黑马Redis视频教程高级篇(一:分布式缓存)

news2025/1/12 21:56:01

目录

分布式缓存

一、Redis持久化

1.1、RDB持久化

1.1.1、执行时机

1.1.2、RDB原理

1.1.3、小结

1.2、OF持久化

1.2.1、AOF原理

1.2.2、OF配置

1.2.3、AOF文件重写

1.3、RDB与AOF对比

二、Redis主从

2.1、搭建主从架构

2.1.1、集群结构

2.1.2、准备实例和配置

2.1.3、启动

2.1.4、开启主从关系

2.1.5、测试

2.2、主从数据同步原理

2.2.1、全量同步

2.2.2、增量同步

2.2.3、repl_backlog原理

2.3、主从同步优化

2.4、小结

三、哨兵模式

3.1、哨兵原理

3.1.1、集群结构和作用

3.1.2、集群监控原理

3.1.3、集群故障恢复原理

3.1.4、集群故障恢复原理

3.2、搭建哨兵集群

3.2.1、集群结构

3.2.2、准备实例和配置

3.2.3、启动

3.2.4、测试

四、分片集群

4.1、搭建分片集群

4.1.1、集群结构

4.1.2、准备实例和配置

4.1.3、启动

4.1.4、创建集群

4.1.5、测试

4.2、散列插槽

4.2.1、插槽原理

4.2.2、小结

4.3、集群伸缩

4.3.1、需求分析

4.3.2、创建新的Redis实例

4.3.3、添加新节点到Redis

4.3.4、转移插槽

4.4、故障转移

4.4.1、自动故障转移

4.4.2、手动故障转移


分布式缓存

基于Redis集群解决单机Redis存在的问题。

单机的Redis存在四大问题:

(1)数据丢失问题:Redis是内存存储,服务重启可能会丢失数据。

(2)并发能力问题:单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景。 

(3)故障恢复问题:如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段。

(4)存储能力问题:Redis基于内存,单节点能存储的数据量难以满足海量数据需求。

一、Redis持久化

Redis有两种持久化方案:

  • RDB持久化

  • AOF持久化

1.1、RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1、执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令

  • 执行bgsave命令

  • Redis停机时

  • 触发RDB条件时

1)save命令

执行下面的命令,可以立即执行一次RDB:

save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。  

2)bgsave命令

下面的命令可以异步执行RDB:

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。  

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb  

# 文件保存的路径目录
dir ./ 

1.1.2、RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork子进程过程

注意:虽然子进程是对主进程没影响的,但fork子进程的过程是要主线程来做,这个时候是阻塞的,所以我们需要加快fork的速度。

如下图所示,主进程其实是无法直接操作物理内存的,所以应该有个做映射的虚拟内存(页表),主进程通过页表映射到物理内存里的数据,这时就可以访问了。而fork子进程的时候,把页面直接拷贝一份给子进程,这样子进程就能通过相同的页表映射到物理内存中的数据了。

copy-on-write

那么既然是异步的,子进程在写RDB的过程中,主进程这时接收用户的请求来修改内存中的数据,主进程在写,子进程在读,那么会出现一些脏数据,为了避免此类情况发生。

所以fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;

  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

 如图所示,当主进程来了一条写命令,先拷贝一份数据,以后主进程写和读的操作都作用在拷贝的副本上。

那么有一种情况,假如子进程RDB写的过程比较慢,在子进程写的过程中,主进程不断的有新的请求过来,不断的修改共同数据,所有的数据都被修改了一遍,那么这种情况下意味着所有的数据都要拷贝一份,意味着对内存的占用翻倍了,这种情况理论上是有可能发生的,虽然是极端情况。

1.1.3、小结

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间

  • 子进程读取内存数据并写入新的RDB文件

  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时

  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险

  • fork子进程、压缩、写出RDB文件都比较耗时

1.2、OF持久化

1.2.1、AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

1.2.2、OF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

1.2.3、AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3、RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

二、Redis主从

2.1、搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

2.1.1、集群结构

我们搭建的主从集群结构如图:

共包含三个节点,一个主节点,两个从节点。

这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

2.1.2、准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

1)创建目录

我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如图:

2)恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000

# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录

然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003

# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录

修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

5)修改每个实例的声明IP

虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf

# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

2.1.3、启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:

