【C++】——list的介绍及模拟实现

news2024/7/6 18:44:27

文章目录

  • 1. 前言
  • 2. list的介绍
  • 3. list的常用接口
    • 3.1 list的构造函数
    • 3.2 iterator的使用
    • 3.3 list的空间管理
    • 3.4 list的结点访问
    • 3.5 list的增删查改
  • 4. list迭代器失效的问题
  • 5. list模拟实现
  • 6. list与vector的对比
  • 7. 结尾

1. 前言

我们之前已经学习了string和vector,今天我们来学习C++中的另一个容器——list,list的底层是带头双向循环链表。

2. list的介绍

1.list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
2.list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
3.list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
4.与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
5.与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

3. list的常用接口

3.1 list的构造函数

函数名称功能说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list
在这里插入代码片void Test1()
{
	list<int> lt1;
	list<int> lt2(10, 1);
	list<int> lt3(lt2);
}

在这里插入图片描述

3.2 iterator的使用

此处,可暂时将迭代器理解成一个指针,该指针指向list中的某个节点。

函数名称功能说明
begin+end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin+rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置
void Test2()
{
	list<int> lt1;
	lt1.push_back(1);
	lt1.push_back(2);
	lt1.push_back(3);
	lt1.push_back(4);
	lt1.push_back(5);

	list<int>::iterator it = lt1.begin();
	
	while (it != lt1.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;

	it = lt1.begin();
	while (it != lt1.end())
	{
		(*it)++;
		cout << *it << " ";
		it++;
	}
	cout << endl;

	for (auto e : lt1)
	{
		cout << e << " ";
	}
	cout << endl;
}

在这里插入图片描述

3.3 list的空间管理

函数名称功能说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数
void Test3()
{
	list<int> lt1;
	list<int> lt2;
	lt2.push_back(1);
	lt2.push_back(2);
	lt2.push_back(3);
	lt2.push_back(4);
	lt2.push_back(5);

	cout << lt1.empty() << endl;
	cout << lt2.size() << endl;

}

在这里插入图片描述

3.4 list的结点访问

函数名称功能说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用
void Test4()
{
	list<int> lt1;
	lt1.push_back(1);
	lt1.push_back(2);
	lt1.push_back(3);
	lt1.push_back(4);
	lt1.push_back(5);

	cout << lt1.front() << endl;
	cout << lt1.back() << endl;

	int& a = lt1.front();
	int& b = lt1.back();
	a++;
	b++;

	for (auto e : lt1)
	{
		cout << e << " ";
	}
	cout << endl;
}

在这里插入图片描述

3.5 list的增删查改

函数名称功能说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清除list中的有效元素
void Test5()
{
	list<int> lt1;
	lt1.push_front(1);
	lt1.push_front(2);
	lt1.push_front(3);
	lt1.push_front(4);
	lt1.push_front(5);
	for (auto e : lt1)
	{
		cout << e << ' ';
	}
	cout << endl;

	lt1.pop_front();
	lt1.pop_front();
	lt1.pop_front();
	for (auto e : lt1)
	{
		cout << e << ' ';
	}
	cout << endl;

	list<int> lt2;
	lt2.push_back(1);
	lt2.push_back(2);
	lt2.push_back(3);
	lt2.push_back(4);
	lt2.push_back(5);
	for (auto e : lt2)
	{
		cout << e << ' ';
	}
	cout << endl;

	lt2.pop_back();
	lt2.pop_back();
	lt2.pop_back();
	for (auto e : lt2)
	{
		cout << e << ' ';
	}
	cout << endl;

	list<int> lt3;
	lt3.push_back(1);
	lt3.push_back(2);
	lt3.push_back(3);
	lt3.push_back(4);
	lt3.push_back(5);
	list<int>::iterator pos = find(lt3.begin(), lt3.end(), 3);
	lt3.insert(pos, 10);//迭代器不会失效
	lt3.insert(pos, 20);
	for (auto e : lt3)
	{
		cout << e << ' ';
	}
	cout << endl;

	//lt3.erase(pos);//迭代器会失效
	pos = lt3.erase(pos);
	pos = lt3.erase(pos);
	for (auto e : lt3)
	{
		cout << e << ' ';
	}
	cout << endl;

	lt1.swap(lt3);
	for (auto e : lt1)
	{
		cout << e << ' ';
	}
	cout << endl;
	for (auto e : lt3)
	{
		cout << e << ' ';
	}
	cout << endl;

	lt2.clear();
	for (auto e : lt2)
	{
		cout << e << ' ';
	}
	cout << endl;

