用Python进行数学建模(一)

news2025/1/11 13:04:29

一、导入数据

1.直接赋值

在这里插入图片描述

2.读取 Excel 文件

在这里插入图片描述

3.代码示例

import pandas as pd

# 读取数据文件
def readDataFile(readPath):  # readPath: 数据文件的地址和文件名
    try:
        if (readPath[-4:] == ".csv"):
            dfFile = pd.read_csv(readPath, header=0, sep=",")  # 间隔符为逗号,首行为标题行
            # dfFile = pd.read_csv(filePath, header=None, sep=",")  # sep: 间隔符,无标题行
        elif (readPath[-4:] == ".xls") or (readPath[-5:] == ".xlsx"):  # sheet_name 默认为 0
            dfFile = pd.read_excel(readPath, header=0)  # 首行为标题行
            # dfFile = pd.read_excel(filePath, header=None)  # 无标题行
        elif (readPath[-4:] == ".dat"):  # sep: 间隔符,header:首行是否为标题行
            dfFile = pd.read_table(readPath, sep=" ", header=0)  # 间隔符为空格,首行为标题行
            # dfFile = pd.read_table(filePath,sep=",",header=None) # 间隔符为逗号,无标题行
        else:
            print("不支持的文件格式。")
    except Exception as e:
        print("读取数据文件失败:{}".format(str(e)))
        return
    return dfFile

# 主程序
def main():

    # 读取数据文件
    readPath = "../data/toothpaste.csv"  # 数据文件的地址和文件名
    dfFile = readDataFile(readPath)  # 调用读取文件子程序
    
    print(type(dfFile))  # 查看 dfFile 数据类型
    print(dfFile.shape)  # 查看 dfFile 形状(行数,列数)
    print(dfFile.head())  # 显示 dfFile 前 5 行数据

    return

if __name__ == '__main__':
    main()

二、线性规划

1.什么是线性规划问题

在这里插入图片描述

2.线性规划问题如何求解

1.问题在这里插入图片描述

2.代码

import pulp  # 导入 PuLP库函数

# 1.定义一个规划问题
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
'''
pulp.LpProblem 是定义问题的构造函数。
"LPProbDemo1"是用户定义的问题名(用于输出信息)。
参数 sense 用来指定求最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。本例 “sense=pulp.LpMaximize” 表示求目标函数的最大值。
'''
# 2.定义决策变量
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
'''
pulp.LpVariable 是定义决策变量的函数。
‘x1’ 是用户定义的变量名。
参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。
参数 cat 用来设定变量类型,可选参数值:‘Continuous’ 表示连续变量(默认值)、’ Integer ’ 表示离散变量(用于整数规划问题)、’ Binary ’ 表示0/1变量(用于0/1规划问题)。
'''
# 3.设置目标函数
MyProbLP += 2 * x1 + 3 * x2 - 5 * x3
'''
添加目标函数使用 “问题名 += 目标函数式” 格式。
'''
# 4.添加约束条件
MyProbLP += (2 * x1 - 5 * x2 + x3 >= 10)  # 不等式约束
MyProbLP += (x1 + 3 * x2 + x3 <= 12)  # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7)  # 等式约束
'''
添加约束条件使用 “问题名 += 约束条件表达式” 格式。
约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<=“和”=="。
'''
# 5.求解
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status])  # 输出求解状态
for v in MyProbLP.variables():
    print(v.name, "=", v.varValue)  # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective))  # 输出最优解的目标函数值
'''
solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。
'''

3.结果

在这里插入图片描述

4.求解实例

在这里插入图片描述

三、整数规划

线性规划问题的最优解可能是分数或小数。整数规划是指变量的取值只能是整数的规划。
pulp.LpVariable 用来定义决策变量的函数,参数 cat 用来设定变量类型,可选参数值:‘Continuous’ 表示连续变量(默认值)、’ Integer ’ 表示离散变量(用于整数规划问题)、’ Binary ’ 表示0/1变量(用于0/1规划问题)。