如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown


2.1.4、开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>

  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):

slaveof <masterip> <masterport>

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:

2.1.5、测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123

  • 利用redis-cli连接7002,执行get num,再执行set num 666

  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。

2.2、主从数据同步原理

2.2.1、全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid

  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

完整流程描述:

  • slave节点请求增量同步

  • master节点判断replid,发现不一致,拒绝增量同步

  • master将完整内存数据生成RDB,发送RDB到slave

  • slave清空本地数据,加载master的RDB

  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave

  • slave执行接收到的命令,保持与master之间的同步

2.2.2、增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

那么master怎么知道slave与自己的数据差异在哪里呢?  

2.2.3、repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

直到数组被填满:

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。  

2.3、主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。

  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO

  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步

  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

2.4、小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。

  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时

  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

三、哨兵模式

3.1、哨兵原理

3.1.1、集群结构和作用

哨兵的结构如图:

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作。

  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主。

  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端。

3.1.2、集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

  • 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线
  • 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

3.1.3、集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点。

  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举。

  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高。

  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master。

  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。

  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点。

3.1.4、集群故障恢复原理

Sentinel的三个作用是什么?

  • 监控

  • 故障转移

  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线

  • 如果大多数sentinel都认为实例主观下线,则判定客观下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one

  • 然后让所有节点都执行slaveof 新master

  • 修改故障节点配置,添加slaveof 新master

3.2、搭建哨兵集群

3.2.1、集群结构

三个sentinel实例信息如下:

3.2.2、准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

我们创建三个文件夹,名字分别叫s1、s2、s3:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3

如图:

然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:

port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"

解读:

  • port 27001:是当前sentinel实例的端口

  • sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息

    • mymaster:主节点名称,自定义,任意写

    • 192.168.150.101 7001:主节点的ip和端口

    • 2:选举master时的quorum值

然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf

修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:

sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf

3.2.3、启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf

启动后:

3.2.4、测试

尝试让master节点7001宕机,查看sentinel日志:

查看7003的日志:  

查看7002的日志:

四、分片集群

4.1、搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:

分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

4.1.1、集群结构

分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:

这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

4.1.2、准备实例和配置

删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:

# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003

在/tmp下准备一个新的redis.conf文件,内容如下:

port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log

将这个文件拷贝到每个目录下:

# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf

修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:

# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf

4.1.3、启动

因为已经配置了后台启动模式,所以可以直接启动服务:

# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf

通过ps查看状态:

ps -ef | grep redis

发现服务都已经正常启动:

如果要关闭所有进程,可以执行命令:

ps -ef | grep redis | awk '{print $2}' | xargs kill

或者(推荐这种方式):

printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown

4.1.4、创建集群

虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。

我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。

1)Redis5.0之前

Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。

 # 安装依赖
 yum -y install zlib ruby rubygems
 gem install redis

然后通过命令来管理集群:

# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

2)Redis5.0以后

我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:

命令说明:

  • redis-cli --cluster或者./redis-trib.rb:代表集群操作命令

  • create:代表是创建集群

  • --replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:

这里输入yes,则集群开始创建:  

通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

4.1.5、测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:

集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:

4.2、散列插槽

4.2.1、插槽原理

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分

  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点。

4.2.2、小结

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例

  • 根据key的有效部分计算哈希值,对16384取余

  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3、集群伸缩

其实就是能动态的添加节点删除节点。

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

比如,添加节点的命令:

4.3.1、需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004

  • 添加7004到之前的集群,并作为一个master节点

  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中

  • 将部分插槽分配到新插槽

4.3.2、创建新的Redis实例

创建一个文件夹:

mkdir 7004

 拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3、添加新节点到Redis

添加节点的语法如下:

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上。 

4.3.4、转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:

如上图所示,num的插槽为2765。

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

具体命令如下:

建立连接:

得到下面的反馈:  

询问要移动多少个插槽,我们计划是3000个:

新的问题来了:

哪个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?

复制这个id,然后拷贝到刚才的控制台后:

这里询问,你的插槽是从哪里移动过来的?

