01:15  30.451680    ...       1.308677   7.122322
156  2023-06-01 10:01:16  30.451684    ...       2.648168  14.741737
157  2023-06-01 10:01:17  30.451687    ...       5.541685  17.552431
158  2023-06-01 10:01:18  30.451686    ...       4.209665  14.294663
159  2023-06-01 10:01:19  30.451682    ...       3.731814  12.683910
160  2023-06-01 10:01:20  30.451673    ...       3.314802  11.483126
161  2023-06-01 10:01:21  30.451659    ...       3.064712  10.890838
162  2023-06-01 10:01:22  30.451639    ...       2.985753   8.692529
163  2023-06-01 10:01:23  30.451624    ...       1.843429  11.085891
164  2023-06-01 10:01:24  30.451587    ...       4.315399  13.704922
165  2023-06-01 10:01:25  30.451558    ...       3.298446  11.427151
166  2023-06-01 10:01:26  30.451530    ...       3.049971   8.631806
167  2023-06-01 10:01:27  30.451514    ...       1.745477  10.830216
168  2023-06-01 10:01:28  30.451476    ...       4.271310  13.934782
169  2023-06-01 10:01:29  30.451445    ...       3.470236  12.391505
170  2023-06-01 10:01:30  30.451414    ...       3.413934  12.368084
171  2023-06-01 10:01:31  30.451383    ...       3.457224  12.377582
172  2023-06-01 10:01:32  30.451353    ...       3.419210  11.702734
173  2023-06-01 10:01:33  30.451326    ...       3.082309  10.101783
174  2023-06-01 10:01:34  30.451305    ...       2.529793   2.130881
175  2023-06-01 10:01:54  30.451227    ...       9.900348   2.152631
176  2023-06-01 10:01:55  30.451204    ...       2.656664   9.511795
177  2023-06-01 10:01:56  30.451181    ...       2.627666   9.192733
178  2023-06-01 10:01:57  30.451159    ...       2.479408   3.373405
179  2023-06-01 10:02:13  30.451038    ...      13.450560   2.933653
180  2023-06-01 10:02:14  30.451035    ...       0.402802   1.450089
181  2023-06-01 10:02:15  30.451031    ...       0.402802   2.195135
182  2023-06-01 10:02:16  30.451024    ...       0.816717   3.477648
183  2023-06-01 10:02:17  30.451015    ...       1.115310  11.646074
184  2023-06-01 10:02:18  30.450968    ...       5.354732  19.277034

[185 rows x 6 columns]

整体代码

# -*- coding: utf-8 -*-
"""
Created on Tue Jun  6 13:58:42 2023

@author: ZHOU
"""

import numpy as np
import pandas as pd
import time

keywords_list=["heartrate","cadence","power","distance"]

def read_gpx(gpx):
    first_time=0
    first_str_time=""
    trkpt_flag=0
    j=0
    
    num_list=[0]
    time_list=[None]
    ele_list=[None]
    lat_list=[None]
    lon_list=[None]
    key_list=[]
    
    gpx_dict={}
    key_dict={}
    
    for i in keywords_list:
        key_list.append([None])
        
    for i in range(len(gpx)):        
        try:
            ti=str((gpx[i].split("<time>")[1]).split("</time>")[0])
            now_time = time.mktime(time.strptime(ti, "%Y-%m-%dT%H:%M:%SZ"))
            first_time=now_time                
            first_str_time=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(first_time))  
            break
        except:
            pass
    time_list[0]=first_str_time
    
    for i in range(len(gpx)):
        if gpx[i].count('<trkpt'):
            trkpt_flag=1      
            j=j+1
            num_list.append(j)
            time_list.append(j)
            ele_list.append(j)
            lat_list.append(j)
            lon_list.append(j)            
            for k in range(len(keywords_list)):
                key_list[k].append(j)

        if trkpt_flag==1:
            try:
                ti=str((gpx[i].split("<time>")[1]).split("</time>")[0])
                now_time = time.mktime(time.strptime(ti, "%Y-%m-%dT%H:%M:%SZ"))
                now_str_time=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(now_time))  
                time_list[j]=now_str_time
            except:
                pass
            
            if gpx[i].count('<trkpt'):
                lat_list[j]=float(gpx[i].split('"')[1])
                lon_list[j]=float(gpx[i].split('"')[3])
                
            try:
                ele_list[j]=float(str((gpx[i].split("<ele>")[1]).split("</ele>")[0]))
            except:
                pass
            
            for k in range(len(keywords_list)):           
                try:
                    dat=str((gpx[i].split("<"+keywords_list[k]+">")[1]).split("</"+keywords_list[k]+">")[0])
                    key_list[k][j]=float(dat)
                except:
                    pass