1.求解示例

import pulp      # 导入 pulp 库

# 主程序
def main():

    # 模型参数设置
    """
    问题描述:
        某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克、工人10名,获利10万元;每百箱乙饮料需用原料5千克、工人20名,获利9万元。
        今工厂共有原料60千克、工人150名,又由于其他条件所限甲饮料产量不超过8百箱。
        (1)问如何安排生产计划,即两种饮料各生产多少使获利最大?
        (2)若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
        (3)若不允许散箱(按整百箱生产),如何安排生产计划,即两种饮料各生产多少使获利最大?
        (4)若不允许散箱(按整百箱生产),若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
    """

    # 问题 1:
    """
    问题建模:
        决策变量:
            x1:甲饮料产量(单位:百箱)
            x2:乙饮料产量(单位:百箱)
        目标函数:
            max fx = 10*x1 + 9*x2
        约束条件:
            6*x1 + 5*x2 <= 60
            10*x1 + 20*x2 <= 150            
            x1, x2 >= 0,x1 <= 8
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize)    # 定义问题 1,求最大值
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous')  # 定义 x1
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous')  # 定义 x2
    ProbLP1 += (10*x1 + 9*x2)  # 设置目标函数 f(x)
    ProbLP1 += (6*x1 + 5*x2 <= 60)  # 不等式约束
    ProbLP1 += (10*x1 + 20*x2 <= 150)  # 不等式约束
    ProbLP1.solve()
    print(ProbLP1.name)  # 输出求解状态
    print("Status :", pulp.LpStatus[ProbLP1.status])  # 输出求解状态
    for v in ProbLP1.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F1(x) =", pulp.value(ProbLP1.objective))  # 输出最优解的目标函数值


    # 问题 2:
    """
    问题建模:
        决策变量:
            x1:甲饮料产量(单位:百箱)
            x2:乙饮料产量(单位:百箱)
            x3:增加投资(单位:万元)
        目标函数:
            max fx = 10*x1 + 9*x2 - x3
        约束条件:
            6*x1 + 5*x2 <= 60 + x3/0.8
            10*x1 + 20*x2 <= 150
            x1, x2, x3 >= 0,x1 <= 8
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize)    # 定义问题 2,求最大值
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous')  # 定义 x1
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous')  # 定义 x2
    x3 = pulp.LpVariable('x3', lowBound=0, cat='Continuous')  # 定义 x3
    ProbLP2 += (10*x1 + 9*x2 - x3)  # 设置目标函数 f(x)
    ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60)  # 不等式约束
    ProbLP2 += (10*x1 + 20*x2 <= 150)  # 不等式约束
    ProbLP2.solve()
    print(ProbLP2.name)  # 输出求解状态
    print("Status :", pulp.LpStatus[ProbLP2.status])  # 输出求解状态
    for v in ProbLP2.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F2(x) =", pulp.value(ProbLP2.objective))  # 输出最优解的目标函数值

    # 问题 3:整数规划问题
    """
    问题建模:
        决策变量:
            x1:甲饮料产量,正整数(单位:百箱)
            x2:乙饮料产量,正整数(单位:百箱)
        目标函数:
            max fx = 10*x1 + 9*x2
        约束条件:
            6*x1 + 5*x2 <= 60
            10*x1 + 20*x2 <= 150
            x1, x2 >= 0,x1 <= 8,x1, x2 为整数
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize)  # 定义问题 3,求最大值
    print(ProbLP3.name)  # 输出求解状态
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer')  # 定义 x1,变量类型:整数
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer')  # 定义 x2,变量类型:整数
    ProbLP3 += (10 * x1 + 9 * x2)  # 设置目标函数 f(x)
    ProbLP3 += (6 * x1 + 5 * x2 <= 60)  # 不等式约束
    ProbLP3 += (10 * x1 + 20 * x2 <= 150)  # 不等式约束
    ProbLP3.solve()
    print("Status:", pulp.LpStatus[ProbLP3.status])  # 输出求解状态
    for v in ProbLP3.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F3(x) =", pulp.value(ProbLP3.objective))  # 输出最优解的目标函数值


