B.【机器学习实践系列二】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)

news2024/12/25 8:51:51

在这里插入图片描述
【机器学习入门与实践】入门必看系列,含数据挖掘项目实战:数据融合、特征优化、特征降维、探索性分析等,实战带你掌握机器学习数据挖掘

在这里插入图片描述
专栏详细介绍:【机器学习入门与实践】合集入门必看系列,含数据挖掘项目实战:数据融合、特征优化、特征降维、探索性分析等,实战带你掌握机器学习数据挖掘。

本专栏主要方便入门同学快速掌握相关知识。声明:部分项目为网络经典项目方便大家快速学习,后续会不断增添实战环节(比赛、论文、现实应用等)

专栏订阅:数据挖掘-机器学习专栏

主要讲解了数据探索性分析:查看变量间相关性以及找出关键变量;数据特征工程对数据精进:异常值处理、归一化处理以及特征降维;在进行归回模型训练涉及主流ML模型:决策树、随机森林,lightgbm等。同时重丶讲解模型验证、特征优化、模型融合等。

note:项目链接以及码源见文末

1.赛题简介

了解赛题

  • 赛题概况

  • 数据概况

  • 预测指标

  • 分析赛题

  • 数据读取pandas

  • 分类指标评价计算示例

  • 回归指标评价计算示例

EDA探索

  • 载入各种数据科学以及可视化库
  • 载入数据
  • 总览数据概况
  • 判断数据缺失和异常
  • 了解预测值的分布
  • 特征分为类别特征和数字特征,并对类别特征查看unique分布
  • 数字特征分析
  • 类别特征分析
  • 用pandas_profiling生成数据报告

特征工程

  • 导入数据
  • 删除异常值
  • 特征构造
  • 特征筛选

建模调参,相关原理介绍与推荐

  • 线性回归模型
  • 决策树模型
  • GBDT模型
  • XGBoost模型
  • LightGBM模型
  • 推荐教材
  • 读取数据
  • 线性回归 & 五折交叉验证 & 模拟真实业务情况
  • 多种模型对比
  • 模型调参

模型融合

  • 回归\分类概率-融合
  • 分类模型融合
  • 一些其它方法
  • 本赛题示例

1.1 数据说明

比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格。

来自 Ebay Kleinanzeigen 报废的二手车,数量超过 370,000,包含 20 列变量信息,为了保证
比赛的公平性,将会从中抽取 10 万条作为训练集,5 万条作为测试集 A,5 万条作为测试集
B。同时会对名称、车辆类型、变速箱、model、燃油类型、品牌、公里数、价格等信息进行
脱敏。

一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。
Tip:匿名特征,就是未告知数据列所属的性质的特征列。

train.csv

  • name - 汽车编码
  • regDate - 汽车注册时间
  • model - 车型编码
  • brand - 品牌
  • bodyType - 车身类型
  • fuelType - 燃油类型
  • gearbox - 变速箱
  • power - 汽车功率
  • kilometer - 汽车行驶公里
  • notRepairedDamage - 汽车有尚未修复的损坏
  • regionCode - 看车地区编码
  • seller - 销售方
  • offerType - 报价类型
  • creatDate - 广告发布时间
  • price - 汽车价格
  • v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’(根据汽车的评论、标签等大量信息得到的embedding向量)【人工构造 匿名特征】

数字全都脱敏处理,都为label encoding形式,即数字形式

1.2预测指标

本赛题的评价标准为MAE(Mean Absolute Error):

M A E = ∑ i = 1 n ∣ y i − y ^ i ∣ n MAE=\frac{\sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\right|}{n} MAE=ni=1nyiy^i
其中 y i y_{i} yi代表第 i i i个样本的真实值,其中 y ^ i \hat{y}_{i} y^i代表第 i i i个样本的预测值。

一般问题评价指标说明:

什么是评估指标:

评估指标即是我们对于一个模型效果的数值型量化。(有点类似与对于一个商品评价打分,而这是针对于模型效果和理想效果之间的一个打分)

一般来说分类和回归问题的评价指标有如下一些形式:

分类算法常见的评估指标如下:

  • 对于二类分类器/分类算法,评价指标主要有accuracy, [Precision,Recall,F-score,Pr曲线],ROC-AUC曲线。
  • 对于多类分类器/分类算法,评价指标主要有accuracy, [宏平均和微平均,F-score]。

