Sentinel --- 简介、流量控制

news2024/11/18 16:26:56

一、Sentinel

1.1、雪崩问题及解决方案

雪崩问题


微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

 

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。  

 

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

 

  

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:


超时处理


解决雪崩问题的常见方式有四种:

超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待


仓壁模式


方案2:仓壁模式

仓壁模式来源于船舱的设计:

 

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

 

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。


断路器


断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

 

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

 


限流


流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

总结

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

 

1.2、服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

  • Netfix Hystrix

  • Sentinel

  • Resilience4J

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

 

1.3、Sentinel介绍和安装

初识Sentinel


Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:home | Sentinel

 

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
  • 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

安装Sentinel


1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

 

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

 

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

需要输入账号和密码,默认都是:sentinel

 

登录后,发现一片空白,什么都没有:

这是因为我们还没有与微服务整合。

 

1.4、微服务整合Sentinel

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1、引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId> 
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2、配置控制台

修改application.yaml文件,添加下面内容:

server:
  port: 8088
spring:
  cloud: 
    sentinel:
      transport:
        dashboard: localhost:8080

3、访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:

 

 

二、流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

 

2.1、簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制

  • 降级:降级熔断

  • 热点:热点参数限流,是限流的一种

  • 授权:请求的权限控制

 

2.2、快速入门

示例


点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

 

表单中可以填写限流规则,如下:  

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。  


练习


需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

 

1、首先在sentinel控制台添加限流规则

 

2、利用jmeter测试 

20个用户,2秒内运行完,QPS是10,超过了5.

 

选中流控入门,QPS<5右键运行:

 

注意,不要点击菜单中的执行按钮来运行。  

 

结果:

可以看到,成功的请求每次只有5个  

 

2.3、流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

上面测试的就是直接模式。

 

2.3.1、关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1、定义/order/query端点,模拟订单查询

 
@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2、定义/order/update端点,模拟订单更新


@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

3、配置流控规则


对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

在表单中填写流控规则:

4、在Jmeter测试


选择《流控模式-关联》:

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

确实被限流了。

5、总结  


 

2.3.2、链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1、添加查询商品方法


在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}

 2)查询订单时,查询商品


在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}

3、新增订单,查询商品


在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}

4、给查询商品添加资源标记


默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:


5、添加流控规则


点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。  

6、Jmeter测试


选择《流控模式-链路》:

 

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

  

运行的结果:

  

完全不受影响。

另一个是访问/order/query:

 

运行结果:

每次只有2个通过。  

总结

流控模式有哪些?

  • 直接:对当前资源限流
  • 关联:高优先级资源触发阈值,对低优先级资源限流。
  • 链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

 

2.4、流控效果

在流控的高级选项中,还有一个流控效果选项:

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

 

2.4.1、warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1、配置流控规则


2、Jmeter测试


选择《流控效果,warm up》:

 

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

  

随着时间推移,成功比例越来越高:

 

到Sentinel控制台查看实时监控:   

一段时间后:

 

2.4.2、排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms

  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑  

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1、添加流控规则


2、Jmeter测试


选择《流控效果,队列》:

 

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

  

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

 

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

 

2.5、热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

 

2.5.1、全局参数限流

例如,一个根据id查询商品的接口:

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。  

配置示例:

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

 

2.5.2、热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10
  • 如果参数值是101,则每1秒允许的QPS为15

 案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

  • 默认的热点参数规则是每1秒请求量不超过2
  • 给102这个参数设置例外:每1秒请求量不超过4
  • 给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1、标记资源


给order-service中的OrderController中的/order/{orderId}资源添加注解:

2、热点参数限流规则


访问该接口,可以看到我们标记的hot资源出现了:

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

  

点击新增,填写表单:

3、Jmeter测试


选择《热点参数限流 QPS1》:

 

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

 

运行结果:

 

 

例外项,QPS阈值为4

 

运行结果:

 

例外项,QPS阈值为10

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/485397.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring AOP(重点、难点)

