Python每日一练(20230518) 螺旋矩阵 I\II\III\IV Spiral Matrix

news2024/10/7 18:23:09

目录

1. 螺旋矩阵 I Spiral Matrix i  🌟🌟

2. 螺旋矩阵 II Spiral Matrix ii  🌟🌟

3. 螺旋矩阵 III Spiral Matrix iii  🌟🌟

4. 螺旋矩阵 IV Spiral Matrix iv  🌟🌟

🌟 每日一练刷题专栏 🌟

Golang每日一练 专栏

Python每日一练 专栏

C/C++每日一练 专栏

Java每日一练 专栏


1. 螺旋矩阵 I Spiral Matrix i

给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]

示例 2:

输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 10
  • -100 <= matrix[i][j] <= 100

代码:

python

输出:


2. 螺旋矩阵 II Spiral Matrix ii

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

示例 1:

输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例 2:

输入:n = 1
输出:[[1]]

提示:

  • 1 <= n <= 20

代码:

python

输出:


3. 螺旋矩阵 III Spiral Matrix iii

在 R 行 C 列的矩阵上,我们从 (r0, c0) 面朝东面开始

这里,网格的西北角位于第一行第一列,网格的东南角位于最后一行最后一列。

现在,我们以顺时针按螺旋状行走,访问此网格中的每个位置。

每当我们移动到网格的边界之外时,我们会继续在网格之外行走(但稍后可能会返回到网格边界)。

最终,我们到过网格的所有 R * C 个空间。

按照访问顺序返回表示网格位置的坐标列表。

示例 1:

输入:R = 1, C = 4, r0 = 0, c0 = 0
输出:[[0,0],[0,1],[0,2],[0,3]]

示例 2:

输入:R = 5, C = 6, r0 = 1, c0 = 4
输出:[[1,4],[1,5],[2,5],[2,4],[2,3],[1,3],[0,3],[0,4],[0,5],[3,5],[3,4],[3,3],[3,2],[2,2],[1,2],[0,2],[4,5],[4,4],[4,3],[4,2],[4,1],[3,1],[2,1],[1,1],[0,1],[4,0],[3,0],[2,0],[1,0],[0,0]]

提示:

  1. 1 <= R <= 100
  2. 1 <= C <= 100
  3. 0 <= r0 < R
  4. 0 <= c0 < C

代码:

python

输出:


4. 螺旋矩阵 IV Spiral Matrix iv

给你两个整数:m 和 n ,表示矩阵的维数。

另给你一个整数链表的头节点 head 。

请你生成一个大小为 m x n 的螺旋矩阵,矩阵包含链表中的所有整数。链表中的整数从矩阵 左上角 开始、顺时针 按 螺旋 顺序填充。如果还存在剩余的空格,则用 -1 填充。

返回生成的矩阵。

示例 1:

输入:m = 3, n = 5, head = [3,0,2,6,8,1,7,9,4,2,5,5,0]
输出:[[3,0,2,6,8],[5,0,-1,-1,1],[5,2,4,9,7]]
解释:上图展示了链表中的整数在矩阵中是如何排布的。
注意,矩阵中剩下的空格用 -1 填充。

示例 2:

输入:m = 1, n = 4, head = [0,1,2]
输出:[[0,1,2,-1]]
解释:上图展示了链表中的整数在矩阵中是如何从左到右排布的。 
注意,矩阵中剩下的空格用 -1 填充。

提示:

  • 1 <= m, n <= 10^5
  • 1 <= m * n <= 10^5
  • 链表中节点数目在范围 [1, m * n] 内
  • 0 <= Node.val <= 1000

代码:

python

输出:


🌟 每日一练刷题专栏 🌟

持续,努力奋斗做强刷题搬运工!

👍 点赞,你的认可是我坚持的动力! 

🌟 收藏,你的青睐是我努力的方向! 

评论,你的意见是我进步的财富!  

