[深度学习]yolov7 pytorch模型转onnx,转ncnn模型和mnn模型使用细节

news2024/11/24 16:02:12

文章目录

  • 前言
  • 1.前置
    • 1.1 安装必要的库
    • 1.2 .pt 权重转ncnn 和mnn所需要的权重
  • 2、编码C++项目
    • 1.ncnn
    • 2.mnn
  • 总结


前言

yolov7 pytorch模型转onnx,转ncnn模型和mnn模型使用细节,记录一下
git仓库:
yolov7 https://github.com/WongKinYiu/yolov7
ncnn:https://github.com/Tencent/ncnn
mnn:https://github.com/alibaba/MNN


1.前置

1.1 安装必要的库

安装opencv, 我是编译安装的,编了一个多小时,少不更事啊

sudo apt-get update
sudo apt-get install libopencv-dev

后面会用到opencv库,等会会提到;

编译安装ncnn和mnn
ncnn

cd 到 ncnn的文件夹
cd /home/ubuntu/workplace/ncnn
  209  mkdir build
  210  cd build/
  211  cmake ..
  212  make install
  213  sudo make install

cmake  ,, 它会找到上一级目录的cmakelist进行编译

mnn:
套路是一样的,
但需要改一下,cmakelist文件 第41行,将off 改成on 这是将onnx转成.mnn 所需要的二进制文件。
option(MNN_BUILD_CONVERTER “Build Converter” ON)

cd /home/ubuntu/workplace/mnn
  209  mkdir build
  210  cd build/
  211  cmake ..
  212  make install
  213  sudo make install

1.2 .pt 权重转ncnn 和mnn所需要的权重

其实2步走:
1, .pt 转 .onnx
cd 到yolov7的目录,转模型到onnx,不要把nms加

cd /home/ubuntu/workplace/pycharm_project/yolov7
python export.py --weights yolov7.pt --simplify --img-size 640

2.1 对ncnn .onnx 转成 .bin 和 .param 经过1已经生成了 所需要的权重
在这里插入图片描述也可以

ubuntu@ubuntu:~/ncnn/build/install/bin$ ./onnx2ncnn /home/ubuntu/yolov7/yolov7.onnx /home/ubuntu/yolov7/yolov7/yolov7.param /home/ubuntu/yolov7/yolov7.bin

2,2 对mnn .onnx 转 .mnn
去编译好的mnn文件夹下
在这里插入图片描述

./MNNConvert -f ONNX --modelFile /home/ubuntu/workplace/pycharm_project/yolov7/yolov7.onnx --MNNModel /home/ubuntu/workplace/pycharm_project/yolov7/yolov7.mnn --bizCode MNN

就会转出.mnn 的权重

2、编码C++项目

1.ncnn

cmakelist.txt

cmake_minimum_required(VERSION 3.16)
project(untitled22)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/ncnn)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libncnn STATIC IMPORTED)
set_target_properties(libncnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/libncnn.a)


add_executable(untitled22 main.cpp)
target_link_libraries(untitled22 ${OpenCV_LIBS} libncnn )

目录结构
在这里插入图片描述main.cpp

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "layer.h"
#include "net.h"

#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>

#define MAX_STRIDE 32

struct Object
{
    cv::Rect_<float> rect;
    int label;
    float prob;
};

static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
{
    int i = left;
    int j = right;
    float p = objects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (objects[i].prob > p)
            i++;

        while (objects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(objects[i], objects[j]);

            i++;
            j--;
        }
    }

#pragma omp parallel sections
    {
#pragma omp section
        {
            if (left < j) qsort_descent_inplace(objects, left, j);
        }
#pragma omp section
        {
            if (i < right) qsort_descent_inplace(objects, i, right);
        }
    }
}

static void qsort_descent_inplace(std::vector<Object>& objects)
{
    if (objects.empty())
        return;

    qsort_descent_inplace(objects, 0, objects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            if (!agnostic && a.label != b.label)
                continue;

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}

static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
    const int num_grid = feat_blob.h;