对于回归预测类常见的评估指标如下:

  • 平均绝对误差(Mean Absolute Error,MAE),均方误差(Mean Squared Error,MSE),平均绝对百分误差(Mean Absolute Percentage Error,MAPE),均方根误差(Root Mean Squared Error), R2(R-Square)

平均绝对误差
平均绝对误差(Mean Absolute Error,MAE):平均绝对误差,其能更好地反映预测值与真实值误差的实际情况,其计算公式如下:
M A E = 1 N ∑ i = 1 N ∣ y i − y ^ i ∣ MAE=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-\hat{y}_{i}\right| MAE=N1i=1Nyiy^i

均方误差
均方误差(Mean Squared Error,MSE),均方误差,其计算公式为:
M S E = 1 N ∑ i = 1 N ( y i − y ^ i ) 2 MSE=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2} MSE=N1i=1N(yiy^i)2

R2(R-Square)的公式为
残差平方和:
S S r e s = ∑ ( y i − y ^ i ) 2 SS_{res}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} SSres=(yiy^i)2
总平均值:
S S t o t = ∑ ( y i − y ‾ i ) 2 SS_{tot}=\sum\left(y_{i}-\overline{y}_{i}\right)^{2} SStot=(yiyi)2

其中 y ‾ \overline{y} y表示 y y y的平均值
得到 R 2 R^2 R2表达式为:
R 2 = 1 − S S r e s S S t o t = 1 − ∑ ( y i − y ^ i ) 2 ∑ ( y i − y ‾ ) 2 R^{2}=1-\frac{SS_{res}}{SS_{tot}}=1-\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\overline{y}\right)^{2}} R2=1SStotSSres=1(yiy)2(yiy^i)2
R 2 R^2 R2用于度量因变量的变异中可由自变量解释部分所占的比例,取值范围是 0~1, R 2 R^2 R2越接近1,表明回归平方和占总平方和的比例越大,回归线与各观测点越接近,用x的变化来解释y值变化的部分就越多,回归的拟合程度就越好。所以 R 2 R^2 R2也称为拟合优度(Goodness of Fit)的统计量。

y i y_{i} yi表示真实值, y ^ i \hat{y}_{i} y^i表示预测值, y ‾ i \overline{y}_{i} yi表示样本均值。得分越高拟合效果越好。

1.3分析赛题

  1. 此题为传统的数据挖掘问题,通过数据科学以及机器学习深度学习的办法来进行建模得到结果。
  2. 此题是一个典型的回归问题。
  3. 主要应用xgb、lgb、catboost,以及pandas、numpy、matplotlib、seabon、sklearn、keras等等数据挖掘常用库或者框架来进行数据挖掘任务。

2.数据探索

# 下载数据
!wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/dragonball/DM/data.zip
# 解压下载好的数据
!unzip data.zip
# 导入函数工具
## 基础工具
import numpy as np
import pandas as pd
import warnings
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.special import jn
from IPython.display import display, clear_output
import time

warnings.filterwarnings('ignore')
%matplotlib inline

## 模型预测的
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor

## 数据降维处理的
from sklearn.decomposition import PCA,FastICA,FactorAnalysis,SparsePCA

import lightgbm as lgb
import xgboost as xgb

## 参数搜索和评价的
from sklearn.model_selection import GridSearchCV,cross_val_score,StratifiedKFold,train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error

2.1 数据读取

## 通过Pandas对于数据进行读取 (pandas是一个很友好的数据读取函数库)
Train_data = pd.read_csv('/home/aistudio/dataset/used_car_train_20200313.csv', sep=' ')
TestA_data = pd.read_csv('/home/aistudio/dataset/used_car_testA_20200313.csv', sep=' ')

## 输出数据的大小信息
print('Train data shape:',Train_data.shape)
print('TestA data shape:',TestA_data.shape)
Train data shape: (150000, 31)
TestA data shape: (50000, 30)