 主页:https://hannyang.blog.csdn.net/

Golang每日一练 专栏

Python每日一练 专栏

C/C++每日一练 专栏

Java每日一练 专栏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/539260.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索Vue的组件世界-组件通信

目录 组件跨层级访问 访问外层组件 定向消息 ref&#xff08;父组件访问子组件&#xff09; 依赖注入 依赖注入&#xff0c;vue2.0实现源码 组件封装 组件二次封装 小结 组件跨层级访问 访问外层组件 // 获取 根组件 的数据 this.$root.pri;// 写入 根组件 的数据 t…

人机融合智能的测量、计算与评价

老子在《道德经》第二十一章写道:"道之为物,惟恍惟惚。惚兮恍兮,其中有象;恍兮惚兮,其中有物。窈兮冥兮,其中有精;其精甚真,其中有信。"&#xff08;“道”这个东西&#xff0c;没有清楚的固定实体。它是那样的恍恍惚惚啊&#xff0c;其中却有形象。它是那样的恍恍惚…

怎样才能做好企业内部wiki知识库呢?

企业内部wiki知识库是一种常用的知识管理方式。通过建立企业内部wiki知识库&#xff0c;企业可以更好的管理和共享知识&#xff0c;提高员工的工作效率和生产力。 详解如何做好企业内部wiki知识库的方法&#xff1a; 一、设计知识库架构 企业内部wiki知识库的架构设计是非常…

抖音seo源码优化/企业号搜索排名/开源搭建

什么是抖音seo&#xff1f; 抖音SEO是指通过提高在抖音平台的关键词排名&#xff0c;来获取流量、获取客户的目的。抖音的流量主要分为付费流量、推荐流量和搜索流量&#xff0c;其中搜索流量因为付费太贵、上热门太累而成为另一种进入方式1。抖音拥有庞大的用户基数&#xff…

shell命令以及运行原理,命令行解释器/bash,Linux Kernel与Shell简单理解等

引入 输入指令的过程本质上就是在输入一个字符串&#xff0c;然后指令的本质就是编译好的程序.exe与脚本。它们都是在系统的特定路径之下放着呢。然后我们所有指令最终都是要到操作系统内部去运行的&#xff0c;也就是说各种各样的指令都需要操作系统的参与。我们有各种各样的…

WordPress 如何开启多站点 含Apache和Nginx伪静态规则

WordPress 3.0以上的版本支持直接开启多站点模式,这样一来,你可以在一个后台切换多个站点进行管理。 最近打算折腾一个主题演示站,给每个主题使用独立的子站点来搭建演示,如果是Apache环境,配置就比较容易,但是倡萌使用的是 Nginx,花了大量的时间测试了N多网络上的伪静…

什么是无头浏览器?如何使用Golang实现无头浏览器截图?

前言 在Web开发中&#xff0c;有时需要对网页进行截图&#xff0c;以便进行页面预览、测试等操作。 而使用无头浏览器来实现截图功能&#xff0c;可以避免手动操作的繁琐和不稳定性。 这篇文章将介绍&#xff1a;使用Golang进行无头浏览器的截图&#xff0c;轻松实现页面预览…

苹果电脑PS Raw增效工具:Camera Raw 15中文版

Camera Raw 15是Adobe公司开发的一款用于处理RAW格式图像的插件软件&#xff0c;它可以帮助用户在Photoshop、Lightroom等软件中对RAW格式图像进行调整和优化。Camera Raw 15提供了丰富的调整工具&#xff0c;包括白平衡、曝光、色彩、锐化、噪点、透视等&#xff0c;可以让用户…

home assistant添加天气预报

先上效果图&#xff0c;大体就是这个样子 1.天气API链接 https://www.windy.com 选择页面嵌入式微件 下面是完整的HTML 代码&#xff0c;但是需要修改一下 <iframe width"1000" height"600" src"https://embed.windy.com/embed2.html?lat21.2…

【腾讯云Finops Crane集训营】利用云原生成本优化项目实现降本增效泰裤辣~

Crane 是一个基于 FinOps 的云资源分析与成本优化平台。在保证客户应用运行质量的前提下实现极致的降本。 文章目录 一、 前言&#x1f350;二、 Crane开源项目简介&#x1f34e;2.1. Crane整体框架&#x1f352;2.2. Crane主要功能&#x1f345; 三、Crane实验前期准备&#x…

