【Redis高级应用】多级缓存

news2024/11/15 21:52:49

文章目录

  • 什么是多级缓存
  • JVM进程缓存
    • 初识Caffeine
    • 实现JVM进程缓存
      • 需求
      • 实现
  • Lua语法入门
    • 初识Lua
    • HelloWorld
    • 变量和循环
      • Lua的数据类型
      • 声明变量
      • 循环
    • 条件控制、函数
      • 函数
      • 条件控制
      • 案例
  • 实现多级缓存
    • 安装OpenResty
    • OpenResty快速入门
      • 反向代理流程
      • OpenResty监听请求
      • 编写item.lua
    • 请求参数处理
      • 获取参数的API
      • 获取参数并返回
    • 查询Tomcat
      • 发送http请求的API
      • 封装http工具
      • CJSON工具类
      • 实现Tomcat查询
      • 基于ID负载均衡
        • 1)原理
        • 2)实现
        • 3)测试
    • Redis缓存预热
    • 查询Redis缓存
      • 封装Redis工具
      • 实现Redis查询
    • Nginx本地缓存
      • 本地缓存API
      • 实现本地缓存查询
  • 缓存同步
    • 数据同步策略
    • 安装Canal
      • 认识Canal
      • 安装Canal
    • 监听Canal
      • 引入依赖
      • 编写配置
      • 修改Item实体类
      • 编写监听器

什么是多级缓存

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:

在这里插入图片描述

存在下面的问题:

  • 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈

  • Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

在这里插入图片描述

在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了

因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:

在这里插入图片描述

另外,我们的Tomcat服务将来也会部署为集群模式:

在这里插入图片描述

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询

  • 另一个就是在Tomcat中实现JVM进程缓存

其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。

JVM进程缓存

为了演示多级缓存的案例,我们先准备一个商品查询的业务。

初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存。

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine的性能非常好,下图是官方给出的性能对比:

在这里插入图片描述

可以看到Caffeine的性能遥遥领先!

缓存使用的基本API:

@Test
void testBasicOps() {
    // 构建cache对象
    Cache<String, String> cache = Caffeine.newBuilder().build();

    // 存数据
    cache.put("gf", "迪丽热巴");

    // 取数据
    String gf = cache.getIfPresent("gf");
    System.out.println("gf = " + gf);

    // 取数据,包含两个参数:
    // 参数一:缓存的key
    // 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
    // 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
    String defaultGF = cache.get("defaultGF", key -> {
        // 根据key去数据库查询数据
        return "柳岩";
    });
    System.out.println("defaultGF = " + defaultGF);
}

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。

Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
        .maximumSize(1) // 设置缓存大小上限为 1
        .build();
    
  • 基于时间:设置缓存的有效时间

    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
        // 设置缓存有效期为 10 秒,从最后一次写入开始计时 
        .expireAfterWrite(Duration.ofSeconds(10)) 
        .build();
    
    
  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

实现JVM进程缓存

需求

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000

实现

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

package com.heima.item.config;

import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CaffeineConfig {

    @Bean
    public Cache<Long, Item> itemCache(){
        return Caffeine.newBuilder()
                .initialCapacity(100)
                .maximumSize(10_000)
                .build();
    }

    @Bean
    public Cache<Long, ItemStock> stockCache(){
        return Caffeine.newBuilder()
                .initialCapacity(100)
                .maximumSize(10_000)
                .build();
    }
}

然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

@RestController
@RequestMapping("item")
public class ItemController {

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    @Autowired
    private Cache<Long, Item> itemCache;
    @Autowired
    private Cache<Long, ItemStock> stockCache;
    
    // ...其它略
    
    @GetMapping("/{id}")
    public Item findById(@PathVariable("id") Long id) {
        return itemCache.get(id, key -> itemService.query()
                .ne("status", 3).eq("id", key)
                .one()
        );
    }

    @GetMapping("/stock/{id}")
    public ItemStock findStockById(@PathVariable("id") Long id) {
        return stockCache.get(id, key -> stockService.getById(key));
    }
}

Lua语法入门

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/

在这里插入图片描述

Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。

Nginx本身也是C语言开发,因此也允许基于Lua做拓展。

HelloWorld

CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。

1)在Linux虚拟机的任意目录下,新建一个hello.lua文件

在这里插入图片描述

2)添加下面的内容

print("Hello World!")  