        if gpx[i].count('</trkpt>'):
            trkpt_flag=0
        
        if gpx[i].count('</trkseg>'):
            break
        
    gpx_dict["num"]=num_list    
    gpx_dict["time"]=time_list       
    gpx_dict["lat"]=lat_list
    gpx_dict["lon"]=lon_list
    gpx_dict["ele"]=ele_list 
    for k in range(len(keywords_list)):
        key_dict[keywords_list[k]]=key_list[k]
    
    gpx_dict["key"]=key_dict
    return gpx_dict

            
        
def calculate_speed(time_list,lat_list,lon_list,ele_list):
    if len(time_list)==len(lat_list) and len(time_list)==len(lon_list) and len(time_list)==len(ele_list):
        pass
    else:
        return 
    
    df = pd.DataFrame({'time': time_list, 'lat': lat_list, 'lon': lon_list, 'ele': ele_list})
    columns = df.columns.tolist()

    df['r'] = 6371393+df['ele'] # radius of the Earth in meters

    df['theta'] = np.deg2rad(df['lon'])
    df['phi'] = np.deg2rad(df['lat'])
    df['theta2']=df['theta'].shift()
    df['phi2']=df['phi'].shift()
    
    df['arclength'] = df['r'] * np.arccos(np.cos(df['phi']) * np.cos(df['phi2']) * np.cos(df['theta2']-df['theta']) + np.sin(df['phi'])*np.sin(df['phi2']))
    
    elapsed_time_list=[]
    stamp_list=[]
    speed_list=[]
    
    stamp_same_list=[]
    same_flag=0
    enable_flag=0
    exit_same_list=[]
    for i in range(len(time_list)):
        try:
            stamp_list.append(time.mktime(time.strptime(time_list[i], "%Y-%m-%d %H:%M:%S")))
            enable_flag=1
            if i>0 and enable_flag==1:
                if stamp_list[i]>stamp_list[i-1]:
                    elapsed_time_list.append(stamp_list[i]-stamp_list[i-1]) 
                    if same_flag==1:
                        same_flag=0
                        exit_same_list.append(i)
                else:
                    if same_flag==0:
                        stamp_same_list.append(i)
                    same_flag=1
                    elapsed_time_list.append(0.0)
            else:
                elapsed_time_list.append(None)
        except:
            if enable_flag==0:
                elapsed_time_list.append(None)
            else:
                if same_flag==0:
                    stamp_same_list.append(i)
                same_flag=1
                elapsed_time_list.append(0.0)
                
    if len(stamp_same_list)>len(exit_same_list):
        exit_same_list.append(0)  

    j=0
    displacement=0.0
    displacement_time=0.0
    end_displacement=0.0
    same_flag=0
    end_elapsed_time=0.0
    stamp_same_in_1st_flag=0
    
    if len(stamp_same_list)==0:
        for i in range(len(elapsed_time_list)):
            try:
                try:
                    speed_list.append((df['arclength'][i]+df['arclength'][i+1])/ (elapsed_time_list[i]+elapsed_time_list[i+1]))  # km/h
                except:
                    speed_list.append(df['arclength'][i]/ elapsed_time_list[i])  # m/s
            except:
                speed_list.append(None)
    else:  
        for i in range(len(elapsed_time_list)):
            try:
                if i>0:
                    try:
                        if i==stamp_same_list[j]-1:
                            same_flag=1
                                
                        if stamp_same_list[0]==1 and stamp_same_in_1st_flag==0:
                            stamp_same_in_1st_flag=1
                            same_flag=1
                        
                    except:
                        pass
       
                    if same_flag==0:
                        try:
                            speed_list.append((df['arclength'][i]+df['arclength'][i+1])/ (elapsed_time_list[i]+elapsed_time_list[i+1]))  # m/s
                        except:
                            speed_list.append(df['arclength'][i]/ elapsed_time_list[i])  # m/s
                    else:   
                        try:
                            displacement=displacement+df['arclength'][i]
                        except:
                            displacement=displacement+0.0
                        
                        try:
                            displacement_time=displacement_time+elapsed_time_list[i]
                        except:
                            displacement_time=displacement_time+0.0
                        
    
                        if j==len(stamp_same_list)-1 and exit_same_list[j]==0:
                            if end_elapsed_time==0.0:
                                end_elapsed_time=elapsed_time_list[i]                                
                            end_displacement=end_displacement+df['arclength'][i]
                            if end_elapsed_time>0.0:
                                speed_list.append(end_displacement/end_elapsed_time)
                            else:
                                speed_list.append(end_displacement/1.0)
                        else:
                            speed_list.append(None)
    