2.2 数据简要浏览

## 通过.head() 简要浏览读取数据的形式
Train_data.head()
SaleIDnameregDatemodelbrandbodyTypefuelTypegearboxpowerkilometer...v_5v_6v_7v_8v_9v_10v_11v_12v_13v_14
007362004040230.061.00.00.06012.5...0.2356760.1019880.1295490.0228160.097462-2.8818032.804097-2.4208210.7952920.914762
1122622003030140.012.00.00.0015.0...0.2647770.1210040.1357310.0265970.020582-4.9004822.096338-1.030483-1.7226740.245522
221487420040403115.0151.00.00.016312.5...0.2514100.1149120.1651470.0621730.027075-4.8467491.8035591.565330-0.832687-0.229963
337186519960908109.0100.00.01.019315.0...0.2742930.1103000.1219640.0333950.000000-4.5095991.285940-0.501868-2.438353-0.478699
4411108020120103110.051.00.00.0685.0...0.2280360.0732050.0918800.0788190.121534-1.8962400.9107830.9311102.8345181.923482

5 rows × 31 columns

2.3 数据信息查看

## 通过 .info() 简要可以看到对应一些数据列名,以及NAN缺失信息
Train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   SaleID             150000 non-null  int64  
 1   name               150000 non-null  int64  
 2   regDate            150000 non-null  int64  
 3   model              149999 non-null  float64
 4   brand              150000 non-null  int64  
 5   bodyType           145494 non-null  float64
 6   fuelType           141320 non-null  float64
 7   gearbox            144019 non-null  float64
 8   power              150000 non-null  int64  
 9   kilometer          150000 non-null  float64
 10  notRepairedDamage  150000 non-null  object 
 11  regionCode         150000 non-null  int64  
 12  seller             150000 non-null  int64  
 13  offerType          150000 non-null  int64  
 14  creatDate          150000 non-null  int64  
 15  price              150000 non-null  int64  
 16  v_0                150000 non-null  float64
 17  v_1                150000 non-null  float64
 18  v_2                150000 non-null  float64
 19  v_3                150000 non-null  float64
 20  v_4                150000 non-null  float64
 21  v_5                150000 non-null  float64
 22  v_6                150000 non-null  float64
 23  v_7                150000 non-null  float64
 24  v_8                150000 non-null  float64
 25  v_9                150000 non-null  float64
 26  v_10               150000 non-null  float64
 27  v_11               150000 non-null  float64
 28  v_12               150000 non-null  float64
 29  v_13               150000 non-null  float64
 30  v_14               150000 non-null  float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB
## 通过 .columns 查看列名
Train_data.columns
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'seller', 'offerType', 'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3',
       'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12',
       'v_13', 'v_14'],
      dtype='object')
TestA_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 30 columns):
 #   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  
 0   SaleID             50000 non-null  int64  
 1   name               50000 non-null  int64  
 2   regDate            50000 non-null  int64  
 3   model              50000 non-null  float64
 4   brand              50000 non-null  int64  
 5   bodyType           48587 non-null  float64
 6   fuelType           47107 non-null  float64
 7   gearbox            48090 non-null  float64
 8   power              50000 non-null  int64  
 9   kilometer          50000 non-null  float64
 10  notRepairedDamage  50000 non-null  object 
 11  regionCode         50000 non-null  int64  
 12  seller             50000 non-null  int64  
 13  offerType          50000 non-null  int64  
 14  creatDate          50000 non-null  int64  
 15  v_0                50000 non-null  float64
 16  v_1                50000 non-null  float64
 17  v_2                50000 non-null  float64
 18  v_3                50000 non-null  float64
 19  v_4                50000 non-null  float64
 20  v_5                50000 non-null  float64
 21  v_6                50000 non-null  float64
 22  v_7                50000 non-null  float64
 23  v_8                50000 non-null  float64
 24  v_9                50000 non-null  float64
 25  v_10               50000 non-null  float64
 26  v_11               50000 non-null  float64
 27  v_12               50000 non-null  float64
 28  v_13               50000 non-null  float64
 29  v_14               50000 non-null  float64
dtypes: float64(20), int64(9), object(1)
memory usage: 11.4+ MB