    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h)
    {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    }
    else
    {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }

    const int num_class = feat_blob.w - 5;

    const int num_anchors = anchors.w / 2;

    for (int q = 0; q < num_anchors; q++)
    {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];

        const ncnn::Mat feat = feat_blob.channel(q);

        for (int i = 0; i < num_grid_y; i++)
        {
            for (int j = 0; j < num_grid_x; j++)
            {
                const float* featptr = feat.row(i * num_grid_x + j);
                float box_confidence = sigmoid(featptr[4]);
                if (box_confidence >= prob_threshold)
                {
                    // find class index with max class score
                    int class_index = 0;
                    float class_score = -FLT_MAX;
                    for (int k = 0; k < num_class; k++)
                    {
                        float score = featptr[5 + k];
                        if (score > class_score)
                        {
                            class_index = k;
                            class_score = score;
                        }
                    }
                    float confidence = box_confidence * sigmoid(class_score);
                    if (confidence >= prob_threshold)
                    {
                        float dx = sigmoid(featptr[0]);
                        float dy = sigmoid(featptr[1]);
                        float dw = sigmoid(featptr[2]);
                        float dh = sigmoid(featptr[3]);

                        float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                        float pb_cy = (dy * 2.f - 0.5f + i) * stride;

                        float pb_w = pow(dw * 2.f, 2) * anchor_w;
                        float pb_h = pow(dh * 2.f, 2) * anchor_h;

                        float x0 = pb_cx - pb_w * 0.5f;
                        float y0 = pb_cy - pb_h * 0.5f;
                        float x1 = pb_cx + pb_w * 0.5f;
                        float y1 = pb_cy + pb_h * 0.5f;

                        Object obj;
                        obj.rect.x = x0;
                        obj.rect.y = y0;
                        obj.rect.width = x1 - x0;
                        obj.rect.height = y1 - y0;
                        obj.label = class_index;
                        obj.prob = confidence;

                        objects.push_back(obj);
                    }
                }
            }
        }
    }
}

static int detect_yolov7(const cv::Mat& bgr, std::vector<Object>& objects)
{
    ncnn::Net yolov7;

    yolov7.opt.use_vulkan_compute = true;
    // yolov7.opt.use_bf16_storage = true;

    // original pretrained model from https://github.com/WongKinYiu/yolov7
    // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
    yolov7.load_param("/home/ubuntu/CLionProjects/untitled1/yolov7.param");
    yolov7.load_model("/home/ubuntu/CLionProjects/untitled1/yolov7.bin");

    const int target_size = 640;
    const float prob_threshold = 0.25f;
    const float nms_threshold = 0.45f;

    int img_w = bgr.cols;
    int img_h = bgr.rows;

    // letterbox pad to multiple of MAX_STRIDE
    int w = img_w;
    int h = img_h;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }

    ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);

    int wpad = (w + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - w;
    int hpad = (h + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);

    const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
    in_pad.substract_mean_normalize(0, norm_vals);

    ncnn::Extractor ex = yolov7.create_extractor();

    ex.input("images", in_pad);

    std::vector<Object> proposals;

    // stride 8
    {
        ncnn::Mat out;
        ex.extract("output", out);

        ncnn::Mat anchors(6);
        anchors[0] = 12.f;
        anchors[1] = 16.f;
        anchors[2] = 19.f;
        anchors[3] = 36.f;
        anchors[4] = 40.f;
        anchors[5] = 28.f;

        std::vector<Object> objects8;
        generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);

        proposals.insert(proposals.end(), objects8.begin(), objects8.end());
    }

    // stride 16
    {
        ncnn::Mat out;

        ex.extract("516", out);

        ncnn::Mat anchors(6);
        anchors[0] = 36.f;
        anchors[1] = 75.f;
        anchors[2] = 76.f;
        anchors[3] = 55.f;
        anchors[4] = 72.f;
        anchors[5] = 146.f;

        std::vector<Object> objects16;
        generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);

        proposals.insert(proposals.end(), objects16.begin(), objects16.end());
    }

    // stride 32
    {
        ncnn::Mat out;

        ex.extract("528", out);

        ncnn::Mat anchors(6);
        anchors[0] = 142.f;
        anchors[1] = 110.f;
        anchors[2] = 192.f;
        anchors[3] = 243.f;
        anchors[4] = 459.f;
        anchors[5] = 401.f;

        std::vector<Object> objects32;
        generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);

        proposals.insert(proposals.end(), objects32.begin(), objects32.end());
    }

    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);