                        if i==exit_same_list[j]: 
                            avg_speed=displacement/displacement_time
                            for k in range(stamp_same_list[j]-1,i+1):
                                speed_list[k]=avg_speed       
                            j=j+1
                            try:
                                if elapsed_time_list[j]-end_elapsed_time[j-1]<=1:
                                    pass
                                else:
                                    same_flag=0
                                    displacement=0.0
                                    displacement_time=0.0
                            except:
                                same_flag=0
                                displacement=0.0
                                displacement_time=0.0
                        
                else:
                    speed_list.append(None)
            except:
                speed_list.append(None)

    df['elapsed_time'] = elapsed_time_list

    df['speed'] = speed_list  # m/s
    df['speed'] = 3.6*df['speed'] # km/h
    df = df[columns + ['arclength']+['speed']]

    return df

if __name__ == '__main__':
    calculate_speed(['2017-07-08 22:05:45', '2017-07-08 22:05:46', '2017-07-08 22:05:47', '2017-07-08 22:05:48', '2017-07-08 22:05:49','2017-07-08 22:05:50'],[-33.81612, -33.81615, -33.816117, -33.816082, -33.816043,-33.816001],[150.871031, 150.871035, 150.87104399999998, 150.87105400000002, 150.871069,150.871080],[74.0, 73.0, 74.0, 75.0, 73.0,75.0])
    path="./2.gpx"
    f=open(path, 'r', encoding="utf-8")
    gpx=f.readlines()
    f.close()  
    gpx=read_gpx(gpx)
    print(gpx)

    df=calculate_speed(gpx["time"],gpx["lat"],gpx["lon"],gpx["ele"])
    print(df)
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/630212.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【用pytorch进行LSTM模型的学习】

用pytorch进行LSTM模型的学习 LSTM模型用pytorch&#xff0c;采用LSTM对seaborn数据集做预测基本步骤数据的观察特殊数据处理数据归一化模型的构建与选择模型的保存 飞机航班流量预测示例 LSTM模型 LSTM模型长下面这样&#xff0c;主要用在时间序列的预测&#xff0c;具有比RN…

5Why分析法

5Why分析法 由丰田公司的大野耐一提出的对一个问题点连续以5个“为什么”来自问&#xff0c;以追究其根本原因的分析方法。 模型介绍 所谓5Why分析法&#xff0c;又称“5问法”&#xff0c;也就是对一个问题点连续以5个“为什么”来提问&#xff0c;以追究其根本原因。虽为5个…

代码随想录第53天

1.最长公共子序列&#xff1a; 红字的问题都是和最长重复子数组那题的代码进行比较的出来的 动规五部曲分析如下&#xff1a; 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j]&#xff1a;长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串tex…

solidity之智能拍卖案例

文章目录 实现一个简易的拍卖状态变量定义和初始化竞拍功能结束竞拍代码 实现一个简易的拍卖 角色分析&#xff1a;4类角色&#xff08;拍卖师actioneer&#xff0c;委托人seller&#xff0c;竞买人bidder&#xff0c;买受人buyer&#xff09; 功能分析&#xff1a;拍卖的基本…

Shell脚本攻略:Linux防火墙(一)

目录 一、理论 1.安全技术 2.防火墙 3.通信五元素和四元素 4.总结 二、实验 1.iptables基本操作 2.扩展匹配 3. 自定义链接 一、理论 1.安全技术 &#xff08;1&#xff09;安全技术 ①入侵检测系统&#xff08;Intrusion Detection Systems&#xff09;&#xff1…

汽车电子AUTOSAR之BswM模块

目录 前言 正文 总体设计框架 模式仲裁过程 模式控制过程 模式仲裁 模式请求来源(ModeRequestPorts) 模式条件(ModeCondition) 逻辑表达式(LogicExpressions) 模式规则(ModeRules) 模式规则的初始化 模式控制 模式控制基本流程 模式行为 常用函数接口 前言 首先&…

Dependency not found解决方案(Springboot,绝对有效)

目录 问题描述解决方案systemPathmvn install 问题描述 今天在弄一个项目的依赖的时候&#xff0c;easyexcel 的依赖就是下载不了&#xff0c;虽然我的 Maven 配置没问题。 依赖&#xff1a;    Maven 配置&#xff1a;    我切换了几个版本&#xff0c;也无法从镜像下…

git diff去除^M的方法

一&#xff0c;简介 本文主要介绍在git修改的时候&#xff0c;修改文件后&#xff0c;git diff查看修改内容时&#xff0c;发现修改的地方每行结束的地方都会有“^M”&#xff0c;很影响查看。故今天分享一种去除“ ^M”显示的方法&#xff0c;供参考。 二&#xff0c;问题原…