2.4 数据统计信息浏览

## 通过 .describe() 可以查看数值特征列的一些统计信息
Train_data.describe()
SaleIDnameregDatemodelbrandbodyTypefuelTypegearboxpowerkilometer...v_5v_6v_7v_8v_9v_10v_11v_12v_13v_14
count150000.000000150000.0000001.500000e+05149999.000000150000.000000145494.000000141320.000000144019.000000150000.000000150000.000000...150000.000000150000.000000150000.000000150000.000000150000.000000150000.000000150000.000000150000.000000150000.000000150000.000000
mean74999.50000068349.1728732.003417e+0747.1290218.0527331.7923690.3758420.224943119.31654712.597160...0.2482040.0449230.1246920.0581440.061996-0.0010000.0090350.0048130.000313-0.000688
std43301.41452761103.8750955.364988e+0449.5360407.8649561.7606400.5486770.417546177.1684193.919576...0.0458040.0517430.2014100.0291860.0356923.7723863.2860712.5174781.2889881.038685
min0.0000000.0000001.991000e+070.0000000.0000000.0000000.0000000.0000000.0000000.500000...0.0000000.0000000.0000000.0000000.000000-9.168192-5.558207-9.639552-4.153899-6.546556
25%37499.75000011156.0000001.999091e+0710.0000001.0000000.0000000.0000000.00000075.00000012.500000...0.2436150.0000380.0624740.0353340.033930-3.722303-1.951543-1.871846-1.057789-0.437034
50%74999.50000051638.0000002.003091e+0730.0000006.0000001.0000000.0000000.000000110.00000015.000000...0.2577980.0008120.0958660.0570140.0584841.624076-0.358053-0.130753-0.0362450.141246
75%112499.250000118841.2500002.007111e+0766.00000013.0000003.0000001.0000000.000000150.00000015.000000...0.2652970.1020090.1252430.0793820.0874912.8443571.2550221.7769330.9428130.680378
max149999.000000196812.0000002.015121e+07247.00000039.0000007.0000006.0000001.00000019312.00000015.000000...0.2918380.1514201.4049360.1607910.22278712.35701118.81904213.84779211.1476698.658418

8 rows × 30 columns

TestA_data.describe()
SaleIDnameregDatemodelbrandbodyTypefuelTypegearboxpowerkilometer...v_5v_6v_7v_8v_9v_10v_11v_12v_13v_14
count50000.00000050000.0000005.000000e+0450000.00000050000.00000048587.00000047107.00000048090.00000050000.00000050000.000000...50000.00000050000.00000050000.00000050000.00000050000.00000050000.00000050000.00000050000.00000050000.00000050000.000000
mean174999.50000068542.2232802.003393e+0746.8445208.0562401.7821850.3734050.224350119.88362012.595580...0.2486690.0450210.1227440.0579970.062000-0.017855-0.013742-0.013554-0.0031470.001516
std14433.90106761052.8081335.368870e+0449.4695487.8194771.7607360.5464420.417158185.0973873.908979...0.0446010.0517660.1959720.0292110.0356533.7479853.2312582.5159621.2865971.027360
min150000.0000000.0000001.991000e+070.0000000.0000000.0000000.0000000.0000000.0000000.500000...0.0000000.0000000.0000000.0000000.000000-9.160049-5.411964-8.916949-4.123333-6.112667
25%162499.75000011203.5000001.999091e+0710.0000001.0000000.0000000.0000000.00000075.00000012.500000...0.2437620.0000440.0626440.0350840.033714-3.700121-1.971325-1.876703-1.060428-0.437920
50%174999.50000052248.5000002.003091e+0729.0000006.0000001.0000000.0000000.000000109.00000015.000000...0.2578770.0008150.0958280.0570840.0587641.613212-0.355843-0.142779-0.0359560.138799
75%187499.250000118856.5000002.007110e+0765.00000013.0000003.0000001.0000000.000000150.00000015.000000...0.2653280.1020250.1254380.0790770.0874892.8327081.2629141.7643350.9414690.681163
max199999.000000196805.0000002.015121e+07246.00000039.0000007.0000006.0000001.00000020000.00000015.000000...0.2916180.1532651.3588130.1563550.21477512.33887218.85621812.9504985.9132732.624622

8 rows × 29 columns

3.数据分析

#### 1) 提取数值类型特征列名
numerical_cols = Train_data.select_dtypes(exclude = 'object').columns
print(numerical_cols)
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'regionCode', 'seller', 'offerType',
       'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6',
       'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14'],
      dtype='object')
categorical_cols = Train_data.select_dtypes(include = 'object').columns
print(categorical_cols)
Index(['notRepairedDamage'], dtype='object')
#### 2) 构建训练和测试样本
## 选择特征列
feature_cols = [col for col in numerical_cols if col not in ['SaleID','name','regDate','creatDate','price','model','brand','regionCode','seller']]
feature_cols = [col for col in feature_cols if 'Type' not in col]