    # 问题 4:
    """
    问题建模:
        决策变量:
            x1:甲饮料产量,正整数(单位:百箱)
            x2:乙饮料产量,正整数(单位:百箱)
            x3:增加投资(单位:万元)
        目标函数:
            max fx = 10*x1 + 9*x2 - x3
        约束条件:
            6*x1 + 5*x2 <= 60 + x3/0.8
            10*x1 + 20*x2 <= 150
            x1, x2, x3 >= 0,x1 <= 8,x1, x2 为整数
    此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
    """
    ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize)  # 定义问题 4,求最大值
    print(ProbLP4.name)  # 输出求解状态
    x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer')  # 定义 x1,变量类型:整数
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Integer')  # 定义 x2,变量类型:整数
    x3 = pulp.LpVariable('x3', lowBound=0, cat='Continuous')  # 定义 x3
    ProbLP4 += (10*x1 + 9*x2 - x3)  # 设置目标函数 f(x)
    ProbLP4 += (6*x1 + 5*x2 - 1.25*x3 <= 60)  # 不等式约束
    ProbLP4 += (10*x1 + 20*x2 <= 150)  # 不等式约束
    ProbLP4.solve()
    print("Status:", pulp.LpStatus[ProbLP4.status])  # 输出求解状态
    for v in ProbLP4.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F4(x) =", pulp.value(ProbLP4.objective))  # 输出最优解的目标函数值

    return

if __name__ == '__main__':  
    main()  

2.结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、0-1规划

0-1 整数规划是一类特殊的整数规划,变量的取值只能是 0 或 1。主要用于求解互斥的决策问题、互斥的约束条件问题、固定费用问题和分派问题。

1.规划的分类及建模方法

规划问题的数学模型包括决策变量、约束条件和目标函数,围绕这三个要素都可能存在互斥的情况,从而导出不同类型的0-1规划问题,其建模方法也有差别。

  • 1.互斥的决策问题
    在这里插入图片描述
  • 2.互斥的约束问题
    在这里插入图片描述
  • 3.固定费用问题
    在这里插入图片描述
  • 4.指派问题
    在这里插入图片描述

2.PuLP 求解 0-1 规划问题

1.案例问题描述
在这里插入图片描述
2.建模过程分析
在这里插入图片描述

3.模型求解的编程

import pulp      # 导入 pulp 库

# 主程序
def main():
    # 投资决策问题:
    # 公司现有 5个拟投资项目,根据投资额、投资收益和限制条件,问如何决策使收益最大。
    """
    问题建模:
        决策变量:
            x1~x5:0/1 变量,1 表示选择第 i 个项目, 0 表示不选择第 i 个项目
        目标函数:
            max fx = 150*x1 + 210*x2 + 60*x3 + 80*x4 + 180*x5
        约束条件:
            210*x1 + 300*x2 + 100*x3 + 130*x4 + 260*x5 <= 600
            x1 + x2 + x3 = 1
            x3 + x4 <= 1
            x5 <= x1
            x1,...,x5 = 0, 1
    """
    InvestLP = pulp.LpProblem("Invest decision problem", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # 参数 cat 用来设定变量类型,’ Binary ’ 表示0/1变量(用于0/1规划问题)。
    x1 = pulp.LpVariable('A', cat='Binary')  # 定义 x1,A 项目   
    x2 = pulp.LpVariable('B', cat='Binary')  # 定义 x2,B 项目
    x3 = pulp.LpVariable('C', cat='Binary')  # 定义 x3,C 项目
    x4 = pulp.LpVariable('D', cat='Binary')  # 定义 x4,D 项目
    x5 = pulp.LpVariable('E', cat='Binary')  # 定义 x5,E 项目
    InvestLP += (150*x1 + 210*x2 + 60*x3 + 80*x4 + 180*x5)  # 设置目标函数 f(x)
    InvestLP += (210*x1 + 300*x2 + 100*x3 + 130*x4 + 260*x5 <= 600)  # 不等式约束
    InvestLP += (x1 + x2 + x3 == 1)  # 等式约束
    InvestLP += (x3 + x4 <= 1)  # 不等式约束
    InvestLP += (x5 - x1 <= 0)  # 不等式约束
    InvestLP.solve()  # solve() 是求解函数,可以对求解器、求解精度进行设置。
    print(InvestLP.name)  # 输出求解状态
    print("Status youcans:", pulp.LpStatus[InvestLP.status])  # 输出求解状态
    for v in InvestLP.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("Max f(x) =", pulp.value(InvestLP.objective))  # 输出最优解的目标函数值

    return

if __name__ == '__main__': 
    main()  