  • all:代表全部,也就是三个节点各转移一部分

  • 具体的id:目标节点的id

  • done:没有了

这里我们要从7001获取,因此填写7001的id:

填完后,点击done,这样插槽转移就准备好了:

确认要转移吗?输入yes:

然后,通过命令查看结果:

可以看到:

目的达成。

4.4、故障转移

集群初识状态是这样的:

其中7001、7002、7003都是master,我们计划让7002宕机。  

4.4.1、自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:

3)最后是确定下线,自动提升一个slave为新的master:

4)当7002再次启动,就会变为一个slave节点了:  

4.4.2、手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:

这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩

  • force:省略了对offset的一致性校验

  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:

效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/608050.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot汽车站车辆运管系统java+vue

本汽车站车辆运管系统管理员可以管理个人中心&#xff0c;业务管理&#xff0c;站务管理&#xff0c;人力资源管理&#xff0c;办公司管理&#xff0c;财务管理。因而具有一定的实用性。本站是一个B/S模式系统&#xff0c;采用springboot框架&#xff0c;MYSQL数据库设计开发&a…

模型的细分和简化

​ 细分 本质为引入更多三角形 loop细分 对于新的顶点如何计算&#xff1a;下图中白点位置计算 对于旧的顶点位置计算 Catmull-Clark细分 对于非四边形的图形细分方法&#xff1a;不断将非四边形进行细分即可 下图中橙色&#xff1a;非四边形面的重心坐标&#xff1b;紫色&…

程序员必须了解的消息队列之王-Kafka

1. Kafka概述 1.1 定义 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台。 Kafka 是一个分布式的基于发布/订阅模式的消息队列&#xff08;Message Queue&#xff09;&#xff0c;主要应用于大数据实时处理领域。 1.2 消息队列 1.2.1 传统消息队列的应用场景 1.2.2 为什…

路径规划算法:基于共生生物优化的路径规划算法- 附代码

路径规划算法&#xff1a;基于共生生物优化的路径规划算法- 附代码 文章目录 路径规划算法&#xff1a;基于共生生物优化的路径规划算法- 附代码1.算法原理1.1 环境设定1.2 约束条件1.3 适应度函数 2.算法结果3.MATLAB代码4.参考文献 摘要&#xff1a;本文主要介绍利用智能优化…

深度相机和彩色相机对齐(d2c)

一般商用的rgbd相机的sdk自带d2c的api&#xff0c;但是LZ还是想利用空闲时间理解下其原理。 第一步&#xff1a;标定彩色相机和深度相机。 分别采集若干张彩色摄像头和红外摄像头&#xff08;对于带有红外摄像头进行深度测量的深度摄像头&#xff0c;红外摄像头和深度摄像头其实…

mysql ssh隧道连接内网mysql

通过SSH隧道连接MySQL数据库 一.背景 问题所在&#xff1a;MySQL被运用于越来越多的业务中&#xff0c;在关键业务中对数据安全性的要求也更高&#xff0c;数据安全如果只靠MySQL应用层面显然是不够的&#xff0c;虽然说MySQL实现的登录机制基本不存在泄露密码的风险&#xf…

冈萨雷斯DIP第11章知识点

文章目录 11.3 边界特征描述子11.4 区域特征描述子11.4.3 纹理11.4.4 矩不变量 11.6 整体图像特征11.6.1 哈里斯-斯蒂芬斯 角检测器11.6.2 最大稳定极值区域 特征检测&#xff1a;在图像、区域或者边界中发现特征&#xff1b;特征描述&#xff1a;将定量属性分配给检测到的特征…

冈萨雷斯DIP第3章知识点

文章目录 3.1 背景3.2 一些基本的灰度变换函数3.2.1 图像反转3.2.2 对数变换3.2.3 幂律伽马变换3.2.4 分段线性变换函数 3.3 直方图处理3.3.1 直方图均衡化3.3.2 直方图匹配&#xff08;规定化&#xff09;3.3.3 局部直方图处理3.3.4 使用直方图统计量增强图像 3.4 空间滤波基础…

期末sql_server复习枯燥?乏味?一文带你轻松击破sql壁垒!