    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, nms_threshold);

    int count = picked.size();

    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];

        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;

        // clip
        x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);

        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }

    return 0;
}

static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
{
    static const char* class_names[] = {
            "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
            "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
            "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
            "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
            "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
            "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
            "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
            "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
            "hair drier", "toothbrush"
    };

    static const unsigned char colors[19][3] = {
            {54, 67, 244},
            {99, 30, 233},
            {176, 39, 156},
            {183, 58, 103},
            {181, 81, 63},
            {243, 150, 33},
            {244, 169, 3},
            {212, 188, 0},
            {136, 150, 0},
            {80, 175, 76},
            {74, 195, 139},
            {57, 220, 205},
            {59, 235, 255},
            {7, 193, 255},
            {0, 152, 255},
            {34, 87, 255},
            {72, 85, 121},
            {158, 158, 158},
            {139, 125, 96}
    };

    int color_index = 0;

    cv::Mat image = bgr.clone();

    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];

        const unsigned char* color = colors[color_index % 19];
        color_index++;

        cv::Scalar cc(color[0], color[1], color[2]);

        fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

        cv::rectangle(image, obj.rect, cc, 2);

        char text[256];
        sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);

        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;

        cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
                      cc, -1);

        cv::putText(image, text, cv::Point(x, y + label_size.height),
                    cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(255, 255, 255));
    }

    cv::imshow("image", image);
    cv::waitKey(0);
}

int main(int argc, char** argv)
{


    cv::Mat m = cv::imread("/home/ubuntu/workplace/ncnn/examples/bus.jpg");
    if (m.empty())
    {

        return -1;
    }

    std::vector<Object> objects;
    detect_yolov7(m, objects);

    draw_objects(m, objects);

    return 0;
}

参考源码https://github.com/Tencent/ncnn/tree/master/examples

模型需要改掉后面的param文件这三个红框改成-1,否则会出现乱框
在这里插入图片描述

效果图
在这里插入图片描述

2.mnn

目录结构:
在这里插入图片描述cmakelist.txt

cmake_minimum_required(VERSION 3.16)
project(untitled22)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/MNN)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libmnn SHARED IMPORTED)
set_target_properties(libmnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/libMNN.so)


add_executable(untitled22 main.cpp)
target_link_libraries(untitled22 ${OpenCV_LIBS} libmnn )

main.cpp


#include <iostream>
#include <algorithm>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include<MNN/Interpreter.hpp>
#include<MNN/ImageProcess.hpp>
using namespace std;
using namespace cv;

typedef struct {
    int width;
    int height;
} YoloSize;


typedef struct {
    std::string name;
    int stride;
    std::vector<YoloSize> anchors;
} YoloLayerData;

class BoxInfo
{
public:
    int x1,y1,x2,y2,label,id;
    float score;
};

static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}
double GetIOU(cv::Rect_<float> bb_test, cv::Rect_<float> bb_gt)
{
    float in = (bb_test & bb_gt).area();
    float un = bb_test.area() + bb_gt.area() - in;

    if (un < DBL_EPSILON)
        return 0;

    return (double)(in / un);
}
std::vector<BoxInfo> decode_infer(MNN::Tensor & data, int stride,  int net_size, int num_classes,
                                  const std::vector<YoloSize> &anchors, float threshold)
{
    std::vector<BoxInfo> result;
    int batchs, channels, height, width, pred_item ;
    batchs = data.shape()[0];
    channels = data.shape()[1];
    height = data.shape()[2];
    width = data.shape()[3];
    pred_item = data.shape()[4];

    auto data_ptr = data.host<float>();
    for(int bi=0; bi<batchs; bi++)
    {
        auto batch_ptr = data_ptr + bi*(channels*height*width*pred_item);
        for(int ci=0; ci<channels; ci++)
        {
            auto channel_ptr = batch_ptr + ci*(height*width*pred_item);
            for(int hi=0; hi<height; hi++)
            {
                auto height_ptr = channel_ptr + hi*(width * pred_item);
                for(int wi=0; wi<width; wi++)
                {
                    auto width_ptr = height_ptr + wi*pred_item;
                    auto cls_ptr = width_ptr + 5;