4.运行结果
在这里插入图片描述
结论:从 0-1 规划模型的结果可知,选择 A、C、E 项目进行投资,可以满足限定条件并获得最大收益 410万元。

五、固定费用问题

1.问题定义

在这里插入图片描述

2.案例

1.问题描述
在这里插入图片描述
2.建模分析
首先要理解生产某种服装就会发生设备租金,租金只与是否生产该产品有关,而与生产数量无关,这就是固定成本。因此本题属于固定费用问题。
有些同学下意识地认为是从 3 种产品中选择一种,但题目中并没有限定必须或只能生产一种产品,因此决策结果可以是都不生产、选择 1 种或 2 种产品、3 种都生产。
在这里插入图片描述
3.编程求解

import pulp      # 导入 pulp 库

# 主程序
def main():
    # 固定费用问题(Fixed cost problem)
    print("固定费用问题(Fixed cost problem)")
    # 问题建模:
    """
        决策变量:
            y(i) = 0, 不生产第 i 种产品
            y(i) = 1, 生产第 i 种产品            
            x(i), 生产第 i 种产品的数量, i>=0 整数
            i=1,2,3
        目标函数:
            min profit = 120x1 + 10x2+ 100x3 - 5000y1 - 2000y2 - 2000y3
        约束条件:
            5x1 + x2 + 4x3 <= 2000
            3x1 <= 300y1
            0.5x2 <= 300y2
            2x3 <= 300y3
        变量取值范围:
            0<=x1<=100, 0<=x2<=600, 0<=x3<=150, 整数变量
            y1, y2 ,y3 为 0/1 变量 
    """
    # 1. 固定费用问题(Fixed cost problem), 使用 PuLP 工具包求解
    # (1) 建立优化问题 FixedCostP1: 求最大值(LpMaximize)
    FixedCostP1 = pulp.LpProblem("Fixed_cost_problem_1", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # (2) 建立变量
    x1 = pulp.LpVariable('A', cat='Binary')  # 定义 x1,0-1变量,是否生产 A 产品
    x2 = pulp.LpVariable('B', cat='Binary')  # 定义 x2,0-1变量,是否生产 B 产品
    x3 = pulp.LpVariable('C', cat='Binary')  # 定义 x3,0-1变量,是否生产 C 产品
    y1 = pulp.LpVariable('yieldA', lowBound=0, upBound=100, cat='Integer')  # 定义 y1,整型变量
    y2 = pulp.LpVariable('yieldB', lowBound=0, upBound=600, cat='Integer')  # 定义 y2,整型变量
    y3 = pulp.LpVariable('yieldC', lowBound=0, upBound=150, cat='Integer')  # 定义 y3,整型变量
    # (3) 设置目标函数
    FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3)  # 设置目标函数 f(x)
    # (4) 设置约束条件
    FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000)  # 不等式约束
    FixedCostP1 += (3*y1 - 300*x1 <= 0)  # 不等式约束
    FixedCostP1 += (0.5*y2 - 300*x2 <= 0)  # 不等式约束
    FixedCostP1 += (2*y3 - 300*x3 <= 0)  # 不等式约束
    # (5) 求解
    FixedCostP1.solve()
    # (6) 打印结果
    print(FixedCostP1.name)
    if pulp.LpStatus[FixedCostP1.status] == "Optimal":  # 获得最优解
        for v in FixedCostP1.variables():
            print(v.name, "=", v.varValue)  # 输出每个变量的最优值
        print("F(x) = ", pulp.value(FixedCostP1.objective))  # 输出最优解的目标函数值
    return

if __name__ == '__main__':
    main()