## 提前特征列,标签列构造训练样本和测试样本
X_data = Train_data[feature_cols]
Y_data = Train_data['price']

X_test  = TestA_data[feature_cols]

print('X train shape:',X_data.shape)
print('X test shape:',X_test.shape)
X train shape: (150000, 18)
X test shape: (50000, 18)
## 定义了一个统计函数,方便后续信息统计
def Sta_inf(data):
    print('_min',np.min(data))
    print('_max:',np.max(data))
    print('_mean',np.mean(data))
    print('_ptp',np.ptp(data))
    print('_std',np.std(data))
    print('_var',np.var(data))
#### 3) 统计标签的基本分布信息
print('Sta of label:')
Sta_inf(Y_data)
Sta of label:
_min 11
_max: 99999
_mean 5923.327333333334
_ptp 99988
_std 7501.973469876635
_var 56279605.942732885

5923.327333333334
_ptp 99988
_std 7501.973469876635
_var 56279605.942732885

## 绘制标签的统计图,查看标签分布
plt.hist(Y_data)
plt.show()
plt.close()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XF9SQqmR-1681357725113)(output_21_0.png)]

#### 4) 缺省值用-1填补
X_data = X_data.fillna(-1)
X_test = X_test.fillna(-1)

4. 模型训练与预测(特征工程、模型融合)

4.1 利用xgb进行五折交叉验证查看模型的参数效果

## xgb-Model
xgr = xgb.XGBRegressor(n_estimators=120, learning_rate=0.1, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) #,objective ='reg:squarederror'

scores_train = []
scores = []

## 5折交叉验证方式
sk=StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
for train_ind,val_ind in sk.split(X_data,Y_data):
    
    train_x=X_data.iloc[train_ind].values
    train_y=Y_data.iloc[train_ind]
    val_x=X_data.iloc[val_ind].values
    val_y=Y_data.iloc[val_ind]
    
    xgr.fit(train_x,train_y)
    pred_train_xgb=xgr.predict(train_x)
    pred_xgb=xgr.predict(val_x)
    
    score_train = mean_absolute_error(train_y,pred_train_xgb)
    scores_train.append(score_train)
    score = mean_absolute_error(val_y,pred_xgb)
    scores.append(score)

print('Train mae:',np.mean(score_train))
print('Val mae',np.mean(scores))

4.2 定义xgb和lgb模型函数

def build_model_xgb(x_train,y_train):
    model = xgb.XGBRegressor(n_estimators=150, learning_rate=0.1, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) #, objective ='reg:squarederror'
    model.fit(x_train, y_train)
    return model

def build_model_lgb(x_train,y_train):
    estimator = lgb.LGBMRegressor(num_leaves=127,n_estimators = 150)
    param_grid = {
        'learning_rate': [0.01, 0.05, 0.1, 0.2],
    }
    gbm = GridSearchCV(estimator, param_grid)
    gbm.fit(x_train, y_train)
    return gbm

4.3 切分数据集(Train,Val)进行模型训练,评价和预测

## Split data with val
x_train,x_val,y_train,y_val = train_test_split(X_data,Y_data,test_size=0.3)
print('Train lgb...')
model_lgb = build_model_lgb(x_train,y_train)
val_lgb = model_lgb.predict(x_val)
MAE_lgb = mean_absolute_error(y_val,val_lgb)
print('MAE of val with lgb:',MAE_lgb)

print('Predict lgb...')
model_lgb_pre = build_model_lgb(X_data,Y_data)
subA_lgb = model_lgb_pre.predict(X_test)
print('Sta of Predict lgb:')
Sta_inf(subA_lgb)
print('Train xgb...')
model_xgb = build_model_xgb(x_train,y_train)
val_xgb = model_xgb.predict(x_val)
MAE_xgb = mean_absolute_error(y_val,val_xgb)
print('MAE of val with xgb:',MAE_xgb)

print('Predict xgb...')
model_xgb_pre = build_model_xgb(X_data,Y_data)
subA_xgb = model_xgb_pre.predict(X_test)
print('Sta of Predict xgb:')
Sta_inf(subA_xgb)

4.4进行两模型的结果加权融合

## 这里我们采取了简单的加权融合的方式
val_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*val_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*val_xgb
val_Weighted[val_Weighted<0]=10 # 由于我们发现预测的最小值有负数,而真实情况下,price为负是不存在的,由此我们进行对应的后修正
print('MAE of val with Weighted ensemble:',mean_absolute_error(y_val,val_Weighted))
sub_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*subA_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*subA_xgb