                    auto confidence = sigmoid(width_ptr[4]);

                    for(int cls_id=0; cls_id<num_classes; cls_id++)
                    {
                        float score = sigmoid(cls_ptr[cls_id]) * confidence;
                        if(score > threshold)
                        {
                            float cx = (sigmoid(width_ptr[0]) * 2.f - 0.5f + wi) * (float) stride;
                            float cy = (sigmoid(width_ptr[1]) * 2.f - 0.5f + hi) * (float) stride;
                            float w = pow(sigmoid(width_ptr[2]) * 2.f, 2) * anchors[ci].width;
                            float h = pow(sigmoid(width_ptr[3]) * 2.f, 2) * anchors[ci].height;

                            BoxInfo box;

                            box.x1 = std::max(0, std::min(net_size, int((cx - w / 2.f) )));
                            box.y1 = std::max(0, std::min(net_size, int((cy - h / 2.f) )));
                            box.x2 = std::max(0, std::min(net_size, int((cx + w / 2.f) )));
                            box.y2 = std::max(0, std::min(net_size, int((cy + h / 2.f) )));
                            box.score = score;
                            box.label = cls_id;
                            result.push_back(box);
                        }
                    }
                }
            }
        }
    }

    return result;
}

void nms(std::vector<BoxInfo> &input_boxes, float NMS_THRESH) {
    std::sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
    std::vector<float> vArea(input_boxes.size());
    for (int i = 0; i < int(input_boxes.size()); ++i) {
        vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
                   * (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
    }
    for (int i = 0; i < int(input_boxes.size()); ++i) {
        for (int j = i + 1; j < int(input_boxes.size());) {
            float xx1 = std::max(input_boxes[i].x1, input_boxes[j].x1);
            float yy1 = std::max(input_boxes[i].y1, input_boxes[j].y1);
            float xx2 = std::min(input_boxes[i].x2, input_boxes[j].x2);
            float yy2 = std::min(input_boxes[i].y2, input_boxes[j].y2);
            float w = std::max(float(0), xx2 - xx1 + 1);
            float h = std::max(float(0), yy2 - yy1 + 1);
            float inter = w * h;
            float ovr = inter / (vArea[i] + vArea[j] - inter);
            if (ovr >= NMS_THRESH) {
                input_boxes.erase(input_boxes.begin() + j);
                vArea.erase(vArea.begin() + j);
            } else {
                j++;
            }
        }
    }
}
void scale_coords(std::vector<BoxInfo> &boxes, int w_from, int h_from, int w_to, int h_to)
{
    float w_ratio = float(w_to)/float(w_from);
    float h_ratio = float(h_to)/float(h_from);


    for(auto &box: boxes)
    {
        box.x1 *= w_ratio;
        box.x2 *= w_ratio;
        box.y1 *= h_ratio;
        box.y2 *= h_ratio;
    }
    return ;
}

cv::Mat draw_box(cv::Mat & cv_mat, std::vector<BoxInfo> &boxes, const std::vector<std::string> &labels,unsigned char colors[][3])
{

    for(auto box : boxes)
    {
        int width = box.x2-box.x1;
        int height = box.y2-box.y1;
        cv::Point p = cv::Point(box.x1, box.y1);
        cv::Rect rect = cv::Rect(box.x1, box.y1, width, height);
        cv::rectangle(cv_mat, rect, cv::Scalar(colors[box.label][0],colors[box.label][1],colors[box.label][2]));
        string text = labels[box.label] + ":" + std::to_string(box.score) ;
        cv::putText(cv_mat, text, p, cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(colors[box.label][0],colors[box.label][1],colors[box.label][2]));
    }
    return cv_mat;
}

int main(int argc, char **argv) {


    std::vector<std::string> labels = {
            "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
            "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
            "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
            "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
            "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
            "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
            "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
            "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
            "hair drier", "toothbrush"
    };
    unsigned char colors[][3] = {
            {255, 0, 0}
    };

    cv::Mat bgr = cv::imread("/home/ubuntu/workplace/ncnn/examples/bus.jpg");;// 预处理和源码不太一样,所以影响了后面的

    int target_size = 640;

    cv::Mat resize_img;
    cv::resize(bgr, resize_img, cv::Size(target_size, target_size));
    float cls_threshold = 0.25;