案例29:基于Springboot医疗挂号系统开题报告设计

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

最新版本Portraiture4.1中文版ps磨皮滤镜插件安装包

在Portraiture有非常强大的手动功能&#xff0c;可以为用户进行手动调整照片中的皮肤区域以达到更加完美的效果&#xff0c;软件还支持同时导入上千张照片&#xff0c;用户可以通过自动识别照片中的人脸从而依照自己的风格进行批量处理十分的方便快捷。 最新版本Portraiture 4…

空气污染气象学期末复习笔记

空气污染气象学 &#xff08;一&#xff09;研究什么 运用气象学方法研究空气污染物自排放源进入大气层后的散布规律&#xff0c;核心是研究大气输送和扩散 &#xff08;二&#xff09;大气污染 大气污染是指由于人类活动或自然过程引起某种物质进入大气中&#xff0c;呈现出足…

Mysql数据库入门基础篇--mysql 多表查询

【Mysql数据库入门基础篇--mysql 多表查询 &#x1f53b;一、mysql 多表查询1.1 &#x1f343; 7种sql joins 的实现1.2 &#x1f343; 错误写法---笛卡尔积错误1.3 &#x1f343; 正确的多表select写法 &#x1f53b;二、内连接( inner) join&#x1f53b;三、 外连接&#xf…

【LeetCode】23. 合并 K 个升序链表

23. 合并 K 个升序链表&#xff08;困难&#xff09; 方法一&#xff1a;顺序合并 思路 ListNode* mergeTwoLists(ListNode *a, ListNode *b) {if ((!a) || (!b)) return a ? a : b;ListNode head, *tail &head, *aPtr a, *bPtr b;while (aPtr && bPtr) {if (…

【第十期】Apache DolphinScheduler 每周 FAQ 集锦

点击蓝字 关注我们 摘要 为了让 Apache DolphinScheduler 的广大用户和爱好者对于此项目的疑问得到及时快速的解答&#xff0c;社区特发起此次【每周 FAQ】栏目&#xff0c;希望可以解决大家的实际问题。 关于本栏目的要点&#xff1a; 本栏目每周将通过腾讯文档&#xff08;每…

卡尔曼滤波与组合导航原理(十二)扩展卡尔曼滤波:EKF、二阶EKF、迭代EKF

文章目录 一、多元向量的泰勒级数展开二、扩展Kalman滤波三、二阶滤波四、迭代EKF滤波 一、多元向量的泰勒级数展开 { y 1 f 1 ( X ) f 1 ( x 1 , x 2 , ⋯ x n ) y 2 f 2 ( X ) f 2 ( x 1 , x 2 , ⋯ x n ) ⋮ y m f m ( X ) f m ( x 1 , x 2 , ⋯ x n ) \left\{\begin{…

大家都说Java有三种创建线程的方式,并发编程中的惊天骗局

在Java中&#xff0c;创建线程是一项非常重要的任务。线程是一种轻量级的子进程&#xff0c;可以并行执行&#xff0c;使得程序的执行效率得到提高。Java提供了多种方式来创建线程&#xff0c;但许多人都认为Java有三种创建线程的方式&#xff0c;它们分别是继承Thread类、实现…

论文浅尝 | Dually Distilling KGE for Faster and Cheaper Reasoning

笔记整理&#xff1a;张津瑞&#xff0c;天津大学硕士&#xff0c;研究方向为知识图谱 链接&#xff1a;https://dl.acm.org/doi/10.1145/3488560.3498437 动机 知识图谱已被证明可用于各种 AI 任务&#xff0c;如语义搜索&#xff0c;信息提取和问答等。然而众所周知&#xff…

【C++】C++11常用新特性

✍作者&#xff1a;阿润菜菜 &#x1f4d6;专栏&#xff1a;C 目录 一、统一的列表初始化二、 简化声明2.1 auto2.2 decltype2.3 nullptr 三、右值引用和移动语义 -- 重要3.1 区分左值引用和右值引用3.2 对比左值引用看看右值引用使用价值3.3 万能引用和完美转发&#xff08;st…

基于word文档,使用Python输出关键词和词频,并将关键词的词性也标注出来

点击上方“Python爬虫与数据挖掘”&#xff0c;进行关注 回复“书籍”即可获赠Python从入门到进阶共10本电子书 今 日 鸡 汤 移船相近邀相见&#xff0c;添酒回灯重开宴。 大家好&#xff0c;我是Python进阶者。 一、前言 前几天在有个粉丝问了个问题&#xff0c;大概意思是这样…

一道北大强基题背后的故事(三)——什么样的题是好题?

早点关注我&#xff0c;精彩不错过&#xff01; 上回我们针对这道北大强基题[((1 sqrt(5)) / 2) ^ 12]在答案的基础上给出了出题的可能思路&#xff0c;想一探究竟&#xff0c;相关内容请戳&#xff1a; 一道北大强基题背后的故事&#xff08;二&#xff09;——出题者怎么想的…