## 查看预测值的统计进行
plt.hist(Y_data)
plt.show()
plt.close()

4.5.输出结果

sub = pd.DataFrame()
sub['SaleID'] = TestA_data.SaleID
sub['price'] = sub_Weighted
sub.to_csv('./sub_Weighted.csv',index=False)
sub.head()

5. 项目详细展开

因篇幅内容限制,将原学习项目拆解成多个notebook方便学习,只需一键fork。

5.1 数据分析详解

  1. 载入各种数据科学以及可视化库:
    • 数据科学库 pandas、numpy、scipy;
    • 可视化库 matplotlib、seabon;
    • 其他;
  2. 载入数据:
    • 载入训练集和测试集;
    • 简略观察数据(head()+shape);
  3. 数据总览:
    • 通过describe()来熟悉数据的相关统计量
    • 通过info()来熟悉数据类型
  4. 判断数据缺失和异常
    • 查看每列的存在nan情况
    • 异常值检测
  5. 了解预测值的分布
    • 总体分布概况(无界约翰逊分布等)
    • 查看skewness and kurtosis
    • 查看预测值的具体频数
  6. 特征分为类别特征和数字特征,并对类别特征查看unique分布
  7. 数字特征分析
    • 相关性分析
    • 查看几个特征得 偏度和峰值
    • 每个数字特征得分布可视化
    • 数字特征相互之间的关系可视化
    • 多变量互相回归关系可视化
  8. 类型特征分析
    • unique分布
    • 类别特征箱形图可视化
    • 类别特征的小提琴图可视化
    • 类别特征的柱形图可视化类别
    • 特征的每个类别频数可视化(count_plot)
  9. 用pandas_profiling生成数据报告

5.2 特征工程

  1. 异常处理:
    • 通过箱线图(或 3-Sigma)分析删除异常值;
    • BOX-COX 转换(处理有偏分布);
    • 长尾截断;
  2. 特征归一化/标准化:
    • 标准化(转换为标准正态分布);
    • 归一化(抓换到 [0,1] 区间);
    • 针对幂律分布,可以采用公式: l o g ( 1 + x 1 + m e d i a n ) log(\frac{1+x}{1+median}) log(1+median1+x)
  3. 数据分桶:
    • 等频分桶;
    • 等距分桶;
    • Best-KS 分桶(类似利用基尼指数进行二分类);
    • 卡方分桶;
  4. 缺失值处理:
    • 不处理(针对类似 XGBoost 等树模型);
    • 删除(缺失数据太多);
    • 插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
    • 分箱,缺失值一个箱;
  5. 特征构造:
    • 构造统计量特征,报告计数、求和、比例、标准差等;
    • 时间特征,包括相对时间和绝对时间,节假日,双休日等;
    • 地理信息,包括分箱,分布编码等方法;
    • 非线性变换,包括 log/ 平方/ 根号等;
    • 特征组合,特征交叉;
    • 仁者见仁,智者见智。
  6. 特征筛选
    • 过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
    • 包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
    • 嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
  7. 降维
    • PCA/ LDA/ ICA;
    • 特征选择也是一种降维。

5.3 模型优化

  1. 线性回归模型:
    • 线性回归对于特征的要求;
    • 处理长尾分布;
    • 理解线性回归模型;
  2. 模型性能验证:
    • 评价函数与目标函数;
    • 交叉验证方法;
    • 留一验证方法;
    • 针对时间序列问题的验证;
    • 绘制学习率曲线;
    • 绘制验证曲线;
  3. 嵌入式特征选择:
    • Lasso回归;
    • Ridge回归;
    • 决策树;
  4. 模型对比:
    • 常用线性模型;
    • 常用非线性模型;
  5. 模型调参:
    • 贪心调参方法;
    • 网格调参方法;
    • 贝叶斯调参方法;

5.4模型融合

  1. 简单加权融合:

    • 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
    • 分类:投票(Voting)
    • 综合:排序融合(Rank averaging),log融合
  2. stacking/blending:

    • 构建多层模型,并利用预测结果再拟合预测。
  3. boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):

    • 多树的提升方法

    训练:

预测:

6.总结

二手车预测项目是非常经典项目,数据挖掘实践(二手车价格预测)的内容来自 Datawhale与天池联合发起的,现在通过整理和调整让更多对机器学习感兴趣可以上手实战一下

因篇幅内容限制,将原学习项目拆解成多个notebook方便学习,只需一键fork。

项目链接:

一键fork直接运行,所有项目码源都在里面

https://www.heywhale.com/mw/project/64367e0a2a3d6dc93d22054f

机器学习数据挖掘专栏:
https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc

参考链接:

https://github.com/datawhalechina/team-learning-data-mining/tree/master/SecondHandCarPriceForecast

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/518240.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spellman高压电源X射线发生器维修XRB160PN480X4593

spellman高压发生器维修VMX40P5X4629&#xff1b;Spellman X射线发生器维修X4593系列 X射线源维修。 Spellman所拥有的变频器架构可以使高压电源获得高利用率的效率和功率密度。固体密封的高压模块进一步减少了尺寸和重量。 基于表面贴装控制电路的数字信号处理器提供通讯接口…

2023,谁还在花钱减肥?

【潮汐商业评论/原创】 “这是益生菌、酵素、0蔗糖酸奶&#xff0c;促进肠胃蠕动的&#xff1b;这是蒟蒻果冻、魔芋零食&#xff0c;嘴馋占嘴用的&#xff1b;这是全麦面包&#xff0c;饱腹感强&#xff0c;不易发胖&#xff1b;这是我刚办的健身卡&#xff1b;这是……”Lily…

【Qt编程之Widgets模块】-007:QTextStream类及QDataStream类

1 概述 QTextStream和QDataStream都是对流进行操作 QTextStream只能普通类型的流操作像QChar、QString、int…&#xff0c;其实就很类似我们c或者c中读写文件的感觉&#xff0c; QDataStream就厉害了&#xff0c;无论是QTextStream的普通类型的流操作还是一些特殊类型的流操作…

设计模式之【外观/门面模式】,不打开这扇门永远不知道门后有多少东西

文章目录 一、什么是外观模式&#xff08;门面模式&#xff09;1、外观模式的结构2、使用场景3、外观模式的优缺点4、外观模式注意事项 二、实例1、外观模式的通用写法2、智能家居案例3、积分换礼品案例 参考资料 一、什么是外观模式&#xff08;门面模式&#xff09; 外观模式…

yoloV5项目工程源码解读(2)(未完成)

概述 将主要从三个部分对源码进行解读。 数据层面&#xff0c;dataloader 和 数据增强网络模型&#xff0c;模型细节和逻辑模型训练&#xff0c;训练策略等 数据源解读 utils 中有&#xff0c;在train.py中能跳到该函数。 train.py中 # Trainloader 创建dataloader就是我们…

网络安全工程师辛苦吗?

“人生如寄&#xff0c;何事辛苦怨斜晖”&#xff0c;意思是人活着就像寄生在这个世界上&#xff0c;为什么一定要劳碌奔波&#xff0c;最后还抱怨人生苦短呢&#xff1f; 但说到辛苦二字&#xff0c;什么工作不辛苦呢&#xff1f;除了体制内的一些工作稍微轻松一些&#xff0c…

打家劫舍问题

题目&#xff1a; 打家劫舍https://leetcode.cn/problems/house-robber/ 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上…

重写Properties类,实现对properties文件的有序读写,数据追加,解决中文乱码

前言 *.properties文件&#xff0c;是 Java 支持的一种配置文件类型&#xff0c;并且 Java 提供了 properties 类来读取 properties 文件中的信息。文件中以键值对 "键值"的形式&#xff0c;存储工程中会多次重复使用的配置信息&#xff0c;通过“Properties”类来读…

【Mysql实战】使用存储过程和计算同比环比

背景 同环比&#xff0c;是基本的数据分析方法。在各类调研表中屡见不鲜&#xff0c;如果人工向前追溯统计数据&#xff0c;可想而知工作量是非常大的。 标题复制10行&#xff0c;并且每行大于10个字符【源码解析】SpringBoot接口参数【Mysql实战】使用存储过程和计算同比环比…

超全总结:硬件设计基础60条

硬件是一个非常复杂的系统&#xff0c;在设计过程中都会遇到或多或少的问题&#xff0c;本文中总结了非常基础的60个问题&#xff0c;供大家参考。 1、请说明一下滤波磁珠和滤波电感的区别。 磁珠由导线穿过铁氧体组成&#xff0c;直流电阻很小&#xff0c;在低频时阻抗也很小…

数字化转型,目的是为了转型还是数字化?