在这里插入图片描述
结论:从固定费用问题模型的求解结果可知,A、B、C 三种服装都生产,产量分别为 A/100、B/600、C/150 时获得最大利润为:24000。

4.字典格式快捷建模方法
在这里插入图片描述

import pulp  # 导入 pulp 库


# 主程序
def main():
    # 2. 问题同上,PuLP 快捷方法示例
    # (1) 建立优化问题 FixedCostP2: 求最大值(LpMaximize)
    FixedCostP2 = pulp.LpProblem("Fixed_cost_problem_2", sense=pulp.LpMaximize)  # 定义问题,求最大值
    # (2) 建立变量
    types = ['A', 'B', 'C']  # 定义产品种类
    status = pulp.LpVariable.dicts("生产决策", types, cat='Binary')  # 定义 0/1 变量,是否生产该产品
    yields = pulp.LpVariable.dicts("生产数量", types, lowBound=0, upBound=600, cat='Integer')  # 定义整型变量
    # (3) 设置目标函数
    fixedCost = {'A': 5000, 'B': 2000, 'C': 2000}  # 各产品的 固定费用
    unitProfit = {'A': 120, 'B': 10, 'C': 100}  # 各产品的 单位利润
    FixedCostP2 += pulp.lpSum([(yields[i] * unitProfit[i] - status[i] * fixedCost[i]) for i in types])
    # (4) 设置约束条件
    humanHours = {'A': 5, 'B': 1, 'C': 4}  # 各产品的 单位人工工时
    machineHours = {'A': 3.0, 'B': 0.5, 'C': 2.0}  # 各产品的 单位设备工时
    maxHours = {'A': 300, 'B': 300, 'C': 300}  # 各产品的 最大设备工时
    FixedCostP2 += pulp.lpSum([humanHours[i] * yields[i] for i in types]) <= 2000  # 不等式约束
    for i in types:
        FixedCostP2 += (yields[i] * machineHours[i] - status[i] * maxHours[i] <= 0)  # 不等式约束
    # (5) 求解
    FixedCostP2.solve()
    # (6) 打印结果
    print(FixedCostP2.name)
    temple = "品种 %(type)s 的决策是:%(status)s,生产数量为:%(yields)d"
    if pulp.LpStatus[FixedCostP2.status] == "Optimal":  # 获得最优解
        for i in types:
            output = {'type': i,
                      'status': '同意' if status[i].varValue else '否决',
                      'yields': yields[i].varValue}
            print(temple % output)
        print("最大利润 = ", pulp.value(FixedCostP2.objective))  # 输出最优解的目标函数值

    return


if __name__ == '__main__':
    main()

在这里插入图片描述

六、选址问题

选址问题是指在某个区域内选择设施的位置使所需的目标达到最优。选址问题也是一种互斥的计划问题。
选址问题有四个基本要素:设施、区域、距离和优化目标。

1.P-中位问题

在这里插入图片描述

2.P-中心问题

在这里插入图片描述

3.集合覆盖问题

在这里插入图片描述

4.游泳接力赛的指派问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pulp      # 导入 pulp 库
import numpy as np

# 主程序
def main():
    # 问题建模:
    """
        决策变量:
            x(i,j) = 0, 第 i 个人不游第 j 种姿势
            x(i,j) = 1, 第 i 个人游第 j 种姿势
            i=1,4, j=1,4
        目标函数:
            min time = sum(sum(c(i,j)*x(i,j))), i=1,4, j=1,4
        约束条件:
            sum(x(i,j),j=1,4)=1, i=1,4
            sum(x(i,j),i=1,4)=1, j=1,4
        变量取值范围:
            x(i,j) = 0,1 
    """