&#x1f3ac; 博客主页&#xff1a;博主链接 &#x1f3a5; 本文由 M malloc 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f384; 学习专栏推荐&#xff1a;LeetCode刷题集&#xff01; &#x1f3c5; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指…

leetcode197. 上升的温度

【题目】 下面是某公司每天的营业额&#xff0c;表名为“日销”。“日期”这一列的数据类型是日期类型&#xff08;date&#xff09;。 请找出所有比前一天&#xff08;昨天&#xff09;营业额更高的数据。&#xff08;前一天的意思&#xff0c;如果“当天”是1月&#xff0c;“…

在腾讯干软件测试5年,5月无情被辞,想给划水的兄弟提个醒

前段时间&#xff0c;一个认识了好几年在大厂工作做软件测试的朋友&#xff0c;年近30了&#xff0c;却被大厂以“人员优化”的名义无情被辞&#xff0c;据他说&#xff0c;有一个月散伙饭都吃了好几顿…… 在很多企业&#xff0c;都有KPI考核&#xff0c;然后在此基础上还会弄…

[自学记录03|百人计划]移动端GPU的TB(D)R架构基础

一、专有名词解释 1.System on Chip&#xff08;Soc&#xff09; Soc是把CPU、GPU、内存、通信基带、GPS模块等等整合在一起的芯片的称呼。常见有A系Soc&#xff08;苹果&#xff09;&#xff0c;骁龙Soc&#xff08;高通&#xff09;&#xff0c;麒麟Soc&#xff08;华为&am…

【人工智能】— 监督学习、分类问题、决策树、信息增益

【人工智能】— 监督学习、分类问题、决策树、线性分类器、K近邻、回归问题、交叉验证 监督学习 - 正式设置符号表示假设选择学习目标预测 分类Decision Trees 决策树建立决策树分类模型的流程如何建立决策树? 决策树学习表达能力决策树学习信息论在决策树学习中的应用特征选择…

Koa学习2:路由与数据库连接

路由 安装 npm i koa-router基本功能 定义路由&#xff1a;koa-router提供了一种简单的方式来定义路由&#xff0c;我们可以根据请求的方法和路径来定义不同的路由。 处理请求&#xff1a;koa-router可以帮助我们处理请求&#xff0c;当请求匹配到对应的路由时&#xff0c;k…

人工智能轨道交通行业周刊-第47期(2023.5.29-6.4)

本期关键词&#xff1a;郑州智慧地铁、货运安全监控、激光炮、6C系统、越行站、ChatGPT原理 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMetro轨…

SparkSQL文件格式和压缩算法是否支持Split

大数据支持Split的目的是为了能并行处理任务&#xff0c;可以将文件拆分成多个文件块处理。如果不支持Split的话&#xff0c;只能用一个任务处理单个文件。 能否支持Split受到文件格式和压缩算法的双重限制&#xff0c;大部分文件的读取都是可以支持Split&#xff0c;极少数压缩…

每日学术速递5.29

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.Custom-Edit: Text-Guided Image Editing with Customized Diffusion Models(CVPR 2023) 标题&#xff1a;自定义编辑&#xff1a;使用自定义扩散模型进行文本引导图像编辑 作者&a…

部署rabbitmq3.10.6详细步骤

RabbitMQ简介 RabbitMQ是Erlang开发的&#xff0c;集群非常方便&#xff0c;因为Erlang天生就是分布式语言&#xff0c;但其本身并不支持负载均衡&#xff0c;支持高并发&#xff0c;支持可扩展。支持AJAX&#xff0c;持久化&#xff0c;用于在分布式系统中存储转发消息&#x…

八、Git分支和版本号的简介

1、Git分支介绍 分支在Git中相对较难&#xff0c;分支就是科幻电影里面的平行宇宙&#xff0c;如果两个平行宇宙互不干扰&#xff0c;那对现在的你也没啥影响。不过&#xff0c;在某个时间点&#xff0c;两个平行宇宙合并了&#xff0c;我们就需要处理一些问题了&#xff01; 2…

【AI绘图】一、stable diffusion的发展史

一、stable diffusion的发展史 本文目标&#xff1a;学习交流 对于熟悉SD的同学&#xff0c;一起学习和交流使用过程中的技巧和心得。 帮助新手 帮助没有尝试过SD但又对它感兴趣的同学快速入门&#xff0c;并且能够独立生成以上效果图。 1.发展史介绍&#xff1a; 2015年的时候…