    // MNN inference
    auto mnnNet = std::shared_ptr<MNN::Interpreter>(
            MNN::Interpreter::createFromFile("/home/ubuntu/workplace/pycharm_project/yolov7/yolov7.mnn"));
    auto t1 = std::chrono::steady_clock::now();
    MNN::ScheduleConfig netConfig;
    netConfig.type = MNN_FORWARD_CPU;
    netConfig.numThread = 4;

    auto session = mnnNet->createSession(netConfig);
    auto input = mnnNet->getSessionInput(session, "images");

    mnnNet->resizeTensor(input, {1, 3, (int) target_size, (int) target_size});
    mnnNet->resizeSession(session);
    MNN::CV::ImageProcess::Config config;

    const float mean_vals[3] = {0, 0, 0};

    const float norm_255[3] = {1.f / 255, 1.f / 255.f, 1.f / 255};

    std::shared_ptr<MNN::CV::ImageProcess> pretreat(
            MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, mean_vals, 3,
                                          norm_255, 3));

    pretreat->convert(resize_img.data, (int) target_size, (int) target_size, resize_img.step[0], input);


    mnnNet->runSession(session);

    std::vector<YoloLayerData> yolov7_layers{
            {"528",    32, {{142, 110}, {192, 243}, {459, 401}}},
            {"516",    16, {{36,  75}, {76,  55},  {72,  146}}},
            {"output", 8,  {{12,  16}, {19,  36},  {40,  28}}},
    };

    auto output = mnnNet->getSessionOutput(session, yolov7_layers[2].name.c_str());

    MNN::Tensor outputHost(output, output->getDimensionType());
    output->copyToHostTensor(&outputHost);

    //毫秒级
    std::vector<float> vec_scores;
    std::vector<float> vec_new_scores;
    std::vector<int> vec_labels;
    int outputHost_shape_c = outputHost.channel();
    int outputHost_shape_d = outputHost.dimensions();
    int outputHost_shape_w = outputHost.width();
    int outputHost_shape_h = outputHost.height();

    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d outputHost.elementSize()=%d\n", outputHost_shape_d,
           outputHost_shape_c, outputHost_shape_h, outputHost_shape_w, outputHost.elementSize());
    auto yolov7_534 = mnnNet->getSessionOutput(session, yolov7_layers[1].name.c_str());

    MNN::Tensor output_534_Host(yolov7_534, yolov7_534->getDimensionType());
    yolov7_534->copyToHostTensor(&output_534_Host);


    outputHost_shape_c = output_534_Host.channel();
    outputHost_shape_d = output_534_Host.dimensions();
    outputHost_shape_w = output_534_Host.width();
    outputHost_shape_h = output_534_Host.height();
    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d output_534_Host.elementSize()=%d\n", outputHost_shape_d,
           outputHost_shape_c, outputHost_shape_h, outputHost_shape_w, output_534_Host.elementSize());

    auto yolov7_554 = mnnNet->getSessionOutput(session, yolov7_layers[0].name.c_str());

    MNN::Tensor output_544_Host(yolov7_554, yolov7_554->getDimensionType());
    yolov7_554->copyToHostTensor(&output_544_Host);


    outputHost_shape_c = output_544_Host.channel();
    outputHost_shape_d = output_544_Host.dimensions();
    outputHost_shape_w = output_544_Host.width();
    outputHost_shape_h = output_544_Host.height();
    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d output_544_Host.elementSize()=%d\n", outputHost_shape_d,
           outputHost_shape_c, outputHost_shape_h, outputHost_shape_w, output_544_Host.elementSize());


    std::vector<YoloLayerData> & layers = yolov7_layers;

    std::vector<BoxInfo> result;
    std::vector<BoxInfo> boxes;
    float threshold = 0.5;
    float nms_threshold = 0.7;



    boxes = decode_infer(outputHost, layers[2].stride, target_size, labels.size(), layers[2].anchors, threshold);
    result.insert(result.begin(), boxes.begin(), boxes.end());

    boxes = decode_infer(output_534_Host, layers[1].stride, target_size, labels.size(), layers[1].anchors, threshold);
    result.insert(result.begin(), boxes.begin(), boxes.end());

    boxes = decode_infer(output_544_Host, layers[0].stride, target_size, labels.size(), layers[0].anchors, threshold);
    result.insert(result.begin(), boxes.begin(), boxes.end());

    nms(result, nms_threshold);
    scale_coords(result, target_size, target_size, bgr.cols, bgr.rows);
    cv::Mat frame_show = draw_box(bgr, result, labels,colors);
    cv::imshow("out",bgr);
    cv::imwrite("dp.jpg",bgr);
    cv::waitKey(0);
    mnnNet->releaseModel();
    mnnNet->releaseSession(session);
    return 0;
}