3)运行

在这里插入图片描述

变量和循环

学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。

Lua的数据类型

Lua中支持的常见数据类型包括:

在这里插入图片描述

另外,Lua提供了type()函数来判断一个变量的数据类型:
在这里插入图片描述

声明变量

Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:

-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:

-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map =  {name='Jack', age=21}

这里的name和age不能打引号!

Lua中的数组角标是从1开始,访问的时候与Java中类似:

-- 访问数组,lua数组的角标从1开始
print(arr[1])

Lua中的table可以用key来访问:

-- 访问table
print(map['name'])
print(map.name)  -- 当索引为字符串类型时的一种简化写法

循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

遍历数组:

-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
    print(index, value) 
end

遍历普通table

-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
   print(key, value) 
end

遍历数组时使用的时ipairs(i是index的缩写)
遍历普通table时使用的pairs

条件控制、函数

Lua中的条件控制和函数声明与Java类似。

函数

定义函数的语法:

function 函数名( argument1, argument2..., argumentn)
    -- 函数体
    return 返回值
end

例如,定义一个函数,用来打印数组:

function printArr(arr)
    for index, value in ipairs(arr) do
        print(value)
    end
end

条件控制

类似Java的条件控制,例如if、else语法:

if(布尔表达式)
then
   --[ 布尔表达式为 true 时执行该语句块 --]
else
   --[ 布尔表达式为 false 时执行该语句块 --]
end

与java不同,布尔表达式中的逻辑运算是基于英文单词:

在这里插入图片描述

案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息

function printArr(arr)
    if not arr then
        print('数组不能为空!')
    end
    for index, value in ipairs(arr) do
        print(value)
    end
end

实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

安装OpenResty

OpenResty是一个基于Nginx与Lua的高性能web平台。它把Lua嵌入到Nginx中,使得我们可以使用Lua脚本编写web应用直接运行在Nginx服务器内部。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

官方网站: https://openresty.org/cn/

在这里插入图片描述

OpenResty快速入门

我们希望达到的多级缓存架构如图:

在这里插入图片描述

其中:

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群

  • OpenResty集群用来编写多级缓存业务

反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。

这个请求如下:

在这里插入图片描述

请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:

在这里插入图片描述

我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。

但是这次,我们先在OpenResty接收请求,返回假的商品数据。

OpenResty监听请求

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:

1)添加对OpenResty的Lua模块的加载

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http下面,添加下面代码:

#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块     
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";  

2)监听/api/item路径

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:

location  /api/item {
    # 默认的响应类型
    default_type application/json;
    # 响应结果由lua/item.lua文件来决定
    content_by_lua_file lua/item.lua;
}

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。

content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

编写item.lua

1)在/usr/loca/openresty/nginx目录创建文件夹:lua

在这里插入图片描述

2)在/usr/loca/openresty/nginx/lua文件夹下,新建文件:item.lua

在这里插入图片描述

3)编写item.lua,返回假数据

item.lua中,利用ngx.say()函数返回数据到Response中

ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

4)重新加载配置

nginx -s reload

刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:

在这里插入图片描述

请求参数处理

前面,我们在OpenResty接收前端请求,但是返回的是假数据。

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。

那么如何获取前端传递的商品参数呢?

获取参数的API

OpenResty中提供了一些API用来获取不同类型的前端请求参数:

在这里插入图片描述

获取参数并返回

在前端发起的ajax请求如图:

在这里插入图片描述

可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

1)获取商品id

修改/usr/loca/openresty/nginx/nginx.conf文件中监听/api/item的代码,利用正则表达式获取ID:

location ~ /api/item/(\d+) {
    # 默认的响应类型
    default_type application/json;
    # 响应结果由lua/item.lua文件来决定
    content_by_lua_file lua/item.lua;
}

2)拼接ID并返回

修改/usr/loca/openresty/nginx/lua/item.lua文件,获取id并拼接到结果中返回:

-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')

3)重新加载并测试

运行命令以重新加载OpenResty配置:

nginx -s reload

刷新页面可以看到结果中已经带上了ID:

在这里插入图片描述

查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:

在这里插入图片描述

需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。

在这里插入图片描述

发送http请求的API

nginx提供了内部API用以发送http请求:

local resp = ngx.location.capture("/path",{
    method = ngx.HTTP_GET,   -- 请求方式
    args = {a=1,b=2},  -- get方式传参数
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理(拦截)。