}

在这里插入图片描述

4. list迭代器失效的问题

前面说过,大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

迭代器失效:

void Test6()
{
	list<int> lt1;
	lt1.push_back(1);
	lt1.push_back(2);
	lt1.push_back(3);
	lt1.push_back(4);
	lt1.push_back(5);
	list<int>::iterator it = lt1.begin();
	while (it != lt1.end())
	{
		//错误——迭代器失效
		//erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值
		lt1.erase(it);
		++it;
	}
}

在这里插入图片描述

修改后:

void Test7()
{

	list<int> lt1;
	lt1.push_back(1);
	lt1.push_back(2);
	lt1.push_back(3);
	lt1.push_back(4);
	lt1.push_back(5);
	list<int>::iterator it = lt1.begin();
	while (it != lt1.end())
	{
		it = lt1.erase(it);//正确
	}
}

5. list模拟实现

#pragma once

#include <assert.h>

namespace fiora
{
	template<class T>
	struct list_node
	{
		T _data;
		list_node<T>* _next;
		list_node<T>* _prev;

		list_node(const T& x = T())
			:_data(x)
			, _next(nullptr)
			, _prev(nullptr)
		{}
	};

	// typedef __list_iterator<T, T&, T*>             iterator;
	// typedef __list_iterator<T, const T&, const T*> const_iterator;

	// 像指针一样的对象
	template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> iterator;

		typedef bidirectional_iterator_tag iterator_category;
		typedef T value_type;
		typedef Ptr pointer;
		typedef Ref reference;
		typedef ptrdiff_t difference_type;


		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		bool operator!=(const iterator& it) const
		{
			return _node != it._node;
		}

		bool operator==(const iterator& it) const
		{
			return _node == it._node;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		//T* operator->() 
		Ptr operator->()
		{
			return &(operator*());
		}

		// ++it
		iterator& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		// it++
		iterator operator++(int)
		{
			iterator tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		// --it
		iterator& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		// it--
		iterator operator--(int)
		{
			iterator tmp(*this);
			_node = _node->_prev;
			return tmp;
		}
	};

	template<class T>
	class list
	{
		typedef list_node<T> Node;
	public:
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}

		iterator begin()
		{
			return iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		list()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		void push_back(const T& x)
		{
			//Node* tail = _head->_prev;
			//Node* newnode = new Node(x);

			 _head          tail  newnode
			//tail->_next = newnode;
			//newnode->_prev = tail;
			//newnode->_next = _head;
			//_head->_prev = newnode;

			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;

			Node* newnode = new Node(x);

			// prev newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;

			return iterator(newnode);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;
			delete cur;

			return iterator(next);
		}

	private:
		Node* _head;
	};

	void test_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);

		list<int>::iterator it = lt.begin();
		while (it != lt.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;

		it = lt.begin();
		while (it != lt.end())
		{
			*it *= 2;
			++it;
		}
		cout << endl;

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	struct Pos
	{
		int _a1;
		int _a2;

		Pos(int a1 = 0, int a2 = 0)
			:_a1(a1)
			, _a2(a2)
		{}
	};

	void test_list2()
	{
		int x = 10;
		int* p1 = &x;

		cout << *p1 << endl;

		Pos aa;
		Pos* p2 = &aa;
		p2->_a1;
		p2->_a2;

		list<Pos> lt;
		lt.push_back(Pos(10, 20));
		lt.push_back(Pos(10, 21));

		list<Pos>::iterator it = lt.begin();
		while (it != lt.end())
		{
			//cout << (*it)._a1 << ":" << (*it)._a2 << endl;
			cout << it->_a1 << ":" << it->_a2 << endl;

			++it;
		}
		cout << endl;
	}

	void Func(const list<int>& l)
	{
		list<int>::const_iterator it = l.begin();
		while (it != l.end())
		{
			//*it = 10;

			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	void test_list3()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);

		Func(lt);
	}

	void test_list4()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);

		list<int>::iterator it = lt.begin();
		while (it != lt.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;

		it = lt.begin();
		while (it != lt.end())
		{
			*it *= 2;
			++it;
		}
		cout << endl;