总结

前后处理是硬功夫,加油!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/594852.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JQL的语法格式

JQL&#xff08;Jira Query Language&#xff09;的语法格式如下&#xff1a; <field> <operator> <value> 其中&#xff0c; 表示 Jira 中的字段&#xff08;例如 project、assignee、status 等&#xff09;&#xff0c; 表示操作符&#xff08;例如 、!、&…

uni-app路由进阶—不同路由跳转配置的使用

uni-app路由进阶—不同路由跳转配置的使用 uni-app路由进阶—不同路由跳转配置的使用 文章目录 uni-app路由进阶—不同路由跳转配置的使用前言一、配置2个一级导航页面&#xff08;tabBar&#xff09;二、路由配置分类总结 前言 UNI-APP学习系列之uni-app路由进阶—不同路由跳…

SQL注入基本原理

1、什么是Sql注入攻击 SQL注入攻击通过构建特殊的输入作为参数传入Web应用程序&#xff0c;而这些输入大都是SQL语法里的一些组合&#xff0c;通过执行SQL语句进而执行攻击者所要的操作&#xff0c;它目前是黑客对数据库进行攻击的最常用手段之一。 本课程将带你从介绍 Web 应用…

ELK日志采集系统搭建

需求背景 现在的系统大多比较复杂&#xff0c;一个服务的背后可能就是一个集群的机器在运行&#xff0c;各种访问日志、应用日志、错误日志量随着访问量和时间会越来越多&#xff0c;运维人员就无法很好的去管理日志&#xff0c;开发人员排查问题&#xff0c;需要到服务器上查…

赛灵思 ZYNQ UltraScale+ MPSoC Petalinux驱动开发:EMIO-GPIO输入驱动

目录 Zynq UltraScale MPSoC Linux下EMIO-GPIO驱动1、MPSOC GPIO简介2、vivado中EMIO配置3、EMIO设备树修改 Zynq UltraScale MPSoC Linux下EMIO-GPIO驱动 声明&#xff1a;本文是学习赛灵思 Zynq UltraScale MPSoC 5EV过程中写的笔记&#xff0c;便于以后复习&#xff0c;参考…

基于Faster R-CNN实现目标检测

目录 1. 作者介绍2. Faster RCNN基本框架3.模型训练及测试3.1 数据集3.2 环境配置3.3 训练参数3.4 训练参数3.5 代码展示3.6 问题及分析 参考&#xff08;可供参考的链接和引用文献&#xff09; 1. 作者介绍 杨金鹏&#xff0c;男&#xff0c;西安工程大学电子信息学院&#x…

Mybatis-puls——入门案例和概述和CURD功能实现

前言 虽然但是&#xff0c;现在MyBatis_puls并不支持springboot3.x版本。 MyBatis_puls就像SpringBoot是为了快速开发Spring程序一样&#xff0c;这个是为了快速开发MyBatis程序。基于SpringBoot使用MP的开发流程 按照下面这个模板造就对了。 SpingBoot——SB整合MB的web项…

Profinet通信协议基础知识

目录 1、Profinet是PI退出的开放式以太网标准: 2、Profinet的参考模式 3、Profinet的应用领域

若依框架快速搭建(一)

若依框架开发 若依框架介绍前期准备相关工具IDEAwebstromNavcatMavenRedis 前后端项目搭建 后端搭建前端搭建源码下载 若依框架介绍 若以管理系统的网址&#xff1a;http://ruoyi.vip/ 代码为开源代码 主要分为四部分&#xff0c;第一个是整体项目&#xff0c;第二个是前后端…