但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:

 location /path {
     # 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
     proxy_pass http://192.168.150.1:8081; 
 }

原理如图:

在这里插入图片描述

封装http工具

下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。

1)添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。

修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:

location /item {
    proxy_pass http://192.168.150.1:8081;
}

以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

2)封装工具类

之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:

在这里插入图片描述

所以,自定义的http工具也需要放到这个目录下。

/usr/local/openresty/lualib目录下,新建一个common.lua文件:

vi /usr/local/openresty/lualib/common.lua

内容如下:

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http
}  
return _M

这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。

3)实现商品查询

最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
在这里插入图片描述

这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。

CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

官方地址: https://github.com/openresty/lua-cjson/

1)引入cjson模块:

local cjson = require "cjson"

2)序列化:

local obj = {
    name = 'jack',
    age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)

3)反序列化:

local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)

实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')

-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(itemStockJSON)

-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:

在这里插入图片描述

因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。

怎么办?

如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了

也就是说,我们需要根据商品id做负载均衡,而不是轮询。

1)原理

nginx提供了基于请求路径做负载均衡的算法:

nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

例如:

  • 我们的请求路径是 /item/10001
  • tomcat总数为2台(8081、8082)
  • 对请求路径/item/1001做hash运算求余的结果为1
  • 则访问第一个tomcat服务,也就是8081

只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。

2)实现

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。

首先,定义tomcat集群,并设置基于路径做负载均衡:

upstream tomcat-cluster {
    hash $request_uri;
    server 192.168.150.1:8081;
    server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

location /item {
    proxy_pass http://tomcat-cluster;
}

重新加载OpenResty

nginx -s reload

3)测试

启动两台tomcat服务:

在这里插入图片描述

同时启动:

在这里插入图片描述

清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:

在这里插入图片描述

在这里插入图片描述

Redis缓存预热

Redis缓存会面临冷启动问题:

冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。

缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。

我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

1)利用Docker安装Redis

docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes

2)在item-service服务中引入Redis依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3)配置Redis地址

spring:
  redis:
    host: 192.168.150.101

4)编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }
}

查询Redis缓存

现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:

在这里插入图片描述

当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat

封装Redis工具

OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。

修改/usr/local/openresty/lualib/common.lua文件:

1)引入Redis模块,并初始化Redis对象

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

2)封装函数,用来释放Redis连接,其实是放入连接池

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

3)封装函数,根据key查询Redis数据

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

4)导出

-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M

完整的common.lua:

-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
    local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
    local pool_size = 100 --连接池大小
    local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
    if not ok then
        ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
    end
end

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
    -- 获取一个连接
    local ok, err = red:connect(ip, port)
    if not ok then
        ngx.log(ngx.ERR, "连接redis失败 : ", err)
        return nil
    end
    -- 查询redis
    local resp, err = red:get(key)
    -- 查询失败处理
    if not resp then
        ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
    end
    --得到的数据为空处理
    if resp == ngx.null then
        resp = nil
        ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
    end
    close_redis(red)
    return resp
end

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
    local resp = ngx.location.capture(path,{
        method = ngx.HTTP_GET,
        args = params,
    })
    if not resp then
        -- 记录错误信息,返回404
        ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
        ngx.exit(404)
    end
    return resp.body
end
-- 将方法导出
local _M = {  
    read_http = read_http,
    read_redis = read_redis
}  
return _M

实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。

查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回

1)修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
    -- 查询本地缓存
    local val = read_redis("127.0.0.1", 6379, key)
    -- 判断查询结果
    if not val then
        ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
        -- redis查询失败,去查询http
        val = read_http(path, params)
    end
    -- 返回数据
    return val
end

2)而后修改商品查询、库存查询的业务:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZZXmcdfO-1683515721307)(assets/image-20210821114528954.png)]

3)完整的item.lua代码:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')

-- 封装查询函数
function read_data(key, path, params)
    -- 查询本地缓存
    local val = read_redis("127.0.0.1", 6379, key)
    -- 判断查询结果
    if not val then
        ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
        -- redis查询失败,去查询http
        val = read_http(path, params)
    end
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:

在这里插入图片描述

本地缓存API

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。

1)开启共享字典,在nginx.conf的http下添加配置:

 # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
 lua_shared_dict item_cache 150m; 

2)操作共享字典:

-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')

实现本地缓存查询

1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:

-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:

在这里插入图片描述

其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。

这里给商品基本信息设置超时时间为30分钟,库存为1分钟。

因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。

3)完整的item.lua文件:

-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
    -- 查询本地缓存
    local val = item_cache:get(key)
    if not val then
        ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
        -- 查询redis
        val = read_redis("127.0.0.1", 6379, key)
        -- 判断查询结果
        if not val then
            ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
            -- redis查询失败,去查询http
            val = read_http(path, params)
        end
    end
    -- 查询成功,把数据写入本地缓存
    item_cache:set(key, val, expire)
    -- 返回数据
    return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800,  "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

异步通知:修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:

在这里插入图片描述

解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

2)基于Canal的通知

在这里插入图片描述

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

安装Canal

认识Canal

Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

在这里插入图片描述

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

在这里插入图片描述

安装Canal

大家可以上传到虚拟机,然后通过命令导入:

docker load -i canal.tar

然后运行命令创建Canal容器:

docker run -p 11111:11111 --name canal \
-e canal.destinations=heima \
-e canal.instance.master.address=mysql:3306  \
-e canal.instance.dbUsername=canal  \
-e canal.instance.dbPassword=canal  \
-e canal.instance.connectionCharset=UTF-8 \
-e canal.instance.tsdb.enable=true \
-e canal.instance.gtidon=false  \
-e canal.instance.filter.regex=heima\\..* \
--network heima \
-d canal/canal-server:v1.1.5

说明:

  • -p 11111:11111:这是canal的默认监听端口
  • -e canal.instance.master.address=mysql:3306:数据库地址和端口,如果不知道mysql容器地址,可以通过docker inspect 容器id来查看
  • -e canal.instance.dbUsername=canal:数据库用户名
  • -e canal.instance.dbPassword=canal :数据库密码
  • -e canal.instance.filter.regex=:要监听的表名称

表名称监听支持的语法:

mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\) 
常见例子:
1.  所有表:.*   or  .*\\..*
2.  canal schema下所有表: canal\\..*
3.  canal下的以canal打头的表:canal\\.canal.*
4.  canal schema下的一张表:canal.test1
5.  多个规则组合使用然后以逗号隔开:canal\\..*,mysql.test1,mysql.test2 

监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。

在这里插入图片描述

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client

与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。

引入依赖

<dependency>
    <groupId>top.javatool</groupId>
    <artifactId>canal-spring-boot-starter</artifactId>
    <version>1.2.1-RELEASE</version>
</dependency>

编写配置

canal:
  destination: heima # canal的集群名字,要与安装canal时设置的名称一致
  server: 192.168.150.101:11111 # canal服务地址

修改Item实体类

通过@Id、@Column等注解完成Item与数据库表字段的映射:

package com.heima.item.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;

import javax.persistence.Column;
import java.util.Date;

@Data
@TableName("tb_item")
public class Item {
    @TableId(type = IdType.AUTO)
    @Id
    private Long id;//商品id
    @Column(name = "name")
    private String name;//商品名称
    private String title;//商品标题
    private Long price;//价格(分)
    private String image;//商品图片
    private String category;//分类名称
    private String brand;//品牌名称
    private String spec;//规格
    private Integer status;//商品状态 1-正常,2-下架
    private Date createTime;//创建时间
    private Date updateTime;//更新时间
    @TableField(exist = false)
    @Transient
    private Integer stock;
    @TableField(exist = false)
    @Transient
    private Integer sold;
}

编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;

import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;

@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

    @Autowired
    private RedisHandler redisHandler;
    @Autowired
    private Cache<Long, Item> itemCache;

    @Override
    public void insert(Item item) {
        // 写数据到JVM进程缓存
        itemCache.put(item.getId(), item);
        // 写数据到redis
        redisHandler.saveItem(item);
    }

    @Override
    public void update(Item before, Item after) {
        // 写数据到JVM进程缓存
        itemCache.put(after.getId(), after);
        // 写数据到redis
        redisHandler.saveItem(after);
    }

    @Override
    public void delete(Item item) {
        // 删除数据到JVM进程缓存
        itemCache.invalidate(item.getId());
        // 删除数据到redis
        redisHandler.deleteItemById(item.getId());
    }
}

这个地方注入的JVM进程缓存不会出现线程安全问题,因为前面我们在ItemController 中涉及的都是缓存的读操作,并且这里注入的bean默认是单例bean,所以不会产生多线程写的问题。