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.push_front(10);
		lt.push_front(20);
		lt.push_front(30);
		lt.push_front(40);

		lt.pop_back();
		lt.pop_back();

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		auto pos = find(lt.begin(), lt.end(), 4);
		if (pos != lt.end())
		{
			lt.insert(pos, 40);
			//lt.insert(pos, 30);
			*pos *= 100;
		}

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

6. list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

vectorlist
底层结构动态顺序表,一段连续空间带头结点的双向循环链表
随机访问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素效率O(N)
插入和删除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)
空间利用率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭代器原生态指针对原生态指针(节点指针)进行封装
迭代器失效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使用场景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

7. 结尾

关于C++的list容器我们就学到这里,C++的几个容器都是非常重要的知识点,他们的使用方法非常简单方便,但最重要的是我们要理解底层原理并掌握他们各自的优缺点和不同点,以便以后学习和工作当中灵活使用。
最后,感谢各位大佬的耐心阅读和支持,觉得本篇文章写的不错的朋友可以三连关注支持一波,如果有什么问题或者本文有错误的地方大家可以私信我,也可以在评论区留言讨论,再次感谢各位。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/617395.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Remix IDE已支持Sui Move在线开发

网页版Remix IDE与WELLDONE Code插件结合&#xff0c;让您无需本地设置或安装即可开始构建Sui应用程序。 不熟悉Sui的构建者可能想在正式配置开发环境之前&#xff0c;浅尝一下构建Sui应用程序。Remix IDE与WELLDONE Code插件组合&#xff0c;即可帮助构建者实现从浏览器窗口开…

JavaScript函数的增强知识

函数属性和arguments以及剩余参数 函数属性name与length ◼ 我们知道JavaScript中函数也是一个对象&#xff0c;那么对象中就可以有属性和方法。 ◼ 属性name&#xff1a;一个函数的名词我们可以通过name来访问&#xff1b; // 自定义属性foo.message "Hello Foo"…

Nginx 之 Tomcat 负载均衡、动静分离

一.详细安装及操作实例&#xff08;Nginx 七层代理&#xff09; 首先至少准备三台服务器 Nginx 服务器&#xff1a;192.168.247.131:80 Tomcat服务器1&#xff1a;192.168.247.133:80 Tomcat服务器2&#xff1a;192.168.247.134:8080 192.168.247.134:80811.部署Nginx 负载均…

微信自动回复怎么设置呢?

友友们 你们是否有以下这些烦恼 1、每天要手动点击“添加”按钮多次以通过大量好友? 2、你是否经常需要在多个微信帐号之间来回切换&#xff1f; 3、你的回复速度慢&#xff0c;导致客户流失率高&#xff1f; 4、为了及时回复&#xff0c;你总是需要带着多部手机出门&…

二十一、C++11(中)

文章目录 一、左值&右值&#xff08;一&#xff09;基本概念1.左值是什么2.右值是什么 &#xff08;二&#xff09;左值引用和右值引用1.左值引用2.右值引用 二、右值引用使用场景和意义&#xff08;一&#xff09;引入&#xff08;二&#xff09;左值引用的使用场景&#…

Linux编译器(gcc/g++)调试器gdb项目自动化构建工具(make/Makefile)版本管理git

Linux编译器-gcc/g&&调试器gdb&&项目自动化构建工具-make/Makefile&&版本管理git &#x1f506;gcc/g的使用可执行文件的"生产"过程gcc如何完成预处理编译汇编链接 函数库函数库一般分为静态库和动态库两种静态C/C库的安装 gcc选项gcc选项记…

WPF 学习:如何照着MaterialDesign的Demo学习

文章目录 往期回顾对应视频资源如何照着wpf项目学习找到你想要抄的页面查找对应源码演示示例如何认清页面元素抄袭实战 项目地址总结 往期回顾 WPF Debug运行是 实时可视化树无效&#xff0c;无法查看代码 WPF MaterialDesign 初学项目实战&#xff08;0&#xff09;:github …

【Java】线程池的概念及使用、ThreadPoolExecutor的构造方法

什么是线程池为什么用线程池JDK提供的线程池工厂模式如何使用 自定义线程池ThreadPoolExecutor类的构造方法工作原理拒绝策略 线程池的使用 什么是线程池 在之前JDBC编程中&#xff0c;通过DataSource获取Connection的时候就已经用到了池的概念。这里的池指的是数据库连接池。…

