公共场所人流数据统计如何实现?解决重识别、漏检等检测难题

news2024/11/25 23:45:19

https://github.com/PaddlePaddle/paddledetection当前疫情形势严峻,商场、火车站、地铁口等公共场所对人员流量的统计至关重要。“每天进出多少人?” “现在商场中人员数量有多少?”这些关键数据直接影响到相关防疫管控措施。因为人员基数较大、流动性较高,通过人工来进行流量统计费时费力,更难保障准确性。针对上述难点,大量场景开始使用深度学习中视觉技术来解决此类问题。

小伙伴肯定好奇,如何才能快速上手这么经典的深度学习产业应用呢?本次飞桨产业实践范例库开源人流量统计的产业应用方案,提供了从数据准备、模型训练及优化的全流程可复用方案,降低产业落地门槛,适用于商场、地铁、高铁等多种场景

⭐项目链接⭐

https://github.com/PaddlePaddle/paddledetection#产业实践范例库

所有源码及教程均已开源,欢迎大家使用,star鼓励~

图1 人流量统计结果

场景难点

  • 人流密度过高时,容易造成漏检:在人流密度较高的场合,人与人间存在遮挡,会导致模型误检、漏检问题。
  • 在动态场景下,容易造成重识别问题:传统的传感器或目标检测方式无法识别行人的朝向与ID,导致难以对一段时间内行人进出数量进行精准监控。模型需要对遮挡后重新出现的行人进行准确的重识别,否则对一段时间内的人流统计会有较大的影响。
  • 大量干扰下,容易造成误识别:商场中各种人型模特和广告牌会对结果产生很大干扰。

方案设计

人流量统计任务需要在检测到目标的类别和位置信息的同时,识别出帧与帧间的关联信息,确保视频中的同一个人不会被多次识别并计数。本案例选取飞桨目标检测套件PaddleDetection目标跟踪算法中的FairMOT模型来解决人流量统计问题,不仅可以识别密度,还可以统计到人的流向,从而得到精确的进出人流信息。

FairMOT以AnchorFree的CenterNet检测器为基础,深浅层特征融合使得检测和ReID任务各自获得所需要的特征,实现了两个任务之间的公平性,并获得了更高的模型精度。

模型优化策略和效果

在产业落地时,场景差异较大,为了保障业务对模型精度和速度的要求,在baseline的基础上进行模型优化尤为重要。

本项目使用FairMOT作为基线模型(baseline),骨干网络(backbone)选择DLA-34。同时尝试了如下7种优化策略,供大家参考。

  • 使用CutMix数据增强方式;
  • 使用可变形卷积DCN;
  • 使用EMA(指数移动平均)对模型的参数做平均,提高模型的鲁棒性;
  • 使用Adam优化器和自适应学习率来加快收敛速度
  • 加入注意力机制,让网络更加关注重点信息并忽略无关信息;
  • 更换backbone:将baseline中的CenterNet的backbone由DLA-34更换为其他模型,如:DLA-46-C、DLA-60或DLA-102;
  • 增加GIoU Loss。

模型优化的实验结果如图2所示,实验均在NVIDIA Tesla V100机器上实现,测速时开启 TensorRT。从实验结果可以发现,精度最高的模型并不是推理速度最快的,推理速度最快的模型,精度效果未必是最好的,具体使用什么模型还需要根据业务分析。

图2 实验结论

模型部署

本案例为用户提供了基于Jetson NX的部署Demo方案,如下图2所示。支持用户输入单张图片、文件夹文件夹或视频流进行预测。详细流程参见JetsonNX部署方案:

https://github.com/cjh3020889729/The-PaddleX-QT-Visualize-GUI/tree/main/deploy/cpp/docs/jetson_deploy

图3 部署Demo方案

范例使用工具介绍

飞桨目标检测开发套件PaddleDetection中提供丰富的检测算法,无论你追求的是高精度、轻量化,还是场景预训练模型,能以业界超高标准满足你的需求。同时还在目标检测的基础上,持续拓展了如人体关键点、目标跟踪、人体属性分析、行为识别等高阶任务功能,并且提供统一的使用方式及部署策略,让你不再需要进行模型转化、接口调整,更贴合工业大生产标准化、模块化的需求。