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }

    public void saveItem(Item item) {
        try {
            String json = MAPPER.writeValueAsString(item);
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        } catch (JsonProcessingException e) {
            throw new RuntimeException(e);
        }
    }

    public void deleteItemById(Long id) {
        redisTemplate.delete("item:id:" + id);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/505120.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ES+Redis+MySQL,这个高可用架构设计太顶了

会员系统是一种基础系统&#xff0c;跟公司所有业务线的下单主流程密切相关。如果会员系统出故障&#xff0c;会导致用户无法下单&#xff0c;影响范围是全公司所有业务线。所以&#xff0c;会员系统必须保证高性能、高可用&#xff0c;提供稳定、高效的基础服务。 一、背景 二…

【最终截稿 | Springer 独立出版 | EI稳定检索】 2023年绿色建筑国际会议(ICoGB 2023)

会议简介 Brief Introduction 2023年绿色建筑国际会议(ICoGB 2023) 会议时间&#xff1a;2023年5月21日-23日 召开地点&#xff1a;瑞典斯德哥尔摩 大会官网&#xff1a;www.icogb.org ICoGB 2023将围绕“绿色建筑”的最新研究领域而展开&#xff0c;为研究人员、工程师、专家学…

进程(一)

进程&#xff08;一&#xff09; 2.1 进程的定义、组成、组织方式、特征2.1.1 定义2.1.2 组成2.1.3 组织方式2.1.4 特征2.1.5 本小节总结 2.2 进程的状态与转换2.2.1 进程的状态2.2.3 进程状态的转换2.2.4 本小节总结 2.3 进程控制2.3.1 基本概念2.3.2 进程控制相关的原语2.3.3…

BetaFlight Mark4之“妖怪”声音

BetaFlight Mark4之“妖怪”声音 1. 源由2. 分析3. 数据3.1 配置一3.1.1 “妖怪”声音 黑匣子分析 3.2 配置二3.2.1 仅配置调整&#xff08;其他不变&#xff09;3.2.2 配置调整 整体螺丝锁紧 4. 总结5. 附录5.1 Betaflight filter tuning. The easy way to get a perfect fil…

防雷接地网施工综合方案

防雷接地网是一种用于防止雷击的重要设施&#xff0c;其主要作用是将雷电击中建筑物或设备后的电流引入地下&#xff0c;以保护人员和设备的安全。防雷接地网的施工方案是非常重要的&#xff0c;它直接关系到工程质量和安全。 防雷接地网的施工方案需要考虑很多因素&#xff0…

第四十八章 Unity 布局(下)

本章节我们介绍网格布局组 (Grid Layout Group)组件。 我们新建一个“SampleScene5.unity”场景&#xff0c;然后添加Panel面板容器&#xff08;居中且尺寸为300*300&#xff09;&#xff0c;然后为其添加Grid Layout Group 组件&#xff0c;如下所示 Padding 布局组边缘内的…

第四十九章 Unity UI适配器组件

首先&#xff0c;我们介绍内容大小适配器 (Content Size Fitter)组件。 我们新建一个“SampleScene6.unity”场景&#xff0c;然后添加一个Text UI元素&#xff0c;让其居中显示&#xff0c;并且尺寸设置为50*30。 由于我们设置Text的尺寸在水平方向上面太小&#xff0c;也就是…

NSSCTF [suctf 2019]hardcpp WP 控制流混淆

下载文件&#xff0c;64位主函数非常多循环 去控制流混淆&#xff0c;脚本下载deflat 用法 python 脚本名 文件名 起始地址例如主函数地址是0x4007E0 python deflat.py hardCpp 0x4007E0然后就生成了去混淆的文件 主函数非常大&#xff0c;开始分析逻辑 puts("func(?…

《Linux 内核设计与实现》10. 内核同步方法

文章目录 原子操作原子整数操作64 位原子操作原子位操作 自旋锁读写自旋锁信号量计数信号量和二值信号量信号量方法列表 读写信号量互斥体信号量和互斥体自旋锁和互斥体 完成变量BLK&#xff1a;大内核锁顺序锁禁止抢占顺序和屏障 原子操作 原子操作&#xff1a;可以保证指令以…

人大金仓KFS全新升级,从容应对“名场面”