UFS 3 - UFS RPMB

UFS 1-UFS RPMB 1 RPMB介绍2 RPMB Well Known Logical Unit Description3 Requirements3.1 RPMB Resources3.2 Algorithm and Key for MAC Calculation3.3 RPMB Message Components3.4 Request Message Types3.5 Response Message Types3.6 RPMB Operation Result 4 Implementa…

Springboot +spring security,前后端分离时的security处理方案(二)

一.简介 在前后端分离这样的开发模式下&#xff0c;前后端的交互都是通过 JSON 来进行数据传递的&#xff0c;无论登录成功还是失败&#xff0c;都不会有服务端跳转或者客户端跳转之类的操作。 也就是说无论登录成功还是失败&#xff0c;服务端都会返回一段登录成功或失败的 …

Go 1.19 排序算法

插入排序&#xff08;InsertionSort&#xff09; 插入排序是一种简单直观的排序算法&#xff0c;它的基本思想是将待排序的元素插入到已经排好序的序列中&#xff0c;从而得到一个新的有序序列。插入排序的具体过程如下&#xff1a; 从第一个元素开始&#xff0c;认为它已经是…

RK3568 i2s TDM数据抓取

1. I2S接口 I2S协议只定义三根信号线:时钟信号SCK、串行数据信号SD、左右声道选择信号WS。 SCK 时钟信号,Serial Clock,也可能称BCLK/Bit Clock或SCL/Serial Clock。 WS 左右声道选择信号,Word Select,也称帧时钟,也可能称LRCLK/Left Right Clock。 SD 串行数据信号,Ser…

计算机网络第一章——计算机网络系统结构(下)

提示&#xff1a;总角之宴&#xff0c;言笑晏晏。信誓旦旦&#xff0c;不思其反。反是不思&#xff0c;亦已焉哉。 文章目录 1.2.1 分层结构&#xff0c;协议&#xff0c;接口和服务为什么要有分层&#xff1f;怎么分层正式认识分层结构概念总结 1.2.2 OSI 参考模型ISO参考模型…

Markdown 格式文章的图床

chatGPT 奖励模型示意图&#xff1a; chatGPT RLHF(基于人类反馈的强化学习) 模型示意图&#xff1a; 强化学习过程示意图&#xff1a;

《HashMap的数据结构》

目录 HashMap概述&#xff1a; 数据结构的组成&#xff1a; 一个键值对是如何存入该结构中&#xff1a; HashMap中链表和红黑树的用途和转换方式 &#xff1a; HashMap概述&#xff1a; HashMap是基于哈希表的Map接口实现的&#xff0c;它存储的内容是键值对<key,value&g…

Web安全:文件包含漏洞测试(防止 黑客利用此漏洞.)

Web安全&#xff1a;文件包含漏洞测试. 文件包含的漏洞是 程序员在开发网站的时候&#xff0c;为了方便自己开发构架&#xff0c;使用了一些包含的函数&#xff08;比如&#xff1a;php开发语言&#xff0c;include() , include_once() , require_once() 等等 &#xff09;&a…

书单 | 数据治理的30本书

随着数字经济时代的到来&#xff0c;数据的价值不断被发掘。党的十九届四中全会首次将“数据”列为生产要素&#xff0c;充分凸显了数字经济时代数据对于经济活动和社会生活的巨大价值。开展数据治理的理论探索和实践创新&#xff0c;有利于全面释放数据价值助力数字经济发展&a…

校园高校共享单车管理系统nodejs+vue+express

设计的管理员的详细功能见下图&#xff0c;管理员登录进入本人后台之后&#xff0c;管理单车和区域&#xff0c;审核租赁订单和还车订单&#xff0c;收取租赁费用&#xff0c;查看单车租赁统计信息。 vue的文件结构其实就是一个index.html 中间的内容&#xff0c;用的是vue&am…

代码随想录算法训练营第二十二天|235. 二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作 、450.删除二叉搜索树中的节点

二叉搜索树的最近公共祖先 题目链接&#xff1a;力扣 其实可以用之前普通二叉树最近公共祖先的算法。但是这样没有很好的利用二叉搜索树是有序的性质。 TreeNode* lowestCommonAncestor1(TreeNode* root, TreeNode* p, TreeNode* q) {if(!root || root p ||rootq) return roo…