飞桨产业实践范例,助力企业跨越AI落地鸿沟

飞桨产业实践范例,致力于加速AI在产业落地的前进路径,减少理论技术与产业应用的差距。范例来源于产业真实业务场景,通过完整的代码实现,提供从数据准备到模型部署的方案过程解析,堪称产业落地的“自动导航”。

  • 真实产业场景:与实际具有AI应用的企业合作共建,选取企业高频需求的AI应用场景如智慧城市-安全帽检测、智能制造-表计读数等;
  • 完整代码实现:提供可一键运行的代码,在“AI Studio一站式开发平台”上使用免费算力一键Notebook运行;
  • 详细过程解析:深度解析从数据准备和处理、模型选择、模型优化和部署的AI落地全流程,共享可复用的模型调参和优化经验;
  • 直达项目落地:百度高工手把手教用户进行全流程代码实践,轻松直达项目POC阶段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/621676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

shardingsphere5.x整合springboot分库分表实战

官方文档不同版本配置变更记录&#xff1a;Spring Boot Start 配置 :: ShardingSphere pom.xml配置&#xff1a; <!--shardingsphere分库分表依赖--> <dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-jd…

分布式锁原理与实战一:分布式锁简介

跨JVM的线程安全问题 在单体的应用开发场景中&#xff0c;在多线程的环境下&#xff0c;涉及并发同步的时候&#xff0c;为了保证一个代码块在同一时间 只能由一个线程访问&#xff0c;我们一般可以使用 synchronized 语法和 ReetrantLock 去保证&#xff0c;这实际上是本地锁…

指针--间接寻址运算符

通常&#xff0c;只要指明要访问的变量的内存地址&#xff0c;即可直接访问变量所在的存储单元中的内容。在前面都是直接通过变量名来访问变量的内容。直接按变量名或者变量的地址存取变量的内容的访问方式&#xff0c; 称为 直接寻址&#xff08;Direct Addressing&#xff09…

STM32读取BH1750光照强度数据打印到串口

【1】BH1750是什么&#xff1f; BH1750是一种数字式环境光强度传感器&#xff08;Digital Light Sensor&#xff09;&#xff0c;也称为其他名称&#xff0c;例如GY-302传感器、BH1750FVI传感器等。它的工作原理是通过收集光线照射到传感器上的量来测量环境亮度。 使用I2C&am…

操作系统 第三章 3.2 错题整理

页面引用串长度是什么意思 合法位存在位 不存在即发生故障 区分好页表项和逻辑地址 是不同的 逻辑地址48bit 偏移量12bit 页号36bit 页表项8B 4KB/8B2^9 一个页面能存放2^9个页表项 页号9bit&#xff0c;36/94 虚拟存储器包括内存和磁盘对换区&#xff0c;工作集要频繁用到&…

深度学习:使用UNet做图像语义分割,训练自己制作的数据集,详细教程

语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同&#xff0c;语义分割需要判断图像每个像素点的类别&#xff0c;进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。我总结了使用UNet网络做图像语义分割的…

我们不一样-康耐视visionpro和apple vision pro

​ 机器视觉Halcon-不同颜色快速识别 康耐视Visionpro是美国cognex visionpro。 康耐视 VisionPro 是领先的计算机式视觉软件。它主要用于设置和部署视觉应用 - 无论是使用相机还是图像采集卡。借助 VisionPro,用户可执行各种功能,包括几何对象定位和检测、识别、测量和对准…

【Web服务应用】LVS负载均衡集群

LVS负载均衡集群 一、企业级集群含义1.1集群的含义1.2LVS一些专业术语 二、企业集群分类2.1负载均衡集群2.2高可用集群2.3高性能运算集群&#xff08;High Performance Computer Cluster&#xff09; 三、负载均衡的架构3.1负载均衡的结构 四、负载均很集群的工作模式4.1NAT模式…

JDBC连接数据库步骤(入门到进阶全)

目录 一、JDBC是什么&#xff1f; 二&#xff0c;JDBC的本质是什么&#xff1f; 为什么要用面向接口编程&#xff1f; 三、JDBC实现原理 四、使用idea开发JDBC代码配置驱动 ​编辑 五、JDBC编程六步概述 六、JDBC编程实现 1.插入实现 2.删除与更新实现 3 .类加载的方式注…