Vue电商项目--uuid游客身份获取购物车数据

uuid游客身份获取购物车数据 获取购物车列表 请求地址 /api/cart/cartList 请求方式 GET 参数类型 参数名称 类型 是否必选 描述 无 无 无 无 返回示例 成功&#xff1a; { "code": 200, "message": "成功", "…

马尔萨斯 ( Malthus)人口指数增长模型Logistic 模型

3.要求与任务 从 1790 — 1990 年间美国每隔 10 年的人口记录如下表所示&#xff1a; 用以上数据检验马尔萨斯 ( Malthus)人口指数增长模型&#xff0c;根据检验结果进一步讨论马尔萨斯 人口模型的改进&#xff0c;并利用至少两种模型来预测美国2010 年的人口数量。 提示 1 &…

自学黑客(网络安全),一般人我还是劝你算了吧

作为从16年接触网络安全的小白&#xff0c;谈谈零基础如何入门网络安全&#xff0c;有不对的地方&#xff0c;请多多指教。 这些年最后悔的事情莫过于没有把自己学习的东西积累下来形成一个知识体系。 后续我也会陆续的整理网络安全的相关学习资料及文章&#xff0c;与大家一…

数据结构与算法练习(三)二叉树

文章目录 1、树2、二叉树3、满二叉树4、完全二叉树5、二叉树的遍历&#xff08;前序、中序、后序&#xff09;二叉树删除节点或树 6、顺序存储二叉树顺序存储二叉树遍历&#xff08;前序、中序、后序&#xff09; 7、线索化二叉树中序线索二叉树前序线索二叉树后序线索二叉树 1…

Matlab 之 Curve Fitting APP 使用笔记

文章目录 Part.I IntroductionPart.II 使用笔记Chap.I 拟合函数Chap.II 注意事项 Part.I Introduction 曲线或曲面拟合获取拟合参数。本篇博文主要记录一下 Matlab 拟合 APP Curve Fitting 的使用方法。 Part.II 使用笔记 这个APP用来做拟合的&#xff0c;包括二维数据的线拟…

常见的样本统计量及其数字特征

常见的样本统计量及其数字特征 下图来自《统计学图鉴》 样本统计量有什么作用&#xff1f; 因为总体特征包含有总体均值、总体方差等特征&#xff0c;我们在用样本推断总体时&#xff0c;其实就是用样本特征去估计总体特征&#xff0c;例如&#xff1a;样本均值这个统计量的期…

案例33:基于Springboot名城小区物业管理系统开题报告设计

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

Spark RDD统计每日新增用户

文章目录 一&#xff0c;提出任务二&#xff0c;实现思路三&#xff0c;准备工作1、在本地创建用户文件2、将用户文件上传到HDFS指定位置 四&#xff0c;完成任务1、在Spark Shell里完成任务&#xff08;1&#xff09;读取文件&#xff0c;得到RDD&#xff08;2&#xff09;倒排…

为什么要对实体类进行序列化并且要生成序列化ID?

一、为什么要对实体类进行序列化且要生成序列化ID 在Java开发中&#xff0c;实体类将会被用来与其他对象进行交互。Java语言是面向对象的&#xff0c;所以实体类包含了很多信息和方法。序列化是Java中一种将对象转换为字节流的机制&#xff0c;使得对象可以在网络上传输和存储。…

相机成像模型(一)

相机模组 如上图所示相机模组由多个元件组成,其中比较重要的元件包括镜头、感光芯片、驱动芯片。镜头的作用是聚集光线,确保良好的成像环境;感光芯片将光信号转换为电信号;驱动芯片则负责信号处理(去噪、白平衡等)与格式转换。 相机的成像过程为物体通过镜头聚集…

jvm cpu 高定位

快速的发现线程cpu高, 最终发现是gc线程, 最终去分析jvm top -o %CPU top -Hp108920 jmap -dump:formatb,fileheap.bin 108920 jvm 命令和工具_个人渣记录仅为自己搜索用的博客-CSDN博客 $ jstat -gcold 108920 MC MU CCSC CCSU OC OU YGC FGC FGCT GCT 218368.0 212670.3 253…

Java POI技术

引入依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>4.0.1</version> </dependency><dependency><groupId>org.apache.poi</groupId><artifactId>poi-oo…