【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
相关链接
(1)建模方案
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
(2)相关赛题论文
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 27页论文及实现代码
1 题目
一.问题背景
近年来企业外部环境越来越不确定,复杂多变的外部环境,让企业供应链面临较多难题。
需求预测作为企业供应链的第一道防线,重要程度不言而喻,然而需求预测受多种因素的影响,导致预测准确率普遍较低,因此需要更加优秀的算法来解决这个问题。需求预测是基于历史数据和未来的预判得出的有理论依据的结论,有利于公司管理层对未来的销售及运营计划、目标,资金预算做决策参考;其次,需求预测有助于采购计划和安排生产计划的制定, 减少受业务波动的影响。如果没有需求预测或者预测不准,公司内部很多关于销售、采购、财务预算等决策都只能根据经验而来了,会导致对市场预测不足,产生库存和资金的积压或不足等问题,增加企业库存成本。
二.数据说明
附件中的训练数据(order_train1.csv)提供了国内某大型制造企业在 2015 年 9 月 1日至 2018 年 12 月 20 日面向经销商的出货数据(格式见表 1),反应了该企业产品在不同销售区域的价格和需求等信息,包括:order_date(订单日期)、sales_region_code(销售区域编码)、item_code(产品编码)、first_cate_code (产品大类编码)、second_cate_code (产品细类编码)、sales_chan_name (销售渠道名称)、item_price (产品价格)和 ord_qty (订单需求量)。
表1:训练数量(历史数据)的数据格式
其中“订单日期”为某个需求量的日期;一个“产品大类编码”会对应多个“产品细类编码”;“销售渠道名称”分为 online(线上)和 offline(线下),“线上”是指淘宝和京东等电商平台,“线下”是指线下实体经销商。
附件中的预测数据(predict_sku1.csv)提供了需要预测产品的销售区域编码、产品编码、产品品类和产品细品类(格式见表 2)。
表2:需要预测的产品的数据样例
三.需要解决的问题
- 请对附件中的训练数据(order_train1.csv)进行深入地分析,可参照但不限于下述主
题。
(1) 产品的不同价格对需求量的影响;
(2) 产品所在区域对需求量的影响,以及不同区域的产品需求量有何特性;
(3) 不同销售方式(线上和线下)的产品需求量的特性;
(4) 不同品类之间的产品需求量有何不同点和共同点;
(5) 不同时间段(例如月头、月中、月末等)产品需求量有何特性;
(6) 节假日对产品需求量的影响;
(7) 促销(如 618、双十一等)对产品需求量的影响;
(8) 季节因素对产品需求量的影响。
- 基于上述分析,建立数学模型,对附件预测数据(predict_sku1.csv)中给出的产品,预测未来 3 月(即 2019 年 1 月、2 月、3 月)的月需求量,将预测结果按照表 3 的格式保存为文件 result1.xlsx,与论文一起提交。请分别按天、周、月的时间粒度进行预测,试分析不同的预测粒度对预测精度会产生什么样的影响。
2 论文介绍
产品订单的数据分析及基于Arimax和Var模型的需求预测
摘要
本文主要针对产品订单的数据进行分析,探讨了产品价格、所在区域、销售方式、品类、时间段、节假日、促销活动和季节因素对产品订单需求量的影响,为企业提供了科学的决策依据。通过分组统计和散点图展示实验结果,发现价格对需求量存在一定的影响,需求量随价格变化而变化。利用可视化分析和方差分析,发现产品所在区域对需求量有显著影响,线上和线下销售方式的产品需求量具有不同特性,不同品类之间的产品需求量差异很大,而不同时间段的订单需求量有季节性变化。此外,本文还针对需求量预测问题,采用了ARIMAX和VAR模型,融合多种指标和方法以提高模型的稳健性和科学性,并根据时间粒度进行灵敏度分析,结果表明,当时间粒度为天时,ARIMAX模型的预测结果相对更为准确。综上所述,本文的研究结果对企业制定生产和销售策略具有一定的指导意义。
3 获取方式
电脑浏览器打开