系统迁移升级过程中&#xff0c; 迁移停机时间长&#xff1f; 异构数据库迁移成本高&#xff1f; 数据一致性无法保证&#xff1f; 发生故障后缺乏回滚手段&#xff1f; 这些“名场面”您遇到过吗&#xff1f; KFS全新解决方案正式发布 针对用户不同应用场景出现的普遍痛点&…

C++基础之类、对象一(类的定义,作用域、this指针)

目录 面向对象的编程 类的引入 简介 类的定义 简介 访问限定符 命名规则 封装 简介 类的作用域 类的大小及存储模型 this指针 简介 面向对象的编程 C与C语言不同&#xff0c;C是面向对象的编程&#xff0c;那么什么是面向对象的编程呢&#xff1f; C语言编程&#xff0c;规定…

C++之多态与虚函数

文章目录 初识多态运行时多态的原理静态联编和动态联编 初识多态 多态性是面向对象程序设计的关键技术之一。若程序不支持多态&#xff0c;不能称为面向对象的语言编译时多态&#xff1a;通过函数重载实现&#xff0c;早期绑定运行时多态&#xff1a;在程序执行过成中&#xf…

神策微报告丨10 页速览「生成式 AI」能力边界与商业化!

以 ChatGPT 为代表的生成式 AI 投入规模化应用后&#xff0c;一场人工智能的军备竞赛正在上演&#xff0c;生成式 AI 成为科技领域关注的焦点。 基于此背景&#xff0c;神策数据正式发布微报告《关于生成式 AI&#xff0c;这 10 页 PPT 就够了&#xff01;》&#xff0c;从突破…

DIDCTF平台练习-2022暑假取证学习

文章目录 前言123456789101112131415161718 前言 挺适合新手的&#xff0c;平台地址https://forensics.didctf.com/challenges 1 直接看 WIN-49I0SNRJAMF 2 计算即可 4547A61A11064DF47B272A4803788597F9A5E9AC0F11A93ABE58C8B8588956CB 3 NoxPlayer&#xff0c;夜神…

记一次azkaban调度异常处理

一、背景 预发布环境使用的数据库性能比较低&#xff0c;根据业务测试的需求&#xff0c;需要将数据库更换成 稳定高性能的数据库。更换业务数据库后azkaban定时任务失败 二、数据库服务信息 说明&#xff1a;该部分使用代号来代替&#xff0c;非真实信息 该数据库存储了azka…

docker 搭建 Elasticsearch和Kibana 8.x版本

参考: docker入门&#xff1a;单机elasticsearch安装记录&#xff0c;保证无坑_8月日更_小鲍侃java_InfoQ写作社区 新建文件夹 同上文所述相同&#xff0c;需要在宿主机上挂载配置文件与数据文件。 mkdir -p /Users/louye/data/learn-data/elastic/config mkdir -p /Users/lo…

学系统集成项目管理工程师(中项)系列19a_成本管理(上)

1. 要确保在批准的预算内完成项目 2. 必须考虑项目决策对项目产品、服务或成果的使用成本、维护成本和支持成本的影响 3. 对成本的影响力在项目早期最大 4. 失控原因 4.1. 对工程项目认识不足 4.1.1. 对信息系统工程成本控制的特点认识不足&#xff0c;对难度估计不足 4.…

大数据|实验三:PageRank算法实现

文章目录 &#x1f4da;PageRank概述&#x1f407;什么是PageRank&#x1f407;PageRank的简化模型&#x1f407;PageRank的随机浏览模型 &#x1f4da;实验目的&#x1f4da;实验平台&#x1f4da;实验内容&#x1f407;在本地编写程序和调试&#x1f407;在集群上提交作业并执…

【Linux脚本篇】流程控制语句-if

目录 &#x1f341;流程控制语句if &#x1f342;单分支语句 &#x1f342;双分支语句 &#x1f342;多分支语句 &#x1f341;流程控制语句&#xff1a;文件比较 &#x1f341;流程控制语句&#xff1a;整数比对 &#x1f341;流程控制语句&#xff1a;字符对比 &#x1f341;…

校园企业车辆维修报修管理系统设计与开发

本研究课题重点主要包括了下面几大模块&#xff1a;在本基于.net平台的车辆系统中分为管理员和用户2个模块&#xff0c;主要功能包括管理员信息管理&#xff0c;车辆信息管理&#xff0c;驾驶员信息管理&#xff0c;事故信息管理&#xff0c;维修信息管理&#xff0c;维修点管理…