Spring AOP&#xff08;重点、难点&#xff09; 文章目录 Spring AOP&#xff08;重点、难点&#xff09;1.aop引入1.1 使用场景与概念引入1.2 以数据校验记录操作日志为例 写一组代码进行递推初始阶段 老老实实一个一个写&#xff1a;阶段一 **将日志和验证方法包装到一个类里…

海洋测绘设备使用总结快讯(2023年5月)

本文主要记录最近海洋测绘设备使用过程中遇到一些小问题和解决方法。 1、侧扫声纳绞车的事情 从去年10月到今年3月一直有一个困扰我们的问题&#xff1a;我们侧扫声纳的铠装缆在租用广西北海渔船且用发电机发电的情况下&#xff0c;能连接Klein3000和Klein4000拖鱼&#xff0…

通过Date类学习面向对象

通过手撸这个类的实现&#xff0c;我们可以学习到构造、析构、运算符重载&#xff0c;拷贝构造等面向对象中重要的知识。 首先先看头文件中类的定义&#xff1a; class Date { public:// 获取某年某月的天数int GetMonthDay(int year, int month);// 全缺省的构造函数Date(in…

算法的时间复杂度和空间复杂度(友友们专属限定版)

&#x1f349;博客主页&#xff1a;阿博历练记 &#x1f4d6;文章专栏&#xff1a;数据结构与算法 &#x1f69a;代码仓库&#xff1a;阿博编程日记 &#x1f339;欢迎关注&#xff1a;欢迎友友们点赞收藏关注哦 文章目录 &#x1f3a8;1.算法的复杂度介绍&#x1f3a8;2.时间复…

坤强服务器安装

记录一下服务器安装做raid和安装系统 raid 0 拆分开分别存在3块硬盘,一块坏了,全部不能用了, 但是存储速度最快 raid 1 具有最高的安全性,备份一份,容量只有总容量的一半 raid 10 先组两个raid1,再组两个raid0 .有raid 1的安全性和50%的使用容量 raid 5 安全性&#xff…

汇编二、51单片机内部结构

1、单片机内部资源 以AT89C51单片机为例&#xff0c;参考数据手册。 Atmel官网&#xff1a; https://www.microchip.com/ (1)1个8位CPU。 (2)4K ROM&#xff0c;128字节RAM。 (3)32个GPIO&#xff1b;定时器(Timer)&#xff1b;串口(UART)&#xff1b;中断系统(Interrupt…

Qt之滑动条和进度条(QSlider、QProgressBar)

文章目录 前言一、QSliderQSlider的常用API信号与槽 二、QProgressBar滑动条和滚动条的常用API 总结 前言 在用户界面设计中&#xff0c;滑动条和进度条是常见的控件。Qt中提供了QProgressBar和QSlider两个类来实现滚动条和滑动条。 一、QSlider 在Qt中&#xff0c;QSlider是…

ChatGPT攥写广告文案-写好广告营销软文的必备要点

chatgpt帮助我们写营销软文 Chat GPT是一款强大的自然语言处理模型&#xff0c;可以辅助您编写优秀的营销软文。下面是几个使用 Chat GPT 更好的编写营销软文的建议&#xff1a; 利用Chat GPT自动摘要 Chat GPT能够将一段较长的营销文本精简成几个关键点&#xff0c;这有利于…

32. 最长有效括号

32. 最长有效括号 难度困难2251 给你一个只包含 ( 和 ) 的字符串&#xff0c;找出最长有效&#xff08;格式正确且连续&#xff09;括号子串的长度。 示例 1&#xff1a; 输入&#xff1a;s "(()" 输出&#xff1a;2 解释&#xff1a;最长有效括号子串是 "…

《C语言技术体系》 学习路线总目录 + 思维导图

目录 前言 正文 思维导图 第1章 流程结构 1.1 初识C语言 1.2 流程结构 1.3 数据类型 1.4 运算符表达式 第2章 指针与数组 2.1 指针基本概念 2.2 一维数组 2.3 二维及多维数组 2.4 指针与数组 第3章 模块化重构 3.1 函数 3.2 typedef类型定义 3.3 enum枚举 3.…