    # 游泳比赛的指派问题 (assignment problem)
    # 1.建立优化问题 AssignLP: 求最小值(LpMinimize)
    AssignLP = pulp.LpProblem("Assignment_problem_for_swimming_relay_race", sense=pulp.LpMinimize)  # 定义问题,求最小值
    # 2. 建立变量
    rows = cols = range(0, 4)
    x = pulp.LpVariable.dicts("x", (rows, cols), cat="Binary")
    # 3. 设置目标函数
    scoreM = [[56,74,61,63],[63,69,65,71],[57,77,63,67],[55,76,62,62]]
    AssignLP += pulp.lpSum([[x[row][col]*scoreM[row][col] for row in rows] for col in cols])
    # 4. 施加约束
    for row in rows:
        AssignLP += pulp.lpSum([x[row][col] for col in cols]) == 1 # sum(x(i,j),j=1,4)=1, i=1,4
    for col in cols:
        AssignLP += pulp.lpSum([x[row][col] for row in rows]) == 1 # sum(x(i,j),i=1,4)=1, j=1,4
    # 5. 求解
    AssignLP.solve()
    # 6. 打印结果
    print(AssignLP.name)
    member = ["队员A","队员B","队员C","队员D"]
    style = ["自由泳","蛙泳","蝶泳","仰泳"]
    if pulp.LpStatus[AssignLP.status] == "Optimal":  # 获得最优解
        xValue = [v.varValue for v in AssignLP.variables()]
        # [0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]
        xOpt = np.array(xValue).reshape((4, 4))  # 将 xValue 格式转换为 4x4 矩阵
        print("最佳分配:" )
        for row in rows:
            print("{}\t{} 参加项目:{}".format(xOpt[row],member[row],style[np.argmax(xOpt[row])]))
        print("预测最好成绩为:{}".format(pulp.value(AssignLP.objective)))

    return

if __name__ == '__main__':
    main()

在这里插入图片描述

5.消防站的选址问题

在这里插入图片描述
在这里插入图片描述

import pulp  # 导入 pulp 库


# 主程序
def main():
    # 问题建模:
    """
        决策变量:
            x(j) = 0, 不选择第 j 个消防站
            x(j) = 1, 选择第 j 个消防站, j=1,8
        目标函数:
            min fx = sum(x(j)), j=1,8
        约束条件:
            sum(x(j)*R(i,j),j=1,8) >=1, i=1,8
        变量取值范围:
            x(j) = 0,1
    """

    # 消防站的选址问题 (set covering problem, site selection of fire station)
    # 1.建立优化问题 SetCoverLP: 求最小值(LpMinimize)
    SetCoverLP = pulp.LpProblem("SetCover_problem_for_fire_station", sense=pulp.LpMinimize)  # 定义问题,求最小值
    # 2. 建立变量
    zones = list(range(8))  # 定义各区域
    x = pulp.LpVariable.dicts("zone", zones, cat="Binary")  # 定义 0/1 变量,是否在该区域设消防站
    # 3. 设置目标函数
    SetCoverLP += pulp.lpSum([x[j] for j in range(8)])  # 设置消防站的个数
    # 4. 施加约束
    reachable = [[1, 0, 0, 0, 0, 0, 0, 0],
                 [0, 1, 1, 0, 0, 0, 0, 0],
                 [0, 1, 1, 0, 1, 0, 0, 0],
                 [0, 0, 0, 1, 0, 0, 0, 0],
                 [0, 0, 0, 0, 1, 0, 0, 0],
                 [0, 0, 0, 0, 0, 1, 1, 0],
                 [0, 0, 0, 0, 0, 0, 1, 1],
                 [0, 0, 0, 0, 0, 0, 1, 1]]  # 参数矩阵,第 i 消防站能否在 10分钟内到达第 j 区域
    for i in range(8):
        SetCoverLP += pulp.lpSum([x[j] * reachable[j][i] for j in range(8)]) >= 1

    # 5. 求解
    SetCoverLP.solve()
    # 6. 打印结果
    print(SetCoverLP.name)
    temple = "区域 %(zone)d 的决策是:%(status)s"  # 格式化输出
    if pulp.LpStatus[SetCoverLP.status] == "Optimal":  # 获得最优解
        for i in range(8):
            output = {'zone': i + 1,  # 与问题中区域 1~8 一致
                      'status': '建站' if x[i].varValue else '--'}
            print(temple % output)
        print("需要建立 {} 个消防站。".format(pulp.value(SetCoverLP.objective)))

    return


if __name__ == '__main__':
    main()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/621641.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chatgpt赋能python:Python嵌入C:一个高效的编程技巧