Jetson AGX Orin安装Anaconda、Cuda、Cudnn、Pytorch、Tensorrt最全教程

文章目录 一&#xff1a;Anaconda安装二&#xff1a;Cuda、Cudnn安装三&#xff1a;Pytorch安装四&#xff1a;Tensorrt安装 一&#xff1a;Anaconda安装 Jetson系列边缘开发板&#xff0c;其架构都是arm64&#xff0c;而不是传统PC的amd64&#xff0c;深度学习的环境配置方法…

chatgpt赋能python:Python对接技术在SEO中的应用

Python对接技术在SEO中的应用 Python作为一种高性能的编程语言&#xff0c;被广泛应用于各种领域&#xff0c;其中也包括了搜索引擎优化&#xff08;SEO&#xff09;领域。Python对接技术&#xff0c;也称为API对接技术&#xff0c;是指通过调用API接口来获取数据、信息或实现…

AI数字人打造之sadtalker让照片开口说话

1 sadtalker介绍 西安交通大学也开源了人工智能SadTalker模型&#xff0c;通过从音频中学习生成3D运动系数&#xff0c;使用全新的3D面部渲染器来生成头部运动&#xff0c;可以实现图片音频就能生成高质量的视频。 论文地址&#xff1a;Learning Realistic 3D Motion Coefficie…

chatgpt赋能python:Python屏蔽语句的重要性

Python屏蔽语句的重要性 Python是一种高级程序设计语言&#xff0c;被认为是开发Web应用程序、数据科学和人工智能的最佳语言之一。在编写Python程序时&#xff0c;每个人都会遇到需要屏蔽语句的情况。在本文中&#xff0c;我们将详细介绍Python屏蔽语句的重要性和用法。 什么…

chatgpt赋能python:Python建模仿真:优秀的工具与技巧

Python建模仿真&#xff1a;优秀的工具与技巧 在现代科技时代&#xff0c;建模仿真是许多不同行业的核心部分&#xff0c;帮助工程师和科学家研究解决许多问题。Python作为一种简单易学且强大的语言&#xff0c;已经被广泛应用于建模仿真领域。 Python的优点 Python在建模仿…

用Python进行数学建模(一)

一、导入数据 1.直接赋值 2.读取 Excel 文件 3.代码示例 import pandas as pd# 读取数据文件 def readDataFile(readPath): # readPath: 数据文件的地址和文件名try:if (readPath[-4:] ".csv"):dfFile pd.read_csv(readPath, header0, sep",") # 间隔…

chatgpt赋能python:Python嵌入C:一个高效的编程技巧

Python嵌入C&#xff1a;一个高效的编程技巧 作为一名有10年Python编程经验的工程师&#xff0c;我发现在某些情况下&#xff0c;Python嵌入C是一种高效的编程技巧。这种技巧可以使您利用Python的简洁性和高级功能&#xff0c;同时仍然保持程序的执行速度。在本文中&#xff0…

chatgpt赋能python:Python对接硬件:从入门到精通

Python对接硬件&#xff1a;从入门到精通 Python是一门极为强大的编程语言&#xff0c;它不只是用来进行数据分析和Web开发的&#xff0c;也可以用来对接各种硬件设备。这是因为Python具有简单易学&#xff0c;语法简洁&#xff0c;库众多的优点。 什么是Python对接硬件 Pyt…

通过AI工具(ChatGPT接口)生成一字未改的论文,查重率4.2%,可以直接当作论文使用

论文题目&#xff1a;基于AIOT技术的能源控制器的设计以及应用 查重结果&#xff1a;4.2% AI工具国内体验&#xff0c;关注&#xff1a;码视野&#xff0c;回复关键字&#xff1a;1002 一、引言 随着全球经济的快速发展和人口的增长&#xff0c;对能源的需求日益增加。然而&…

nodejs环境变量配置问题记录

问题一&#xff1a;Error: EPERM: operation not permitted, open ‘D:\Program Files\nodejs\node_cache\_cacache\tmp\bccd20 这个问题主要是没有权限导致的。 问题二&#xff1a;使用node命令提示 ‘node‘ 不是内部或外部命令&#xff0c;也不是可运行的程序 这个错误是环…

chatgpt赋能python:Python如何将文件另存为:让您的文件管理更便捷

Python如何将文件另存为&#xff1a;让您的文件管理更便捷 随着数字化时代的来临&#xff0c;文件管理已经成为我们日常工作不可缺少的一部分。当涉及到大量的文件管理时&#xff0c;手动操作可能会浪费大量的时间和精力。 在这种情况下&#xff0c;自动化的解决方案将会是很有…