手把手教你使用vue2搭建微前端micro-app

​ 简述 本文主要讲述新手小白怎么搭建micro-app&#xff0c;几乎是每一步都有截图说明。上手应该很简单。 本来我之前已经写了一篇手把手教程了&#xff0c;但是当时写的结个太乱了&#xff0c;趁着五一休假&#xff0c;重新整理了一番&#xff0c;加了文章目录&#xff0c;…

如何显示文件夹的后缀和隐藏文件

© Ptw-cwl 文章目录 前言文件夹后缀隐藏文件 如何设置显示文件夹的后缀和隐藏文件 前言 文件夹后缀 文件后缀是指文件名中最后一个“.”后面的一串字符&#xff0c;用来表示该文件的类型或格式。不同的文件类型有不同的后缀&#xff0c;例如&#xff0c;常见的图片文件…

对象浅拷贝的5种方式

参考原文:浅拷贝的五种实现方式 - 掘金 (juejin.cn) 哈喽 大家好啊 最近发现自己对对象都不是很熟练&#xff0c;特别是涉及到一些复制&#xff0c;深浅拷贝的东西 1.Object.assign 首先 我们创建一个空对象obj1 然后创建一个对象obj2 用object.assign(目标对象&#xff0c…

庖丁解牛函数知识---C语言《2》

目录 前言&#xff1a; 1.嵌套调用函数 2.链式访问 3.函数的声明与定义 4.*递归 5.递归与非递归 ❤博主CSDN:啊苏要学习 ▶专栏分类&#xff1a;C语言◀ C语言的学习&#xff0c;是为我们今后学习其它语言打好基础&#xff0c;C生万物&#xff01; 开始我们的C语言之旅吧…

C6678学习-GPIO

文章目录 1、简介2、框图3、寄存器4、地址 1、简介 C6678中共有16个GPIO&#xff0c;GPIO0~GPIO15。这些引脚的功能如下 ​ 通用输入输出管脚​ 中断&EDMA事件管脚 2、框图 1、GPIO作为通用输入输出时&#xff0c;用到的寄存器为DIR、SET_DATA、OUT_DATA、CLR_DATA、IN_…

AI奇点已至,是黎明前的黑暗,还是黑夜前的黄昏

2022年11月&#xff0c;OPEN AI公司推出了ChatGPT 3模型&#xff0c;瞬间引爆全球话题&#xff0c;所有业内人士都在感叹他的强大&#xff0c;比尔盖茨也曾经评价道&#xff0c;ChatGPT将会改变世界 &#xff0c;是一个相当于PC和互联网的革命性产品。 作为信息行业人&#xff…

网络请求与远程资源

网络请求与远程资源 网络分层 一、OSI七层模型、TCP/IP概念层模型 区别&#xff1a;OSI模型注重通信协议必要的功能是什么&#xff0c;TCP/IP模型更强调在计算机上实现协议应该开发哪种程序。 二、应用层的网络协议 FTP&#xff1a;文本传输协议SMTP&#xff1a;简单邮件传输协…

简单理解什么是序列化

为什么要序列化 序列化的目的就是为了对象可以在网络层进行传输&#xff0c; 比如通过后端传给前端数据。 什么是序列化 我们以Java为例。 序列化就是把对象转化为可传输的字节序列过程&#xff0c;这个字节序列可以是字符串&#xff0c;比如JSON格式的字符串&#xff0c;把…

基于海洋捕食者算法的极限学习机(ELM)回归预测-附代码

基于海洋捕食者算法的极限学习机(ELM)回归预测 文章目录 基于海洋捕食者算法的极限学习机(ELM)回归预测1.极限学习机原理概述2.ELM学习算法3.回归问题数据处理4.基于海洋捕食者算法优化的ELM5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;本文利用海洋捕食者算法对极限学习…

一种结合白平衡统计信息和曝光信息的软光敏算法专利学习

背景技术 随着科技的发展&#xff0c;对视频监控设备提出了越来越高的要求。大部分视频监控设备 都需要能够全天候的监控。ICR的中文名称为双滤光片切换器&#xff0c;是用于让滤光片白天切换到红外截止滤光片和晚上切换到全光谱滤光片的监控设备配件。白天的时候&#xff0c…