Python嵌入C&#xff1a;一个高效的编程技巧 作为一名有10年Python编程经验的工程师&#xff0c;我发现在某些情况下&#xff0c;Python嵌入C是一种高效的编程技巧。这种技巧可以使您利用Python的简洁性和高级功能&#xff0c;同时仍然保持程序的执行速度。在本文中&#xff0…

chatgpt赋能python:Python对接硬件:从入门到精通

Python对接硬件&#xff1a;从入门到精通 Python是一门极为强大的编程语言&#xff0c;它不只是用来进行数据分析和Web开发的&#xff0c;也可以用来对接各种硬件设备。这是因为Python具有简单易学&#xff0c;语法简洁&#xff0c;库众多的优点。 什么是Python对接硬件 Pyt…

通过AI工具(ChatGPT接口)生成一字未改的论文,查重率4.2%,可以直接当作论文使用

论文题目&#xff1a;基于AIOT技术的能源控制器的设计以及应用 查重结果&#xff1a;4.2% AI工具国内体验&#xff0c;关注&#xff1a;码视野&#xff0c;回复关键字&#xff1a;1002 一、引言 随着全球经济的快速发展和人口的增长&#xff0c;对能源的需求日益增加。然而&…

nodejs环境变量配置问题记录

问题一&#xff1a;Error: EPERM: operation not permitted, open ‘D:\Program Files\nodejs\node_cache\_cacache\tmp\bccd20 这个问题主要是没有权限导致的。 问题二&#xff1a;使用node命令提示 ‘node‘ 不是内部或外部命令&#xff0c;也不是可运行的程序 这个错误是环…

chatgpt赋能python:Python如何将文件另存为:让您的文件管理更便捷

Python如何将文件另存为&#xff1a;让您的文件管理更便捷 随着数字化时代的来临&#xff0c;文件管理已经成为我们日常工作不可缺少的一部分。当涉及到大量的文件管理时&#xff0c;手动操作可能会浪费大量的时间和精力。 在这种情况下&#xff0c;自动化的解决方案将会是很有…

【玩转Linux操作】用户管理(命令讲解配上样例解释)

&#x1f38a;专栏【玩转Linux操作】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【Counting Stars 】 欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f354;添加用户⭐命令&#x1f388;useradd 用户名 ⭐演示…

【日志解析】【启发式】Drain:一种用于日志解析的深度解析树

Drain&#xff1a;An Online Log Parsing Approach with Fixed Depth Tree 文章目录 Drain&#xff1a;An Online Log Parsing Approach with Fixed Depth Tree1 论文出处2 背景2.1 背景介绍2.2 针对问题2.3 创新点 3 主要设计思路3.1 Drain整体结构3.2 具体步骤 4 实验设计5 个…

pycharm利用快捷键,快速注释多行代码的方法分享

最近在pycharm的新手学习群里&#xff0c;发现有些小伙伴依然在“手工”进行代码的注释&#xff0c;效率较低。 下面分享pycharm利用快捷键&#xff0c;快速注释多行代码的方法。可以帮助pycharm初学者加倍提升代码的注释效率。 代码注释快捷键 pycharm代码注释的快捷键为 c…

Anaconda 下载安装

文章目录 Anaconda下载Anaconda安装 Anaconda下载 进入官网 https://www.anaconda.com/ &#xff0c;往下滑动&#xff0c;找到下载地址 2. 根据自己的系统&#xff0c;选择相应的安装包 直接从官网下载的话&#xff0c;下载速度较慢&#xff0c;可以使用国内镜像快速下载 百…

chatgpt赋能python:Python-基础知识:如何在Python中建立一个文件

Python-基础知识&#xff1a;如何在Python中建立一个文件 在Python中&#xff0c;创建文件是一个非常常见和重要的基础操作。Python提供了多种方法来创建文件&#xff0c;包括使用内置函数和第三方库。在本文中&#xff0c;我们将探讨如何使用Python建立一个文件。 使用内置函…