受第四次工业革命浪潮的影响&#xff0c;传统工业经济社会快速向数字经济转型过渡&#xff0c;企业创新面临的经济环境发生根本性变革。数字技术广泛应用于生产、交换、消费等经济环节&#xff0c;为企业产品创新、服务创新以及数字化开放式创新提供了动力源泉。数字经济背景下…

如何利用生产管理系统提高粉末治金工业的生产调度能力

在粉末冶金工业中&#xff0c;生产管理系统的应用已经成为了一个必不可少的部分。生产管理系统可以帮助企业实现自动化、信息化、智能化的生产&#xff0c;提高生产效率、降低生产成本、提高产品质量。生产管理系统可以对生产流程进行全面的监控和管理&#xff0c;从而实现生产…

11个超好用的SVG编辑工具

SVG的优势在于SVG图像可以更加灵活&#xff0c;自由收缩放大而不影响图片的质量&#xff0c;一个合适的SVG编辑工具能够让你的设计事半功倍&#xff0c;下面就一起来看看这些冷门软件好用在哪里。这11个超好用的SVG编辑工具依次为&#xff1a;即时设计、Justinmind、Sketsa SVG…

Sentinel-Dashboard-1.8持久化Nacos

Sentinel-Dashboard-1.8持久化Nacos 目录 Sentinel-Dashboard-1.8持久化Nacos一、客户端改造1.引入pom.xml文件依赖2.配置application.yml文件。 二、Sentinel-Dashboard源码改造三、测试 一、客户端改造 1.引入pom.xml文件依赖 <!-- https://mvnrepository.com/artifact/…

这些神奇的AI智能机器人很早就已出现过,你确定你不了解?

很多人自从ChatGPT出现以后&#xff0c;就总是担忧&#xff0c;担心自己的职业被影响&#xff0c;然后很多人大肆宣扬 ChatGPT 真是了不得&#xff0c;未来再辅助机器人&#xff0c;加上大数据&#xff0c;一定可以怎么怎么样&#xff0c;说的神乎其神&#xff0c;说实话&#…

几个pdf怎么合并在一起?

几个pdf怎么合并在一起&#xff1f;在日常生活和工作中&#xff0c;我们可能会遇到需要将多个PDF文件合并为一个文件的问题。在对PDF文件合并之后&#xff0c;能够更好地组织和管理信息。将pdf文件合并能够在很大程度上提高工作效率&#xff0c;减少查找和打开不同文件的时间。…

【计算机视觉 | ViT-G】谷歌大脑提出 ViT-G:缩放视觉 Transformer,高达 90.45% 准确率

文章目录 一、简介二、如何做到的&#xff1f;三、扩展数据四、「head」 的解耦权重衰减五、通过移除 [class] token 节省内存六、实验结果6.1 将计算、模型和数据一起扩展6.2 ViT-G/14 结果 论文地址为&#xff1a; https://arxiv.org/pdf/2106.04560.pdf一、简介 视觉 Trans…

PoseiSwap合规、隐私与支持更广泛的资产

Nautilus Chain 代表了公链赛道发展的一个新的范式形态&#xff0c;作为目前行业内首个 Layer3 链&#xff0c;是目前行业内第一个并行化且运行速度最快的EVM Rollup 方案。作为首个模块化链&#xff0c;存储、计算、共识等都在不同的模块中&#xff0c;意味着其能够获得更高的…

如何建立DDR3测试工程

要建立DDR3的测试工程&#xff0c;首先要生成mig IP核&#xff0c;然后写测试模块使用这个IP核进行测试。 一、生成 mig IP核 建立一个新工程&#xff0c;然后生成 mig IP核。 关键步骤如下&#xff1a; &#xff08;1&#xff09;点击 IP catalog&#xff0c;在搜索框输入…

SSM框架学习-AOP通知类型

在AOP中&#xff0c;通知&#xff08;Advice&#xff09;是对切点进行操作的方法&#xff0c;用于实现切面定义的具体逻辑。Spring框架支持五种类型的通知&#xff1a; 1. 前置通知&#xff08;Before advice&#xff09; 在连接点执行前&#xff0c;执行通知 Before("**…