PaLM 2 硬刚 GPT-4,未来还有变数

在 ChatGPT 没有出现之前&#xff0c;谷歌多年来一直是 AI first战略 &#xff0c;不出意外的话还会是领头羊&#xff0c;手握 DeepMind 和 Google Brain 两大 AI 王牌&#xff0c;再加上投资技术实力雄厚的 Anthropic&#xff0c;论资排辈都得是他。时不我与&#xff0c;被 Op…

链表--part 1--链表基础理论(概括)

文章目录 单链表双链表循环链表链表链表的定义删除节点增加节点 首先什么是链表&#xff0c;链表是一种通过指针串联在一起的线性结构&#xff0c;每一个节点由两部分组成&#xff0c;一个是数据域一个是指针域&#xff08;存放指向下一个节点的指针&#xff09;&#xff0c;最…

低代码平台的分类及选择参考

目录 零、认识低代码 一、低代码平台的分类 1.1通用低代码平台 1.2垂直低代码平台 1.3开放式低代码平台 二、低代码平台的特点 三、低代码平台的优缺点对比 四、低代码平台的选择参考 为什么选择IVX&#xff1f; 五、iVX平台与其他低代码平台的区别 零、认识低代码 …

机器学习项目实战-能源利用率 Part-2(探索性数据分析)

Part-1部分的博客可见下&#xff1a; 机器学习项目实战-能源利用率 Part-1&#xff08;数据清洗&#xff09; 这部分进行的是探索性数据分析。 探索性数据分析 Exploratory Data Analysis 简单的说&#xff0c;就是画图来分析数据。 分析标签数据 data data.rename(colum…

c++ 11标准模板(STL) std::set(六)

定义于头文件 <set> template< class Key, class Compare std::less<Key>, class Allocator std::allocator<Key> > class set;(1)namespace pmr { template <class Key, class Compare std::less<Key>> using se…

STL配接器(容器适配器)—— queue 的介绍使用以及模拟实现。

注意 &#xff1a; 以下所有文档都来源此网站 &#xff1a; http://cplusplus.com/ 一、queue 的介绍 queue 文档的介绍&#xff1a;https://cplusplus.com/reference/queue/queue/ 1. 队列是一种容器适配器&#xff0c;专门用于在FIFO上下文(先进先出)中操作&#xff0c;其…

将本机安装的chrome插件移至其他电脑

国内chrome应用商店默认是打不开的&#xff0c;属于绕过应用商店安装的一种办法 假设已安装插件的电脑为A电脑 待安装插件电脑为B电脑 首先在A电脑打开chrome浏览器&#xff0c;然后输入chrome://version/ 找到"个人资料路径"对应位置 个人资料路径下的Extensions目…

LabVIEWCompactRIO 开发指南22 CVT客户端通信(CCC)

LabVIEWCompactRIO 开发指南22 CVT客户端通信&#xff08;CCC&#xff09; 如果使用第3章中讨论的CVT进行进程间通信&#xff0c;请考虑使用CCC。如果已经创建了CVT标签&#xff0c;并且想在网络上发布此数据&#xff0c;CCC不失为一个简单而优雅的解决方案。它基于TCP/IP&am…

java接口与实现

文章目录 一、Java接口二、Java实现接口三、Java接口回调四、Java接口与多态五、Java接口参数六、Java接口与抽象类的比较七、Java接口的UML图总结 一、Java接口 接口是Java语言中一种重要的数据类型&#xff0c;通常使用关键字interface来定义一个接口。 接口的定义和类的定…

【22-23 春学期】人工智能基础--AI作业10-经典卷积网络

LeNet & MNIST LeNet是由Yann LeCun及其合作者于1998年开发的一种具有开创性的卷积神经网络架构。它的设计目的是识别手写数字并执行图像分类任务。MNIST是一个用于手写数字识别的大型数据库&#xff0c;常被用于训练图像处理系统。LeNet与MNIST的关系在于&#xff0c;LeNe…