Linux启动nginx

Linux启动nginx 一、下载并解压安装包 1.首先我们需要安装nginx所需要的依赖 yum install pcre pcre-devel gcc openssl openssl-devel zlib zlib-devel2.在/usr/local/下创建文件nginx文件 mkdir /usr/local/nginx/3.进入/usr/local/nginx/ cd /usr/local/nginx/4.在网上…

TensorBoard快速入门(Pytorch使用TensorBoard)

文章目录 TensorBoard 简介TensorBoard 界面介绍TensorBoard 安装TensorBoard 运行Pytorch 使用 TensorBoardGoogle Colab中使用 TensorboardTensor折线图&#xff08;Scalars&#xff09; TensorBoard 简介 TensorBoard 是Google开发的一个机器学习可视化工具。其主要用于记录…

【1】如何安装和卸载tensorflow-CPU和GPU各版本-简单清晰版

文章目录 前言一、tensorflow-cpu指定版本的卸载二、tensorflow-gpu指定版本的卸载三、tensorflow-cpu指定版本的安装1、创建虚拟环境2、激活虚拟环境3、安装指定版本的tensorflow 四、tensorflow-gpu指定版本的安装安装CUDA安装cuDNN安装tensorflow_gpu-2.1.0测试tensorflow安…

SparkSQL优化

执行计划 查看执行计划 explain()&#xff1a;只展示物理执行计划。&#xff08;使用较多&#xff09;explain(mode"simple")&#xff1a;只展示物理执行计划。explain(mode“extended”)&#xff1a;展示物理执行计划和逻辑执行计划。explain(mode"codegen&q…

【数据结构与算法】线性表 01 链表

一、线性表1.1 概念与特点1.2 线性表的存储结构1.3 常见操作1.4 应用场景 二、链表2.1 链表简介2.2 单向链表&#xff08;单链表&#xff09;2.21 基本概念2.22 单链表基本操作2.23 C语言实现 2.3 双向链表2.4 循环链表 一、线性表 线性表是一种最基本、最简单的数据结构&…

Windows下安装及使用pip

首先查看Windows系统下是否安装有pip。终端执行下面命令&#xff1a; pip list # 查看Python中安装了哪些第三方库如果出现 ModuleNotFoundError: No module named ‘pip‘ 则说明系统里未安装成功pip。 那么可以先把pip安装上。安装pip可以选择 在线安装 或者 离线安装 两…

网络配置心得-从switch网络加速出发

背景&#xff1a; 在PC上玩战地5饱受外挂毒打&#xff0c;早想接触主机游戏又没有机会。最近突然有个好机遇带我入坑switch&#xff0c;那肯定得赶紧体验一下啊~~ 被安利的游戏是斯普拉遁3&#xff08;splatoon3&#xff09;&#xff0c;是一款switch独占的第三人称射击游戏&a…

chatgpt赋能python:Python将yyyymmdd转换成yyyy-mm-dd的方法

Python将yyyymmdd转换成yyyy-mm-dd的方法 Python语言不仅易于学习&#xff0c;而且是一种功能强大的语言&#xff0c;广泛应用于数据分析、人工智能和Web开发等领域。在实际开发过程中&#xff0c;我们经常遇到需要将日期格式转换为其他格式的需求。本文将介绍如何使用Python将…

抖音账号矩阵系统|源码|开源代码独立部署难度

抖音账号矩阵系统&#xff0c;短视频账号矩阵系统源码&#xff0c; 短视频矩阵是一种常见的视频编码标准&#xff0c;它通过将视频分成多个小块并对每个小块进行压缩来实现高效的视频传输。在本文中&#xff0c;我们将介绍短视频矩阵的原理和实现&#xff0c;并提供示例代码。 …

谈谈IPv6

最近&#xff0c;在B站看到一个讲解IPv6背景的视频比较热门&#xff0c;而评论区则对IPv6技术有许多误解&#xff0c;这也反映出大家或许对这一新的协议不够了解&#xff0c;本文就谈谈我们生活中的IPv6。 另&#xff1a;前述的B站视频地址电子监听、全国断网&#xff0c;棱镜…